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Abstract Let G be a graph with vertex set V . A set D ⊆ V is a total restrained
dominating set of G if every vertex in V has a neighbor in D and every vertex in V \ D
has a neighbor in V \ D. The minimum cardinality of a total restrained dominating set
of G is called the total restrained domination number of G, and is denoted by γtr (G).

In this paper, we prove that if G is a connected graph of order n ≥ 4 and minimum

degree at least two, then γtr (G) ≤ n − 3
√

n
4 .

Keywords Total restrained domination number · Total restrained dominating set ·
Independent set · Matching · Probabilistic method · Open packing

1 Introduction

Let G = (V, E) be a simple graph of order n(G) and size m(G). The degree of
a vertex v in G is the number of vertices adjacent to v, and denoted by degG(v).

A vertex with no neighbor in G is called an isolated vertex. A vertex of degree one in
G is called an end vertex, and the vertex adjacent to an end vertex is called a support
vertex. The minimum degree and the maximum degree among the vertices of G are
denoted by δ(G) and �(G), respectively. If there is no confusion, we omit G in these
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notations. A graph G ′ = (V ′, E ′) is called a subgraph of G and denoted by G ′ ⊆ G, if
V ′ ⊆ V and E ′ ⊆ E . If G ′ ⊆ G and G ′ contains all the edges xy ∈ E with x, y ∈ V ′,
then G ′ is an induced subgraph of G and denoted by 〈V ′〉. For a subgraph G ′ of G,

G\G ′ is obtained from G by deleting all the vertices of G ′ and their incident edges.
The open neighborhood of v is the set NG(v) := {u ∈ V : uv ∈ E} and the closed
neighborhood of v is NG [v] := NG(v)∪{v}. For a set X ⊆ V, NG(X) = ∪v∈X NG(v)

and NG [X ] = ∪v∈X NG [v].
Let X, Y ⊆ V . We say X dominates the set Y if Y ⊆ NG(X). A set D ⊆ V is

a dominating set (DS) of G if D dominates V \D, i.e., every vertex in V \D has a
neighbor in D. The minimum cardinality of a dominating set of G is the domination
number of G and denoted by γ (G) (see [4,5]). If, in addition, the induced subgraph
〈D〉 has no isolated vertex, then D is called a total dominating set (TDS) of G. The
minimum cardinality of a TDS of G is called the total domination number and denoted
by γt (G). The notion of total domination in graphs was introduced by Cockayne et al.
[1] (see also [3,4,6,11]). Further, if D is a dominating set and the induced subgraph
〈V \ D〉 has no isolated vertex, then D is called a restrained dominating set (RDS)
of G. The minimum cardinality of a RDS of G is called the restrained domination
number and denoted by γr (G). The notion of restrained domination in graphs was
introduced by Telle and Proskurowski implicitly in [12].

Throughout this paper, we assume that G is a connected graph. A set D ⊆ V is a
total restrained dominating set (TRDS) of G if D is both a TDS and a RDS of G. Note
that the set V is a TRDS of G. The minimum cardinality of a TRDS of G is called
the total restrained domination number of G and denoted by γtr (G). We call a TRDS
of cardinality γtr (G) a γtr (G) − set. The concept of the total restrained domination
was also introduced by Telle and Proskurowski implicitly in [12] and was formally
presented in graph theory by Ma et al. [10] (see also [2,7–9]).

We now state some known results which are relevant to our work in this paper. For
unexplained terms and symbols, see [13].

Proposition 1 ([2]) Every end vertex and support vertex in a graph G are in every
TRDS of G.

Proposition 2 ([10]) For path Pn and cycle Cn of order n,

(i) γtr (Pn) = n − 2
⌊ n−2

4

⌋
, n ≥ 2;

(ii) γtr (Cn) = n − 2
⌊ n

4

⌋
, n ≥ 3.

In [10], it is proved that the decision problem of existence a TRDS of size k is
NP-complete. Hence, it is of interest to provide bounds for this number. Two known
upper bounds are shown below.

Theorem 1 ([2]) If G is a connected graph of order n and minimum degree δ such
that 2 ≤ δ ≤ n − 2, then

γtr (G) ≤ n − δ.
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Theorem 2 ([7]) If G is a connected graph of order n, maximum degree � and min-
imum degree δ, where 2 ≤ δ ≤ � ≤ n − 2, then

γtr (G) ≤ n − �

2
− 1.

The bounds in the above two theorems are expressed in terms of n(G) and, δ(G)

or �(G). In this paper, we shall apply these two theorems to establish the following
result, which provides an upper bound for γtr (G) solely in terms of n(G).

Theorem 3 If G is a connected graph of order n, n ≥ 4, and minimum degree δ ≥ 2,

then

γtr (G) ≤ n − 3

√
n

4
.

2 Preliminaries

We first present in this section a lemma, and some concepts and notations, which will
be used to prove the main result in the next section.

Lemma 1 Let G be a connected graph with δ ≥ 2, and path P be a component of
order l ≥ 3 in 〈S〉, where S ⊆ V (G). Let G ′ := G\P. Then γtr (G) ≤ γtr (G ′)+ l

2 +1.

Proof Let P := x1 . . . xl and D′ be a TRDS of G\P. Suppose that the vertices x and
y are neighbors of x1 and xl in G\P, respectively. We show that we can add l

2 + 1
vertices of P to D′ to obtain a TRDS of G. One of the following three cases may
occur.

Case 1 x, y ∈ D′. In this case, we add two paths uvx1 and xlst to path x1x2 . . . xl . Let
D′′ be a TRDS of the new path uvx1x2 . . . xlst. By Proposition 1, {u, v, s, t} ⊆ D′′.
Hence, it can be seen that D := D′ ∪ D′′\{u, v, s, t} is a TRDS of G. Therefore, by
Proposition 2, we have

|D\D′| ≤ γtr (Pl+4) − 4 = l + 4 − 2

⌊
l + 4 − 2

4

⌋
− 4

≤ l − 2

(
l + 2

4
− 1

)
= l

2
+ 1.

Case 2 At least one of the vertices x and y is not in D′ and l 
≡ 3 (mod 4). If
x, y 
∈ D′, then we add a TRDS of P\{x1, xl} to D′. If x ∈ D′ and y /∈ D′, then we
add a TRDS of P\{x1, x2} to D′. In both cases, we have added at most

γtr (Pl−2) = l − 2 − 2

⌊
l − 2 − 2

4

⌋
≤ l − 2 − 2

(
l − 4

4
− 2

4

)
= l

2
+ 1

vertices to D′ to obtain a TRDS of G.
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Case 3 At least one of the vertices x and y is not in D′ and l ≡ 3 (mod 4). In this
case, let x /∈ D′. So we add a TRDS of P\{x1} to D′ and we have

γtr (Pl−1) = l − 1 − 2

⌊
l − 1 − 2

4

⌋
= l − 1 − 2

(
l − 3

4

)
= l

2
+ 1

2
.

The result thus follows. �
Let G be a graph of order n with δ ≥ 2, and D be a subset of V . A vertex of degree

greater than two is called a large vertex. We denote the set of large vertices in G by
L(G) and the set of vertices of degree two by S(G). If there is no confusion, then
we denote these two sets by L and S, respectively.We call a vertex v a bad vertex
with respect to D if it has no neighbor in D, or it is an isolated vertex in 〈V \ D〉 .

Otherwise, we call v a good vertex with respect to D. It is obvious that D is a TRDS
of G if and only if G has no bad vertex with respect to D.

3 Proof of the Main Result

We are now ready to prove our main result.

Proof of Theorem 3 The proof is by induction on n. For n ≤ 32, if δ ≤ n − 2, then
by Theorem 1, γtr (G) ≤ n − δ; and if δ = n − 1, then G is a complete graph. Thus,

in both cases, as δ ≥ 2, we have γtr (G) ≤ n − 2 ≤ n − 3
√

n
4 .

Now assume that n > 32, δ ≥ 2, and the statement is true for all graphs of order
less than n. Recall that, an edge e is called a bridge if after removing it the number of
components of the graph is increased.

Claim 1 If G has a bridge incident with two large vertices, then γtr (G) ≤ n − 3
√

n
4 .

Proof Let e = uv be a bridge in G, where u and v are large vertices. Let G1, G2 be
the two components of G\e, containing u and v, respectively. If n1 := n(G1) and
n2 := n(G2) are more than three, then by the induction hypothesis,

γtr (G) ≤ γtr (G1) + γtr (G2) ≤ n1 − 3

√
n1

4
+ n2 − 3

√
n2

4
≤ n − 3

√
n1 + n2

4

= n − 3

√
n

4
.

Otherwise, let n1 = 3. Then n2 ≥ 4 and δ(G2) ≥ 2. By the induction hypothesis,

γtr (G2) ≤ n2 − 3
√

n2
4 . Moreover, if D is a TRDS of G2, then either v ∈ D or v 
∈ D.

In either case, the set D′ := D ∪ {u} or D′ := D ∪ V (G1)\{u} is a TRDS of G,

respectively. Hence, we have

γtr (G) ≤ |D′| ≤ 2 + γtr (G2) ≤ 3 − 3

√
3

4
+ n2 − 3

√
n2

4
≤ n − 3

√
3 + n2

4
= n − 3

√
n

4
.

�
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Let e be an edge in G incident with two large vertices, and G ′ = G\e. If G ′ is
disconnected, then by Claim 1, we are done. In the case that G ′ is connected, since
γtr (G) ≤ γtr (G ′), it is enough to find an upper bound for γtr (G ′). Therefore, we
can delete all the edges incident with two large vertices, and assume that L(G) is
independent. Note that if L(G) = ∅, then G is a cycle, and by Proposition 2(ii), the
statement is true. Thus, we further assume that L(G) 
= ∅. Recall that S is the set of
vertices of degree two in G.

Claim 2 If the set of edges in 〈S〉 is not a matching, then γtr (G) ≤ n − 3
√

n
4 .

Proof It is obvious that every component of 〈S〉 is a path. For a contradiction, let
P = x1x2 . . . xl , l ≥ 3, be a component of 〈S〉 and vertices x and y be the neighbors
of x1 and xl in G\P, respectively. So x, y ∈ L .

Case 1 x = y.

If G\P is of order at least four, then by the induction hypothesis, it has a TRDS,

say D′, of order at most n − l − 3
√

n−l
4 ; otherwise, let D′ := {x}. Thus, in both cases,

|D′| ≤ n−l − 3
√

n−l
4 . Moreover, for Cl+1 := 〈P ∪ {x}〉, there is a γtr (Cl+1)-set which

contains x and also a γtr (Cl+1)-set which does not contain x, and γtr (Cl+1) ≤ l− 3
√

l
4 .

Therefore, we can extend D′ depending on x ∈ D′ or x 
∈ D′ to a TRDS of G with at

most n − l − 3
√

n−l
4 + l − 3

√
l
4 ≤ n − 3

√
n
4 vertices.

Case 2 x 
= y and G\P is connected.
Since x 
= y, we have δ(G\P) ≥ 2 and n(G\P) ≥ 4. Thus, by the induction

hypothesis, we have γtr (G\P) ≤ n − l − 3
√

n−l
4 . Hence, by Lemma 1,

γtr (G) ≤ γtr (G\P) + l

2
+ 1 ≤ n − l − 3

√
n − l

4
+ l

2
+ 1. (*)

Let f (l) = 3
√

n−l
4 + l

2 − 1. Since f ′(l) = −1
12 ( n−l

4 )
−2
3 + 1

2 > 0, f (l) is an increasing
function. Therefore, for l ≥ 3, since n ≥ 32, we have:

f (l) ≥ f (3) = 3

√
n − 3

4
+ 3

2
− 1 = 3

√
n − 3

4
+ 1

2
≥ 3

√
n

4
.

Hence, γtr (G) ≤ n − f (l) ≤ n − 3
√

n
4 .

Case 3 x 
= y and G\P is disconnected.
If each component of G\P is of order at least 4, then by the induction hypothesis for

every component, we have γtr (G\P) ≤ n − l − 3
√

n−l
4 . Hence, by Lemma 1, we get

again the inequality (*), and the desired result follows likewise.
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Now, without loss of generality, suppose that the component which contains x, say
Gx , is of order three. Let G ′ := 〈V (Gx ) ∪ P〉 and l ′ := n(G ′). If n(G\G ′) = 3, then
every TRDS of 〈P ∪ {x, y}〉 is a TRDS of G. Thus,

γtr (G) ≤ γtr (Pn−4) ≤ n

2
+ 1 ≤ n − 3

√
n

4
,

and we are done. So assume that n(G\G ′) > 3.

By the induction hypothesis, γtr (G\G ′) ≤ n − l ′ − 3
√

n−l ′
4 . On the other hand, the

union of a TRDS of G\G ′ and a TRDS of 〈P ∪ {x}〉 is a TRDS of G. Thus, as
γtr (Pl ′−2) = l ′ − 2 − 2� l ′−2−2

4 � ≤ l ′
2 + 2, we have

γtr (G) ≤ γtr (G\G ′) + γtr (Pl ′−2)

≤ n − l ′ − 3

√
n − l ′

4
+ l ′

2
+ 2

= n −
(

3

√
n − l ′

4
+ l ′

2
− 2

)
.

Now, consider f (l ′) = 3
√

n−l ′
4 + l ′

2 − 2. Similar to Case 2, f (l ′) is an increasing

function and for l ′ ≥ 6, we have

γtr (G) ≤ n −
(

3

√
n − 6

4
+ 6

2
− 2

)
≤ n − 3

√
n

4
.

�
From now on, we assume that 〈S〉 is a matching (note that, 〈S〉 can also contains
isolated vertices).
A set B of vertices in G such that NG(x) ∩ NG(y) = ∅ for all x, y ∈ B is called an
open packing.

Claim 3 If the set L contains no open packing of size at most 3
√

n
4 , then γtr (G) ≤

n − 3
√

n
4 .

Proof Suppose �(G) = n − 1. Let x be a vertex with maximum degree and y be a
neighbor of x with minimum degree. If {x, y} is not a TRDS of G, then there is a
vertex z in G such that NG(z) = {x, y}; so degG(z) = 2, and thus degG(y) = 2.

Since x is adjacent to all vertices, it is easy to see that the set {x, y, z} is a TRDS of

G. Hence, in this case, γtr (G) ≤ n − 3
√

n
4 .

Now assume that �(G) ≤ n − 2. Let a = |S|, b = |L| and k = 3
√

n
4 . By Theorem 2,

γtr (G) ≤ n − �
2 − 1. Suppose on the contrary that γtr (G) > n − k. Then

n − k < n − �

2
− 1,
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which implies that

� < 2k − 2. (1)

On the other hand, by Claim 2, every vertex in S has a neighbor in L . Let p be the num-
ber of edges between S and L . It follows that a ≤ p ≤ b�. Hence, since a + b = n,

we have

n − b ≤ b�,

and thus

n

� + 1
≤ b. (2)

In what follows, we shall use the probabilistic method and the above inequalities to
show that there exists an open packing of size k in L which thus leads to a contradiction.
For this purpose, let < be a uniformly chosen total ordering of L . Define

I := {v : v,w ∈ L have a common neighbor ⇒ v < w}.

In fact, I is a maximal open packing which contains the least vertex of L with respect to
the order <. Let Xv be the indicator random variable for v ∈ I and X := ∑

v∈V Xv =
|I |. For each v ∈ L , since the degree of each vertex in NG(v) is two, there are at most
� vertices of distance two from v. Hence, a vertex v ∈ L is in I when v is the least
vertex with respect to < among the set of vertices of distance two from v together
with {v}. Therefore, for every v ∈ L ,

E(Xv) = Pr(v ∈ I ) ≥ 1

� + 1
.

Now, by linearity of expectation function and (2),

E(X) ≥
∑

v∈L

1

� + 1
= b

� + 1
≥ n

(� + 1)2 .

Thus, by (1),

E(X) ≥ n

(2k − 1)2 ≥ n

4k2 ≥ k.

Hence, there exists a specific ordering < on L with |I | ≥ k. �

From now on, we assume that L contains an open packing of size k ≥ 3
√

n
4 . Let

X = {x1, x2, . . . , xk} be an open packing of G in L . If for some i, 1 ≤ i ≤ k, the
induced subgraph G ′ := 〈NG(xi )〉 has no isolated vertex, then since G is connected
and L is an independent set, V (G) = NG [xi ] and E(G ′) is a matching. Hence, the
set consisting of vertex xi and two adjacent vertices in G ′ is a γtr (G)-set of size 3.
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Thus, γtr (G) ≤ 3 ≤ n − k. Otherwise, for every i, 1 ≤ i ≤ k, let yi be an isolated
vertex in 〈NG(xi )〉 , and Y := {y1, y2, . . . , yk}. Note that since X is an open packing,
the vertices yi , 1 ≤ i ≤ k, are distinct. We shall now construct a set Dc

i , recursively
on i, and let Di = V (G)\Dc

i . In step i, denote the set of bad vertices with respect to
Di by Zi .

For i = 0, let Dc
0 be the set obtained from X ∪ Y by deleting from X the neighbors

of adjacent vertices in Y. Note that the degree of each vertex in 〈Dc
0〉 is one and also

a vertex is a bad vertex with respect to D0 if and only if it is an isolated vertex in
〈D0〉 . We denote the bad vertices with respect to D0 in S by z1, z2, . . . , zt and the
bad vertices with respect to D0 in L by zt+1, . . . , zs .

We construct Dc
i recursively with the following properties:

(1) The degree of every vertex of (S ∪ X) ∩ Dc
i in

〈
Dc

i

〉
is equal to one.

(2) For each x j ∈ X ∩ Dc
i , N (x j ) ⊆ {y j }.

(3) For i ≥ 1, Dc
i ⊆ Dc

i−1 ∪ {zi }.
(4) For i ≥ 1, Zi ⊆ Zi−1\{zi }.

Assume that Dc
i−1 is constructed for 0 ≤ i − 1 ≤ s − 1 with the above properties.

If 1 ≤ i ≤ t, then we construct Dc
i as follows. Note that since for i, 1 ≤ i ≤ t, zi ∈ S,

by Property (3), Dc
i−1 ⊆ S ∪ X. Hence, for 1 ≤ i ≤ t, Property (1) is equivalent to

that the degree of every vertex in Dc
i−1 in

〈
Dc

i−1

〉
is one. If zi is a good vertex with

respect to Di−1, then let Dc
i := Dc

i−1; otherwise, by Property (1), zi is an isolated
vertex in 〈Di−1〉 . Since zi ∈ Z0 (i.e., zi is a bad vertex with respect to D0), we have
NG(zi ) ⊆ Dc

0 ⊆ X ∪Y. Hence, by Claim 2 and since X is an open packing, zi is adja-
cent to some vertices xai and ybi . In this case, let Dc

i := Dc
i−1 ∪ {zi } − {xai , xbi , yai }.

Properties (2) and (3) are clearly satisfied. Since in 〈Dc
i 〉 the degrees of zi and ybi are

one and the degrees of the other vertices of Dc
i have not changed, the degree of each

vertex in 〈Dc
i 〉 is one (Property (1)). Hence, if in this step a vertex is a bad vertex with

respect to Di , then it is an isolated vertex in 〈Di 〉 . Moreover, if a vertex is a bad vertex
with respect to Di and not in Zi−1, then it is in NG[{zi , xai , xbi , yai }]. But the only
neighbor of zi in Di is xai which is adjacent to yai ∈ Di . Hence, the neighbors of
zi are not bad vertices with respect to Di . Since the vertices {xai , yai , xbi } are added
to Di and they have already dominated by Di−1, these vertices and their neighbors
are not isolated vertices in 〈Di 〉. Therefore, in this process we don’t create new bad
vertices with respect to Di . Moreover, zi is not a bad vertex with respect to Di . Hence,
Zi ⊆ Zi−1\{zi } (Property (4)).

If t +1 ≤ i ≤ s, then we construct Dc
i as follows. If zi is a good vertex with respect

to Di−1, then set Dc
i := Dc

i−1; otherwise, proceed as follows. Since zi ∈ Z0 (i.e., zi is
a bad vertex with respect to D0), NG(zi ) ⊆ X ∪Y. Moreover, zi ∈ L . Thus, the neigh-
bors of zi are in Y ∩ Dc

i , say yt1 , . . . , ytr . Let Dc
i := Dc

i−1 ∪ {zi }\{xt1 , . . . , xtr , ytr }.
Properties (2) and (3) are clearly satisfied. By Properties (1), (2) and the above con-
struction, the degree of every vertex of (S ∪ X) ∩ Dc

i in
〈
Dc

i

〉
is one (Property (1)).

Thus, vertices of set (S ∪ X) ∩ Dc
i are good vertices with respect to Di . On the other

hand, if a vertex is a bad vertex with respect to Di and is not in Zi−1, then it is in
NG [{xt1, . . . , xtr , ytr , zi }]. For xth , 1 ≤ h < r, since xth ∈ L and xth /∈ Zi−1, xth is
dominated by Di−1\L(⊆ Di ). Also, since we add xth to Di and the only neighbor of
xth in Dc

i is yth (by Properties (1) and (2)) which is adjacent to zi (∈ Dc
i ), there is no
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bad vertex with respect to Di in NG [xth ]. Also, note that zi is dominated by ytr (∈ Di )

and it is adjacent to yt1(∈ Dc
i ). Moreover, NG(zi ) ∩ Di = {ytr } and ytr is adjacent to

xtr ∈ Di . Hence, there is no bad vertex in NG [zi ] with respect to Di . Also, for ytr and
xtr we simply observe that there is no bad vertex in NG [ytr ] and NG [xtr ] with respect
to Di . Thus, the set of bad vertices in G with respect to Di is a subset of Zi−1\{zi }
(Property (4)).

Therefore, in this process the number of bad vertices is decreased until we have no
bad vertices. Moreover, in each step corresponding to deleting a vertex yi from Dc

i−1,

we add one vertex of V (G)\X to Dc
i−1, but we only delete vertices of X. Therefore,

following this process, we end up with the set Dc
s of size at least |Y | = k such that

there is no bad vertex with respect to Ds . Hence, Ds is a TRDS of G of size at most
n − k. The proof is now complete. �
Remark For integer r ≥ 2, let Gr be a bipartite graph formed by taking as one par-
tite set a set A = {1, . . . , r}, and as the other partite set B all the 2-element subsets
of A, and joining each element of A to those subsets it is a member of. Note that
n = n(Gr ) = r + (r

2

)
. Every TRDS D of Gr contains at least r − 1 vertices of A (for

every vertex in B to have a neighbor in D) and therefore every 2-subset of these r − 1
elements of A have to be in D; i.e., at least

(r−1
2

)
vertices of B have to be in D (unless

D = V (G)). Also, to dominate the r th vertex of A, say a, a vertex {x, a}, x ∈ A−{a},
of B have to be in D. Thus, every TRDS of Gr contains at least r + (r−1

2

)
vertices.

On the other hand, the union of set S = {1, . . . , r − 1} and all 2-element subsets of S
and vertex {1, r} is a TRDS of Gr of size r + (r−1

2

)
. Therefore, γtr (Gr ) = r + (r−1

2

)
.

Hence, n − γtr (Gr ) = r − 1 = θ(r) = θ(
√

n). Therefore, γtr (Gr ) = n − θ(
√

n).

We end this paper by proposing the following:

Conjecture If G is a connected graph of order n, n ≥ 4, and minimum degree δ ≥ 2,

then

γtr (G) ≤ n − θ(
√

n).
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