An Upper Bound for the Total Restrained Domination Number of Graphs

Khee M. Koh • Zeinab Maleki • Behnaz Omoomi

Received: 19 June 2009 / Revised: 8 May 2012
© Springer 2012

Abstract

Let G be a graph with vertex set V. A set $D \subseteq V$ is a total restrained dominating set of G if every vertex in V has a neighbor in D and every vertex in $V \backslash D$ has a neighbor in $V \backslash D$. The minimum cardinality of a total restrained dominating set of G is called the total restrained domination number of G, and is denoted by $\gamma_{t r}(G)$. In this paper, we prove that if G is a connected graph of order $n \geq 4$ and minimum degree at least two, then $\gamma_{t r}(G) \leq n-\sqrt[3]{\frac{n}{4}}$.

Keywords Total restrained domination number • Total restrained dominating set • Independent set • Matching • Probabilistic method • Open packing

1 Introduction

Let $G=(V, E)$ be a simple graph of order $n(G)$ and size $m(G)$. The degree of a vertex v in G is the number of vertices adjacent to v, and denoted by $\operatorname{deg}_{G}(v)$. A vertex with no neighbor in G is called an isolated vertex. A vertex of degree one in G is called an end vertex, and the vertex adjacent to an end vertex is called a support vertex. The minimum degree and the maximum degree among the vertices of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. If there is no confusion, we omit G in these

[^0]notations. A graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is called a subgraph of G and denoted by $G^{\prime} \subseteq G$, if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. If $G^{\prime} \subseteq G$ and G^{\prime} contains all the edges $x y \in E$ with $x, y \in V^{\prime}$, then G^{\prime} is an induced subgraph of G and denoted by $\left\langle V^{\prime}\right\rangle$. For a subgraph G^{\prime} of G, $G \backslash G^{\prime}$ is obtained from G by deleting all the vertices of G^{\prime} and their incident edges. The open neighborhood of v is the set $N_{G}(v):=\{u \in V: u v \in E\}$ and the closed neighborhood of v is $N_{G}[v]:=N_{G}(v) \cup\{v\}$. For a set $X \subseteq V, N_{G}(X)=\cup_{v \in X} N_{G}(v)$ and $N_{G}[X]=\cup_{v \in X} N_{G}[v]$.

Let $X, Y \subseteq V$. We say X dominates the set Y if $Y \subseteq N_{G}(X)$. A set $D \subseteq V$ is a dominating set (DS) of G if D dominates $V \backslash D$, i.e., every vertex in $V \backslash D$ has a neighbor in D. The minimum cardinality of a dominating set of G is the domination number of G and denoted by $\gamma(G)$ (see [4,5]). If, in addition, the induced subgraph $\langle D\rangle$ has no isolated vertex, then D is called a total dominating set (TDS) of G. The minimum cardinality of a TDS of G is called the total domination number and denoted by $\gamma_{t}(G)$. The notion of total domination in graphs was introduced by Cockayne et al. [1] (see also [3,4,6,11]). Further, if D is a dominating set and the induced subgraph $\langle V \backslash D\rangle$ has no isolated vertex, then D is called a restrained dominating set (RDS) of G. The minimum cardinality of a RDS of G is called the restrained domination number and denoted by $\gamma_{r}(G)$. The notion of restrained domination in graphs was introduced by Telle and Proskurowski implicitly in [12].

Throughout this paper, we assume that G is a connected graph. A set $D \subseteq V$ is a total restrained dominating set (TRDS) of G if D is both a TDS and a RDS of G. Note that the set V is a TRDS of G. The minimum cardinality of a TRDS of G is called the total restrained domination number of G and denoted by $\gamma_{t r}(G)$. We call a TRDS of cardinality $\gamma_{t r}(G)$ a $\gamma_{t r}(G)-$ set. The concept of the total restrained domination was also introduced by Telle and Proskurowski implicitly in [12] and was formally presented in graph theory by Ma et al. [10] (see also [2,7-9]).

We now state some known results which are relevant to our work in this paper. For unexplained terms and symbols, see [13].

Proposition 1 ([2]) Every end vertex and support vertex in a graph G are in every TRDS of G.

Proposition 2 ([10]) For path P_{n} and cycle C_{n} of order n,
(i) $\gamma_{t r}\left(P_{n}\right)=n-2\left\lfloor\frac{n-2}{4}\right\rfloor, n \geq 2$;
(ii) $\quad \gamma_{t r}\left(C_{n}\right)=n-2\left\lfloor\frac{n}{4}\right\rfloor, n \geq 3$.

In [10], it is proved that the decision problem of existence a TRDS of size k is NP-complete. Hence, it is of interest to provide bounds for this number. Two known upper bounds are shown below.

Theorem 1 ([2]) If G is a connected graph of order n and minimum degree δ such that $2 \leq \delta \leq n-2$, then

$$
\gamma_{t r}(G) \leq n-\delta .
$$

Theorem 2 ([7]) If G is a connected graph of order n, maximum degree Δ and minimum degree δ, where $2 \leq \delta \leq \Delta \leq n-2$, then

$$
\gamma_{t r}(G) \leq n-\frac{\Delta}{2}-1
$$

The bounds in the above two theorems are expressed in terms of $n(G)$ and, $\delta(G)$ or $\Delta(G)$. In this paper, we shall apply these two theorems to establish the following result, which provides an upper bound for $\gamma_{t r}(G)$ solely in terms of $n(G)$.

Theorem 3 If G is a connected graph of order $n, n \geq 4$, and minimum degree $\delta \geq 2$, then

$$
\gamma_{t r}(G) \leq n-\sqrt[3]{\frac{n}{4}}
$$

2 Preliminaries

We first present in this section a lemma, and some concepts and notations, which will be used to prove the main result in the next section.

Lemma 1 Let G be a connected graph with $\delta \geq 2$, and path P be a component of order $l \geq 3$ in $\langle S\rangle$, where $S \subseteq V(G)$. Let $G^{\prime}:=\bar{G} \backslash P$. Then $\gamma_{t r}(G) \leq \gamma_{t r}\left(G^{\prime}\right)+\frac{l}{2}+1$.

Proof Let $P:=x_{1} \ldots x_{l}$ and D^{\prime} be a TRDS of $G \backslash P$. Suppose that the vertices x and y are neighbors of x_{1} and x_{l} in $G \backslash P$, respectively. We show that we can add $\frac{l}{2}+1$ vertices of P to D^{\prime} to obtain a TRDS of G. One of the following three cases may occur.

Case $1 x, y \in D^{\prime}$. In this case, we add two paths $u v x_{1}$ and $x_{l} s t$ to path $x_{1} x_{2} \ldots x_{l}$. Let $D^{\prime \prime}$ be a TRDS of the new path $u v x_{1} x_{2} \ldots x_{l} s t$. By Proposition $1,\{u, v, s, t\} \subseteq D^{\prime \prime}$. Hence, it can be seen that $D:=D^{\prime} \cup D^{\prime \prime} \backslash\{u, v, s, t\}$ is a TRDS of G. Therefore, by Proposition 2, we have

$$
\begin{aligned}
\left|D \backslash D^{\prime}\right| & \leq \gamma_{t r}\left(P_{l+4}\right)-4=l+4-2\left\lfloor\frac{l+4-2}{4}\right\rfloor-4 \\
& \leq l-2\left(\frac{l+2}{4}-1\right)=\frac{l}{2}+1
\end{aligned}
$$

Case 2 At least one of the vertices x and y is not in D^{\prime} and $l \not \equiv 3(\bmod 4)$. If $x, y \notin D^{\prime}$, then we add a TRDS of $P \backslash\left\{x_{1}, x_{l}\right\}$ to D^{\prime}. If $x \in D^{\prime}$ and $y \notin D^{\prime}$, then we add a TRDS of $P \backslash\left\{x_{1}, x_{2}\right\}$ to D^{\prime}. In both cases, we have added at most

$$
\gamma_{t r}\left(P_{l-2}\right)=l-2-2\left\lfloor\frac{l-2-2}{4}\right\rfloor \leq l-2-2\left(\frac{l-4}{4}-\frac{2}{4}\right)=\frac{l}{2}+1
$$

vertices to D^{\prime} to obtain a TRDS of G.

Case 3 At least one of the vertices x and y is not in D^{\prime} and $l \equiv 3(\bmod 4)$. In this case, let $x \notin D^{\prime}$. So we add a TRDS of $P \backslash\left\{x_{1}\right\}$ to D^{\prime} and we have

$$
\gamma_{t r}\left(P_{l-1}\right)=l-1-2\left\lfloor\frac{l-1-2}{4}\right\rfloor=l-1-2\left(\frac{l-3}{4}\right)=\frac{l}{2}+\frac{1}{2} .
$$

The result thus follows.
Let G be a graph of order n with $\delta \geq 2$, and D be a subset of V. A vertex of degree greater than two is called a large vertex. We denote the set of large vertices in G by $L(G)$ and the set of vertices of degree two by $S(G)$. If there is no confusion, then we denote these two sets by L and S, respectively. We call a vertex v a bad vertex with respect to D if it has no neighbor in D, or it is an isolated vertex in $\langle V \backslash D\rangle$. Otherwise, we call v a good vertex with respect to D. It is obvious that D is a TRDS of G if and only if G has no bad vertex with respect to D.

3 Proof of the Main Result

We are now ready to prove our main result.
Proof of Theorem 3 The proof is by induction on n. For $n \leq 32$, if $\delta \leq n-2$, then by Theorem $1, \gamma_{t r}(G) \leq n-\delta$; and if $\delta=n-1$, then G is a complete graph. Thus, in both cases, as $\delta \geq 2$, we have $\gamma_{t r}(G) \leq n-2 \leq n-\sqrt[3]{\frac{n}{4}}$.

Now assume that $n>32, \delta \geq 2$, and the statement is true for all graphs of order less than n. Recall that, an edge e is called a bridge if after removing it the number of components of the graph is increased.
Claim 1 If G has a bridge incident with two large vertices, then $\gamma_{t r}(G) \leq n-\sqrt[3]{\frac{n}{4}}$.
Proof Let $e=u v$ be a bridge in G, where u and v are large vertices. Let G_{1}, G_{2} be the two components of $G \backslash e$, containing u and v, respectively. If $n_{1}:=n\left(G_{1}\right)$ and $n_{2}:=n\left(G_{2}\right)$ are more than three, then by the induction hypothesis,

$$
\begin{aligned}
\gamma_{t r}(G) & \leq \gamma_{t r}\left(G_{1}\right)+\gamma_{t r}\left(G_{2}\right) \leq n_{1}-\sqrt[3]{\frac{n_{1}}{4}}+n_{2}-\sqrt[3]{\frac{n_{2}}{4}} \leq n-\sqrt[3]{\frac{n_{1}+n_{2}}{4}} \\
& =n-\sqrt[3]{\frac{n}{4}}
\end{aligned}
$$

Otherwise, let $n_{1}=3$. Then $n_{2} \geq 4$ and $\delta\left(G_{2}\right) \geq 2$. By the induction hypothesis, $\gamma_{t r}\left(G_{2}\right) \leq n_{2}-\sqrt[3]{\frac{n_{2}}{4}}$. Moreover, if D is a TRDS of G_{2}, then either $v \in D$ or $v \notin D$. In either case, the set $D^{\prime}:=D \cup\{u\}$ or $D^{\prime}:=D \cup V\left(G_{1}\right) \backslash\{u\}$ is a TRDS of G, respectively. Hence, we have
$\gamma_{t r}(G) \leq\left|D^{\prime}\right| \leq 2+\gamma_{t r}\left(G_{2}\right) \leq 3-\sqrt[3]{\frac{3}{4}}+n_{2}-\sqrt[3]{\frac{n_{2}}{4}} \leq n-\sqrt[3]{\frac{3+n_{2}}{4}}=n-\sqrt[3]{\frac{n}{4}}$.

Let e be an edge in G incident with two large vertices, and $G^{\prime}=G \backslash e$. If G^{\prime} is disconnected, then by Claim 1, we are done. In the case that G^{\prime} is connected, since $\gamma_{t r}(G) \leq \gamma_{t r}\left(G^{\prime}\right)$, it is enough to find an upper bound for $\gamma_{t r}\left(G^{\prime}\right)$. Therefore, we can delete all the edges incident with two large vertices, and assume that $L(G)$ is independent. Note that if $L(G)=\emptyset$, then G is a cycle, and by Proposition 2(ii), the statement is true. Thus, we further assume that $L(G) \neq \emptyset$. Recall that S is the set of vertices of degree two in G.

Claim 2 If the set of edges in $\langle S\rangle$ is not a matching, then $\gamma_{t r}(G) \leq n-\sqrt[3]{\frac{n}{4}}$.
Proof It is obvious that every component of $\langle S\rangle$ is a path. For a contradiction, let $P=x_{1} x_{2} \ldots x_{l}, l \geq 3$, be a component of $\langle S\rangle$ and vertices x and y be the neighbors of x_{1} and x_{l} in $G \backslash P$, respectively. So $x, y \in L$.

Case $1 x=y$.
If $G \backslash P$ is of order at least four, then by the induction hypothesis, it has a TRDS, say D^{\prime}, of order at most $n-l-\sqrt[3]{\frac{n-l}{4}}$; otherwise, let $D^{\prime}:=\{x\}$. Thus, in both cases, $\left|D^{\prime}\right| \leq n-l-\sqrt[3]{\frac{n-l}{4}}$. Moreover, for $C_{l+1}:=\langle P \cup\{x\}\rangle$, there is a $\gamma_{t r}\left(C_{l+1}\right)$-set which contains x and also a $\gamma_{t r}\left(C_{l+1}\right)$-set which does not contain x, and $\gamma_{t r}\left(C_{l+1}\right) \leq l-\sqrt[3]{\frac{l}{4}}$. Therefore, we can extend D^{\prime} depending on $x \in D^{\prime}$ or $x \notin D^{\prime}$ to a TRDS of G with at most $n-l-\sqrt[3]{\frac{n-l}{4}}+l-\sqrt[3]{\frac{l}{4}} \leq n-\sqrt[3]{\frac{n}{4}}$ vertices.

Case $2 x \neq y$ and $G \backslash P$ is connected.
Since $x \neq y$, we have $\delta(G \backslash P) \geq 2$ and $n(G \backslash P) \geq 4$. Thus, by the induction hypothesis, we have $\gamma_{t r}(G \backslash P) \leq n-l-\sqrt[3]{\frac{n-l}{4}}$. Hence, by Lemma 1,

$$
\begin{equation*}
\gamma_{t r}(G) \leq \gamma_{t r}(G \backslash P)+\frac{l}{2}+1 \leq n-l-\sqrt[3]{\frac{n-l}{4}}+\frac{l}{2}+1 . \tag{*}
\end{equation*}
$$

Let $f(l)=\sqrt[3]{\frac{n-l}{4}}+\frac{l}{2}-1$. Since $f^{\prime}(l)=\frac{-1}{12}\left(\frac{n-l}{4}\right)^{\frac{-2}{3}}+\frac{1}{2}>0, f(l)$ is an increasing function. Therefore, for $l \geq 3$, since $n \geq 32$, we have:

$$
f(l) \geq f(3)=\sqrt[3]{\frac{n-3}{4}}+\frac{3}{2}-1=\sqrt[3]{\frac{n-3}{4}}+\frac{1}{2} \geq \sqrt[3]{\frac{n}{4}}
$$

Hence, $\gamma_{t r}(G) \leq n-f(l) \leq n-\sqrt[3]{\frac{n}{4}}$.
Case $3 x \neq y$ and $G \backslash P$ is disconnected.
If each component of $G \backslash P$ is of order at least 4, then by the induction hypothesis for every component, we have $\gamma_{t r}(G \backslash P) \leq n-l-\sqrt[3]{\frac{n-l}{4}}$. Hence, by Lemma 1, we get again the inequality $(*)$, and the desired result follows likewise.

Now, without loss of generality, suppose that the component which contains x, say G_{x}, is of order three. Let $G^{\prime}:=\left\langle V\left(G_{x}\right) \cup P\right\rangle$ and $l^{\prime}:=n\left(G^{\prime}\right)$. If $n\left(G \backslash G^{\prime}\right)=3$, then every TRDS of $\langle P \cup\{x, y\}\rangle$ is a TRDS of G. Thus,

$$
\gamma_{t r}(G) \leq \gamma_{t r}\left(P_{n-4}\right) \leq \frac{n}{2}+1 \leq n-\sqrt[3]{\frac{n}{4}}
$$

and we are done. So assume that $n\left(G \backslash G^{\prime}\right)>3$.
By the induction hypothesis, $\gamma_{t r}\left(G \backslash G^{\prime}\right) \leq n-l^{\prime}-\sqrt[3]{\frac{n-l^{\prime}}{4}}$. On the other hand, the union of a TRDS of $G \backslash G^{\prime}$ and a TRDS of $\langle P \cup\{x\}\rangle$ is a TRDS of G. Thus, as $\gamma_{t r}\left(P_{l^{\prime}-2}\right)=l^{\prime}-2-2\left\lfloor\frac{l^{\prime}-2-2}{4}\right\rfloor \leq \frac{l^{\prime}}{2}+2$, we have

$$
\begin{aligned}
\gamma_{t r}(G) & \leq \gamma_{t r}\left(G \backslash G^{\prime}\right)+\gamma_{t r}\left(P_{l^{\prime}-2}\right) \\
& \leq n-l^{\prime}-\sqrt[3]{\frac{n-l^{\prime}}{4}}+\frac{l^{\prime}}{2}+2 \\
& =n-\left(\sqrt[3]{\frac{n-l^{\prime}}{4}}+\frac{l^{\prime}}{2}-2\right) .
\end{aligned}
$$

Now, consider $f\left(l^{\prime}\right)=\sqrt[3]{\frac{n-l^{\prime}}{4}}+\frac{l^{\prime}}{2}-2$. Similar to Case 2, $f\left(l^{\prime}\right)$ is an increasing function and for $l^{\prime} \geq 6$, we have

$$
\gamma_{t r}(G) \leq n-\left(\sqrt[3]{\frac{n-6}{4}}+\frac{6}{2}-2\right) \leq n-\sqrt[3]{\frac{n}{4}}
$$

From now on, we assume that $\langle S\rangle$ is a matching (note that, $\langle S\rangle$ can also contains isolated vertices).
A set B of vertices in G such that $N_{G}(x) \cap N_{G}(y)=\emptyset$ for all $x, y \in B$ is called an open packing.
Claim 3 If the set L contains no open packing of size at most $\sqrt[3]{\frac{n}{4}}$, then $\gamma_{t r}(G) \leq$ $n-\sqrt[3]{\frac{n}{4}}$.
Proof Suppose $\Delta(G)=n-1$. Let x be a vertex with maximum degree and y be a neighbor of x with minimum degree. If $\{x, y\}$ is not a TRDS of G, then there is a vertex z in G such that $N_{G}(z)=\{x, y\}$; so $\operatorname{deg}_{G}(z)=2$, and thus $\operatorname{deg}_{G}(y)=2$. Since x is adjacent to all vertices, it is easy to see that the set $\{x, y, z\}$ is a TRDS of G. Hence, in this case, $\gamma_{t r}(G) \leq n-\sqrt[3]{\frac{n}{4}}$.
Now assume that $\Delta(G) \leq n-2$. Let $a=|S|, b=|L|$ and $k=\sqrt[3]{\frac{n}{4}}$. By Theorem 2, $\gamma_{t r}(G) \leq n-\frac{\Delta}{2}-1$. Suppose on the contrary that $\gamma_{t r}(G)>n-k$. Then

$$
n-k<n-\frac{\Delta}{2}-1,
$$

which implies that

$$
\begin{equation*}
\Delta<2 k-2 \tag{1}
\end{equation*}
$$

On the other hand, by Claim 2, every vertex in S has a neighbor in L. Let p be the number of edges between S and L. It follows that $a \leq p \leq b \Delta$. Hence, since $a+b=n$, we have

$$
n-b \leq b \Delta
$$

and thus

$$
\begin{equation*}
\frac{n}{\Delta+1} \leq b \tag{2}
\end{equation*}
$$

In what follows, we shall use the probabilistic method and the above inequalities to show that there exists an open packing of size k in L which thus leads to a contradiction. For this purpose, let $<$ be a uniformly chosen total ordering of L. Define

$$
I:=\{v: v, w \in L \text { have a common neighbor } \Rightarrow v<w\} .
$$

In fact, I is a maximal open packing which contains the least vertex of L with respect to the order $<$. Let X_{v} be the indicator random variable for $v \in I$ and $X:=\sum_{v \in V} X_{v}=$ $|I|$. For each $v \in L$, since the degree of each vertex in $N_{G}(v)$ is two, there are at most Δ vertices of distance two from v. Hence, a vertex $v \in L$ is in I when v is the least vertex with respect to $<$ among the set of vertices of distance two from v together with $\{v\}$. Therefore, for every $v \in L$,

$$
E\left(X_{v}\right)=\operatorname{Pr}(v \in I) \geq \frac{1}{\Delta+1}
$$

Now, by linearity of expectation function and (2),

$$
E(X) \geq \sum_{v \in L} \frac{1}{\Delta+1}=\frac{b}{\Delta+1} \geq \frac{n}{(\Delta+1)^{2}}
$$

Thus, by (1),

$$
E(X) \geq \frac{n}{(2 k-1)^{2}} \geq \frac{n}{4 k^{2}} \geq k
$$

Hence, there exists a specific ordering $<$ on L with $|I| \geq k$.
From now on, we assume that L contains an open packing of size $k \geq \sqrt[3]{\frac{n}{4}}$. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be an open packing of G in L. If for some $i, 1 \leq i \leq k$, the induced subgraph $G^{\prime}:=\left\langle N_{G}\left(x_{i}\right)\right\rangle$ has no isolated vertex, then since G is connected and L is an independent set, $V(G)=N_{G}\left[x_{i}\right]$ and $E\left(G^{\prime}\right)$ is a matching. Hence, the set consisting of vertex x_{i} and two adjacent vertices in G^{\prime} is a $\gamma_{t r}(G)$-set of size 3.

Thus, $\gamma_{t r}(G) \leq 3 \leq n-k$. Otherwise, for every $i, 1 \leq i \leq k$, let y_{i} be an isolated vertex in $\left\langle N_{G}\left(x_{i}\right)\right\rangle$, and $Y:=\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$. Note that since X is an open packing, the vertices $y_{i}, 1 \leq i \leq k$, are distinct. We shall now construct a set D_{i}^{c}, recursively on i, and let $D_{i}=V(G) \backslash D_{i}^{c}$. In step i, denote the set of bad vertices with respect to D_{i} by Z_{i}.

For $i=0$, let D_{0}^{c} be the set obtained from $X \cup Y$ by deleting from X the neighbors of adjacent vertices in Y. Note that the degree of each vertex in $\left\langle D_{0}^{c}\right\rangle$ is one and also a vertex is a bad vertex with respect to D_{0} if and only if it is an isolated vertex in $\left\langle D_{0}\right\rangle$. We denote the bad vertices with respect to D_{0} in S by $z_{1}, z_{2}, \ldots, z_{t}$ and the bad vertices with respect to D_{0} in L by z_{t+1}, \ldots, z_{s}.

We construct D_{i}^{c} recursively with the following properties:
(1) The degree of every vertex of $(S \cup X) \cap D_{i}^{c}$ in $\left\langle D_{i}^{c}\right\rangle$ is equal to one.
(2) For each $x_{j} \in X \cap D_{i}^{c}, N\left(x_{j}\right) \subseteq\left\{y_{j}\right\}$.
(3) For $i \geq 1, D_{i}^{c} \subseteq D_{i-1}^{c} \cup\left\{z_{i}\right\}$.
(4) For $i \geq 1, Z_{i} \subseteq Z_{i-1} \backslash\left\{z_{i}\right\}$.

Assume that D_{i-1}^{c} is constructed for $0 \leq i-1 \leq s-1$ with the above properties. If $1 \leq i \leq t$, then we construct D_{i}^{c} as follows. Note that since for $i, 1 \leq i \leq t, z_{i} \in S$, by Property (3), $D_{i-1}^{c} \subseteq S \cup X$. Hence, for $1 \leq i \leq t$, Property (1) is equivalent to that the degree of every vertex in D_{i-1}^{c} in $\left\langle D_{i-1}^{c}\right\rangle$ is one. If z_{i} is a good vertex with respect to D_{i-1}, then let $D_{i}^{c}:=D_{i-1}^{c}$; otherwise, by Property (1), z_{i} is an isolated vertex in $\left\langle D_{i-1}\right\rangle$. Since $z_{i} \in Z_{0}$ (i.e., z_{i} is a bad vertex with respect to D_{0}), we have $N_{G}\left(z_{i}\right) \subseteq D_{0}^{c} \subseteq X \cup Y$. Hence, by Claim 2 and since X is an open packing, z_{i} is adjacent to some vertices $x_{a_{i}}$ and $y_{b_{i}}$. In this case, let $D_{i}^{c}:=D_{i-1}^{c} \cup\left\{z_{i}\right\}-\left\{x_{a_{i}}, x_{b_{i}}, y_{a_{i}}\right\}$. Properties (2) and (3) are clearly satisfied. Since in $\left\langle D_{i}^{c}\right\rangle$ the degrees of z_{i} and $y_{b_{i}}$ are one and the degrees of the other vertices of D_{i}^{c} have not changed, the degree of each vertex in $\left\langle D_{i}^{c}\right\rangle$ is one (Property (1)). Hence, if in this step a vertex is a bad vertex with respect to D_{i}, then it is an isolated vertex in $\left\langle D_{i}\right\rangle$. Moreover, if a vertex is a bad vertex with respect to D_{i} and not in Z_{i-1}, then it is in $N_{G}\left[\left\{z_{i}, x_{a_{i}}, x_{b_{i}}, y_{a_{i}}\right\}\right]$. But the only neighbor of z_{i} in D_{i} is $x_{a_{i}}$ which is adjacent to $y_{a_{i}} \in D_{i}$. Hence, the neighbors of z_{i} are not bad vertices with respect to D_{i}. Since the vertices $\left\{x_{a_{i}}, y_{a_{i}}, x_{b_{i}}\right\}$ are added to D_{i} and they have already dominated by D_{i-1}, these vertices and their neighbors are not isolated vertices in $\left\langle D_{i}\right\rangle$. Therefore, in this process we don't create new bad vertices with respect to D_{i}. Moreover, z_{i} is not a bad vertex with respect to D_{i}. Hence, $Z_{i} \subseteq Z_{i-1} \backslash\left\{z_{i}\right\}$ (Property (4)).

If $t+1 \leq i \leq s$, then we construct D_{i}^{c} as follows. If z_{i} is a good vertex with respect to D_{i-1}, then set $D_{i}^{c}:=D_{i-1}^{c}$; otherwise, proceed as follows. Since $z_{i} \in Z_{0}$ (i.e., z_{i} is a bad vertex with respect to $\left.D_{0}\right), N_{G}\left(z_{i}\right) \subseteq X \cup Y$. Moreover, $z_{i} \in L$. Thus, the neighbors of z_{i} are in $Y \cap D_{i}^{c}$, say $y_{t_{1}}, \ldots, y_{t_{r}}$. Let $D_{i}^{c}:=D_{i-1}^{c} \cup\left\{z_{i}\right\} \backslash\left\{x_{t_{1}}, \ldots, x_{t_{r}}, y_{t_{r}}\right\}$. Properties (2) and (3) are clearly satisfied. By Properties (1), (2) and the above construction, the degree of every vertex of $(S \cup X) \cap D_{i}^{c}$ in $\left\langle D_{i}^{c}\right\rangle$ is one (Property (1)). Thus, vertices of set $(S \cup X) \cap D_{i}^{c}$ are good vertices with respect to D_{i}. On the other hand, if a vertex is a bad vertex with respect to D_{i} and is not in Z_{i-1}, then it is in $N_{G}\left[\left\{x_{t_{1}}, \ldots, x_{t_{r}}, y_{t_{r}}, z_{i}\right\}\right]$. For $x_{t_{h}}, 1 \leq h<r$, since $x_{t_{h}} \in L$ and $x_{t_{h}} \notin Z_{i-1}, x_{t_{h}}$ is dominated by $D_{i-1} \backslash L\left(\subseteq D_{i}\right)$. Also, since we add $x_{t_{h}}$ to D_{i} and the only neighbor of $x_{t_{h}}$ in D_{i}^{c} is $y_{t_{h}}$ (by Properties (1) and (2)) which is adjacent to $z_{i}\left(\in D_{i}^{c}\right)$, there is no
bad vertex with respect to D_{i} in $N_{G}\left[x_{t_{h}}\right]$. Also, note that z_{i} is dominated by $y_{t_{r}}\left(\in D_{i}\right)$ and it is adjacent to $y_{t_{1}}\left(\in D_{i}^{c}\right)$. Moreover, $N_{G}\left(z_{i}\right) \cap D_{i}=\left\{y_{t_{r}}\right\}$ and $y_{t_{r}}$ is adjacent to $x_{t_{r}} \in D_{i}$. Hence, there is no bad vertex in $N_{G}\left[z_{i}\right]$ with respect to D_{i}. Also, for $y_{t_{r}}$ and $x_{t_{r}}$ we simply observe that there is no bad vertex in $N_{G}\left[y_{t_{r}}\right]$ and $N_{G}\left[x_{t_{r}}\right]$ with respect to D_{i}. Thus, the set of bad vertices in G with respect to D_{i} is a subset of $Z_{i-1} \backslash\left\{z_{i}\right\}$ (Property (4)).

Therefore, in this process the number of bad vertices is decreased until we have no bad vertices. Moreover, in each step corresponding to deleting a vertex y_{i} from D_{i-1}^{c}, we add one vertex of $V(G) \backslash X$ to D_{i-1}^{c}, but we only delete vertices of X. Therefore, following this process, we end up with the set D_{s}^{c} of size at least $|Y|=k$ such that there is no bad vertex with respect to D_{s}. Hence, D_{s} is a TRDS of G of size at most $n-k$. The proof is now complete.

Remark For integer $r \geq 2$, let G_{r} be a bipartite graph formed by taking as one partite set a set $A=\{1, \ldots, r\}$, and as the other partite set B all the 2 -element subsets of A, and joining each element of A to those subsets it is a member of. Note that $n=n\left(G_{r}\right)=r+\binom{r}{2}$. Every TRDS D of G_{r} contains at least $r-1$ vertices of A (for every vertex in B to have a neighbor in D) and therefore every 2-subset of these $r-1$ elements of A have to be in D; i.e., at least $\binom{r-1}{2}$ vertices of B have to be in D (unless $D=V(G))$. Also, to dominate the r th vertex of A, say a, a vertex $\{x, a\}, x \in A-\{a\}$, of B have to be in D. Thus, every TRDS of G_{r} contains at least $r+\binom{r-1}{2}$ vertices. On the other hand, the union of set $S=\{1, \ldots, r-1\}$ and all 2-element subsets of S and vertex $\{1, r\}$ is a TRDS of G_{r} of size $r+\binom{r-1}{2}$. Therefore, $\gamma_{t r}\left(G_{r}\right)=r+\left(\begin{array}{c}\binom{-1}{2} \text {. }\end{array}\right.$ Hence, $n-\gamma_{t r}\left(G_{r}\right)=r-1=\theta(r)=\theta(\sqrt{n})$. Therefore, $\gamma_{t r}\left(G_{r}\right)=n-\theta(\sqrt{n})$.

We end this paper by proposing the following:
Conjecture If G is a connected graph of order $n, n \geq 4$, and minimum degree $\delta \geq 2$, then

$$
\gamma_{t r}(G) \leq n-\theta(\sqrt{n}) .
$$

References

1. Cockayne, E.J., Dawes, R.M., Hedetniemi, S.T.: Total domination in graphs. Networks 10(3), 211219 (1980)
2. Cyman, J., Raczek, J.: On the total restrained domination number of a graph. Australas. J. Combin. 36, 91-100 (2006)
3. Gravier, S.: Total domination number of grid graphs. Discrete Appl. Math. 121(1-3), 119-128 (2002)
4. Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds.): Domination in Graphs: Advanced Topics. Marcel Dekker, New York (1998)
5. Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds.): Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)
6. Henning, M.A.: A survey of selected recent results on total domination in graphs. Discrete Math. 309(1), 32-63 (2009)
7. Henning, M.A., Maritz, J.E.: Total restrained domination in graphs with minimum degree two. Discrete Math. 308(10), 1909-1920 (2008)
8. Koh, K.M., Maleki, Z., Omoomi, B.: Max-min total restrained domination number. Ars. Combin. (to appear)
9. Koh, K.M., Maleki, Z., Omoomi, B.: On the total restrained domination edge critical graphs. Ars. Combin. (to appear)
10. Ma, D.-X., Chen, X.-G., Sun, L.: On total restrained domination in graphs. Czechoslov. Math. J. 55(1), 165-173 (2005)
11. Shan, E., Kang, L., Henning, M.A.: A characterization of trees with equal total domination and paireddomination numbers. Australas. J. Combin. 30, 31-39 (2004)
12. Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM J. Discrete Math. 10(4), 529-550 (1997)
13. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)

[^0]: K. M. Koh (\triangle)

 Department of Mathematics, National University of Singapore, Singapore 119076, Singapore
 e-mail: matkohkm@nus.edu.sg
 Z. Maleki • B. Omoomi

 Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran
 e-mail: zmaleki@math.iut.ac.ir
 B. Omoomi
 e-mail: bomoomi@cc.iut.ac.ir

