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Abstract

Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are chromat-
ically equivalent, if P(G) = P(H). A set of graphs S is called a chromatic equivalence class
if for any graph H that is chromatically equivalent with a graph G in S, then H ∈S. Peng
et al. (Discrete Math. 172 (1997) 103–114), studied the chromatic equivalence classes of certain
generalized polygon trees. In this paper, we continue that study and present a solution to Problem
2 in Koh and Teo (Discrete Math. 172 (1997) 59–78).
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1. Introduction

The graphs that we consider are >nite, undirected and simple. Let P(G; �) or simply
P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are said
to be chromatically equivalent, and we write G ∼ H , if P(G) = P(H). Trivially,
the relation “∼” is an equivalence relation on the class of graphs. A graph G is
chromatically unique if G is isomorphic with H for any graph H such that G ∼ H .
A set of graphs S is called a chromatic equivalence class if for any graph H that is
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Fig. 1. Gst (a; b; c; d).

chromatically equivalent with a graph G in S, then H ∈S. Although chromatically
unique graphs have been the subject of many recent papers (see [2,3]), relatively fewer
results concerning the chromatically equivalence class of graphs are known.

A path in G is called a simple path if the degree of each interior vertex is two in
G. A generalized polygon tree is a graph de>ned recursively as follows. A cycle Cp
(p¿ 3) is a generalized polygon tree. Next, suppose H is a generalized polygon tree
containing a simple path Pk , where k¿ 1. If G is a graph obtained from the union of
H and a cycle Cr , where r ¿k, by identifying Pk in H with a path of length k in
Cr , then G is also a generalized polygon tree. Consider the generalized polygon tree
Gst (a; b; c; d) with three interior regions shown in Fig. 1. The integers a; b; c; d; s
and t represent the lengths of the respective paths between the vertices of degree three,
where s¿ 0, t¿ 0. Without loss of generality, assume that a6 b, and a6 c6d.
Thus, min{ a; b; c; d } = a. Let r = s + t. We now form a family Cr(a; b; c; d) of the
graphs Gst (a; b; c; d) where the values of a, b, c, d and r are >xed but the values of
s and t vary; that is

Cr(a; b; c; d) = {Gst (a; b; c; d) | r = s+ t; s¿ 0; t¿ 0}:
It is clear that the families C0(a; b; c; d) and C1(a; b; c; d) are singletons.

Note that Gst (a; b; c; d) is a connected (n; n+2)-graph, whose chromatic polynomials
were computed by Chao and Zhao (see [1]), who also determined several chromatic
equivalence classes, excluding among others the graph Gst (a; b; c; d).

In [3], Koh and Teo posed the following problem.

Problem (Koh and Teo [3]). Study the chromaticity of Cr(a; b; c; d) in general.

In order to solve the problem above, Peng et al. in [6], showed that Cr(a; b; c; d)
is a chromatic equivalence class for a, b, c, d at least r + 3. In [4], we characterized
the chromaticity of C1(a; b; c; d). Also in [5], we characterized the chromaticity of
Cr(a; b; c; d) for r¿ 2 and the minimum of a; b; c; and d equals to r + 2. In [8],
Xu et al. solved the problem for r = 0. In this paper, we present necessary and suf-
>cient conditions for Cr(a; b; c; d) to be a chromatic equivalence class when r¿ 2
and the minimum of a, b, c and d less than r + 2. Thus the problem above is solved
completely.
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2. Basic results

In this section, we give some known results that will be used to prove our main
theorems. The >rst result lists some well-known necessary conditions for chromatic
equivalence. The girth of G, denoted by g(G), is the length of a shortest cycle of G.

Theorem A (Whitney [7]). Let G and H be chromatically equivalent graphs. Then

(a) |V (G)| = |V (H)|;
(b) |E(G)| = |E(H)|;
(c) g(G) = g(H);
(d) G and H have the same number of shortest cycles.

The next known result gives the chromatic polynomial of Gst (a; b; c; d). In [1], Chao
and Zhao also determined the chromatic polynomial of this graph, but we shall use the
computed chromatic polynomial of Gst (a; b; c; d) in [6] to prove our main results.

Theorem B (Peng et al. [6]). Let the order of Gst (a; b; c; d) be n (n=a+b+ c+d+
r − 2), and x = 1 − �. Then we have

P(Gst (a; b; c; d)) =
(−1)nx
(x − 1)2 Q(Gst (a; b; c; d));

where

Q(Gst (a; b; c; d)) = (xn+1 − xa+b+r − xc+d+r + xr+1 − x)
− (1 + x + x2) + (x + 1)(xa + xb + xc + xd)

− (xa+c + xa+d + xb+c + xb+d):

The following theorem is a consequence of Theorem B and it implies that
P(G0

r (a; b; c; d)) = P(Gst (a; b; c; d)), where r = s+ t.

Theorem C (Chao and Zhao [1], and Peng et al. [6]). All the graphs in Cr(a; b; c; d)
are chromatically equivalent.

The next result follows from Lemma 2 in [6] and Case 1 in the proof of Theorem 6
in [6]. Note that despite the frequent mention of the condition min{a; b; c; d}¿ r + 3,
it is not used in the proof of Case 1 in Theorem 6 in [6].

Theorem D (Peng et al. [6]). If Gst (a; b; c; d) and G
s′
t′ (a

′; b′; c′; d′) are chromatically
equivalent and s+ t = s′ + t′, then Gs

′
t′ (a

′; b′; c′; d′)∈Cr(a; b; c; d), where r = s+ t.

In [6], Peng et al. present the following suNcient condition for Cr(a; b; c; d) to be
a chromatic equivalence class.
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Theorem E. The family of graphs Cr(a; b; c; d) is a chromatic equivalence class if
min{a; b; c; d}¿ r + 3.

Xu et al. in [8] studied the chromaticity of Cr(a; b; c; d) for min{a; b; c; d} = 1.

Theorem F (Xu et al. [8]). The family of graphs

C0(1; b; c; d) ∪ Cb−1(1; c; 1; d) ∪ Cc−1(1; b; 1; d) ∪ Cd−1(1; b; 1; c);

where b; c; d¿ 2, is a chromatic equivalence class. Also the family of graphs

F = Cr(1; b; c; d) ∪ Cc−1(1; b; r + 1; d) ∪ Cd−1(1; b; c; r + 1);

where r¿ 1 and b; c; d¿ 2, is a chromatic equivalence class except for r = 2 and
b= d= c + 1. Moreover, for r = 2 and b= d= c + 1 the family of graphs

C0(2; c; c + 1; c + 2) ∪ C2(1; c + 1; c; c + 1) ∪ Cc−1(1; c + 1; 3; c + 1)
∪Cc(1; c + 1; c; 3)

is a chromatic equivalence class.

Remark 1. In the family of graphs

F = Cr(1; b; c; d) ∪ Cc−1(1; b; r + 1; d) ∪ Cd−1(1; b; c; r + 1);

if c=d= r+1, then F=Cr(1; b; r+1; r+1). Therefore by Theorem F, Cr(1; b; r+
1; r + 1) is a chromatic equivalence class.

In [4], Omoomi and Peng gave necessary and suNcient conditions for Cr(a; b; c; d)
to be a chromatic equivalence class when r = 1. As a consequence, they obtained
all the families of chromatic equivalence classes containing C1(a; b; c; d) which is not
chromatic equivalence class, where min{a; b; c; d}¿ 2. We list them in the following
theorem.

Theorem G. Each of the following families is a chromatic equivalence class:

(a) C1(2; 3; 3; 5) ∪ C3(2; 3; 2; 4);
(b) C1(3; 5; 5; 8) ∪ C5(2; 6; 4; 5);
(c) C1(3; c; c + 1; c + 3) ∪ C3(2; c + 1; c; c + 2), for any c¿ 3;
(d) C1(3; c + 3; c; c + 1) ∪ C3(2; c + 2; c; c + 1), for any c¿ 3;
(e) C1(3; 3; c; c + 2) ∪ Cc−1(2; 4; 3; c + 1), for any c¿ 3;
(f) C1(3; b; 3; b+ 2) ∪ Cb−1(2; b+ 1; 3; 4), for any b¿ 3.

Remark 2. If c = 2 in the families (c) and (d), then we get the family (a).

The next known result gives necessary and suNcient conditions for Cr(a; b; c; d) to
be a chromatic equivalence class when r¿ 2 and min{a; b; c; d} = r + 2.

Theorem H (Omoomi and Peng [5]). The family of graphs Cr(a; b; c; d) is a chro-
matic equivalence class if r¿ 2 and min{a; b; c; d} = r + 2, except the two families
Cr(r + 2; b; b+ 1; b+ r + 2) and Cr(r + 2; c + r + 2; c; c + 1).
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The following corollary follows from Theorem H.

Corollary. The following two families of graphs are chromatic equivalence classes.

(a) Cr(r + 2; b; b+ 1; b+ r + 2)∪Cr+2(r + 1; b+ 1; b; b+ r + 1), for b¿ r + 2¿ 2;
(b) Cr(r + 2; c+ r + 2; c; c+ 1) ∪Cr+2(r + 1; c+ r + 1; c; c+ 1), for c¿ r + 2¿ 2.

Proof. From the proof of Theorem H, we get the chromatic equivalence classes
(a) and (b) for r¿ 2. If r = 0, then we have

(a) C0(2; b; b+ 1; b+ 2) ∪ C2(1; b+ 1; b; b+ 1), for b¿ 2;
(b) C0(2; c + 2; c; c + 1) ∪ C2(1; c + 1; c; c + 1), for c¿ 2;

which are also chromatic equivalence classes. This follows from the proof of Theorem
1 in [8]. If r = 1, then we have

(a) C1(3; b; b+ 1; b+ 3) ∪ C3(2; b+ 1; b; b+ 2), for b¿ 3;
(b) C1(3; c + 3; c; c + 1) ∪ C3(2; c + 2; c; c + 1), for c¿ 3;

which are exactly the families of graphs in (c) and (d) of Theorem G.

Remark 3. The families of graphs in Corollary of Theorem H can be written as
follows.

(a) Cr(a; r + 2; a+ 1; a+ r + 2), for r¿ 0, a¿ 2;
(b) Cr(a; a+ 1; r + 2; a+ r + 2), for r¿ 0, a¿ 2;
(c) Cr(r − 1; c + 1; c; c + r − 1), for r¿ 2, c¿ r;
(d) Cr(r − 1; c + r − 1; c; c + 1), for r¿ 2, c¿ r.

3. Main theorems

Suppose that H is a graph such that P(H) = P(Gst (a; b; c; d)). Then by Lemma 4
and Theorem 2 in [1], we know that H =Gs

′
t′ (a

′; b′; c′; d′), where a′; b′; c′; d′¿ 1. The
question now is whether or not the graph Gs

′
t′ (a

′; b′; c′; d′) is in the family Cr(a; b; c; d).
In other words, is Cr(a; b; c; d) a chromatic equivalence class? In this section, we
shall present necessary and suNcient conditions for Cr(a; b; c; d) to be a chromatic
equivalence class.

Theorem 1. The family of graphs Cr(a; b; c; d) is not a chromatic equivalence class
for r¿ 2 and 26min{a; b; c; d}6 r+1, if and only if it is one of the following nine
families:

(a) C5(2; 6; 4; 5);
(b) C3(2; c + 1; c; c + 2), for any c¿ 2;
(c) C3(2; c + 2; c; c + 1), for any c¿ 2;
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(d) Cr(2; 4; 3; r + 2);
(e) Cr(2; r + 2; 3; 4);
(f) Cr(a; r + 2; a+ 1; a+ r + 2), for any a¿ 2;
(g) Cr(a; a+ 1; r + 2; a+ r + 2), for any a¿ 2;
(h) Cr(r − 1; c + 1; c; c + r − 1), for any c¿ r;
(i) Cr(r − 1; c + r − 1; c; c + 1), for any c¿ r.

Proof. The necessity follows immediately from Theorem G, Corollary of Theorem
H, and Remark 3. To prove the suNciency, we show that if Cr(a; b; c; d) is not a
chromatic equivalence class for r¿ 2 and 26min{a; b; c; d}6 r+1, then Cr(a; b; c; d)
is one of the nine families of graphs.

Let r¿ 2 and 26min{a; b; c; d}6 r + 1. Suppose that Cr(a; b; c; d) is not a chro-
matic equivalence class. Let G=Gst (a; b; c; d)∈Cr(a; b; c; d) and H ∼ G. By Lemma
4 and Theorem 2 in [1], H=Gs

′
t′ (a

′; b′; c′; d′), where a′; b′; c′; d′¿ 1. Let r′=s′+t′. So
H ∈Cr′(a′; b′; c′; d′). Without loss of generality, we assume that a6 b and a6 c6d;
also a′6 b′ and a′6 c′6d′. We will now >nd G and H such that H �∈ Cr(a; b; c; d).
In other words, we will >nd a, b, c, d, and r; also a′, b′, c′, d′, and r′ such that
H = Gs

′
t′ (a

′; b′; c′; d′) �∈ Cr(a; b; c; d), and the answers will give us the nine families
of graphs.

By Theorems A and B, we have a + b + c + d + r = a′ + b′ + c′ + d′ + r′, and
Q(G) = Q(H). Now we solve the equation Q(G) = Q(H). After cancelling the terms
xn+1, −x and −(1 + x + x2), we have Q1(G) = Q1(H), where

Q1(G) = xr+1 + (x + 1)(xa + xb + xc + xd) − xr+a+b

− xr+c+d − xa+c − xa+d − xb+c − xb+d;

Q1(H) = xr
′+1 + (x + 1)(xa

′
+ xb

′
+ xc

′
+ xd

′
) − xr′+a′+b′

− xr′+c′+d′ − xa′+c′ − xa′+d′ − xb′+c′ − xb′+d′ ;

a+ b+ c + d+ r = a′ + b′ + c′ + d′ + r′;

26 a6 r + 1; a6 b; a6 c6d; a′6 b′; and a′6 c′6d′:

Claim. min{r + 1; a; b; c; d} = min{r′ + 1; a′; b′; c′; d′}.

To show this claim, let min{r+1; a; b; c; d}=� and min{r′+1; a′; b′; c′; d′}=�. Note
that x� in Q1(G) cannot be cancelled by any negative term of Q1(G), and similarly
x� in Q1(H) cannot be cancelled by any negative term of Q1(H). If �¿�, then x�

appears in Q1(H) but not in Q1(G), which is impossible. Similarly, if �¡�, then we
have x� in Q1(G) but not in Q1(H), and this is also impossible. Thus, we must have
�= � as claimed.

Since min{r + 1; a; b; c; d} = a¿ 2, from the claim above, we have r′¿ 1 and
min{a′; b′; c′; d′}¿ 2. If r′ = 1, then from Theorem G, we get the >rst >ve fami-
lies. If r′¿ 2 and r′ = r, then by Theorem D, H ∈Cr(a; b; c; d). Therefore, we may
assume r′ �= r when r′¿ 2.
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Now let r′¿ 2 and let us look at the value of min{a′; b′; c′; d′}. If min{a′; b′; c′; d′}¿
r′ + 3, then by Theorem E, the family Cr′(a′; b′; c′; d′) is a chromatic equivalence
class. Since H ∼ G and H ∈Cr′(a′; b′; c′; d′), we have G ∈Cr′(a′; b′; c′; d′). Thus
Cr′(a′; b′; c′; d′) = Cr(a; b; c; d), that is r′ = r. Therefore, we only need to consider
min{a′; b′; c′; d′}6 r′ + 2.

If min{a′; b′; c′; d′} = r′ + 2, then by Corollary of Theorem H, we have

H=G0
r′(r

′+2; b′; b′+1; b′+r′+2)∼G0
r′ +2(r

′+1; b′+1; b′; b′+r′+1)=G

or

H=G0
r′(r

′+2; c′+r′+2; c′; c′+1)∼G0
r′ +2(r

′+1; c′+r′+1; c′; c′+1)=G

for any b′; c′¿ r′+2. Therefore, H �∈ Cr′+2(r′+1; b′+1; b′; b′+r′+1) or H �∈ Cr′+2(r′+
1; c′ + r′ +1; c′; c′ +1), for b′; c′¿ r′ +2. Note that Cr′+2(r′ +1; b′ +1; b′; b′ + r′ +1)
and Cr′+2(r′+1; c′+r′+1; c′; c′+1) can be written as Cr(r−1; c+1; c; c+r−1), for
c¿ r and Cr(r − 1; c+ r − 1; c; c+ 1), for c¿ r, respectively, which are the families
(h) and (i).

We now need to consider 26min{a′; b′; c′; d′}6 r′+1. Since 26min{a; b; c; d}6
r + 1, 26min{a′; b′; c′; d′}6 r′ + 1, r �= r′, and the chromatic equivalence is a sym-
metric relation, without loss of generality we may assume r ¡ r′.

Since min{r+ 1; a; b; c; d}= a and min{r′ + 1; a′; b′; c′; d′}= a′, by the claim above,
we have a= a′. Now, we have Q2(G) = Q2(H), where

Q2(G) = xr+1 + (x + 1)(xb + xc + xd) − xr+a+b

− xr+c+d − xa+c − xa+d − xb+c − xb+d;

Q2(H) = xr
′+1 + (x + 1)(xb

′
+ xc

′
+ xd

′
) − xr′+a+b′

− xr′+c′+d′ − xa+c′ − xa+d′ − xb′+c′ − xb′+d′ ;

b+ c + d+ r = b′ + c′ + d′ + r′;

26 a6 r + 1; a6 b; a6 c6d; a6 b′; a6 c′6d′; and r ¡ r′:

We have either b= b′ or b �= b′. If b �= b′, we consider either b6 c or b¿c. We
proceed to prove this theorem by considering three main cases: Case 1 if b= b′; Case
2 if b6 c; and Case 3 if b¿c.
Case 1: b= b′.
In this case, we have Q3(G) = Q3(H), where

Q3(G) = xr+1 + (x + 1)(xc + xd) − xr+a+b − xr+c+d

− xa+c − xa+d − xb+c − xb+d;

Q3(H) = xr
′+1 + (x + 1)(xc

′
+ xd

′
) − xr′+a+b − xr′+c′+d′

− xa+c′ − xa+d′ − xb+c′ − xb+d′ ;
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c + d+ r = c′ + d′ + r′;

26 a6 r + 1; a6 b; a6 c6d; a6 c′6d′; and r ¡ r′:

Note that −xr+c+d is a term of Q3(G) and cancels with the term −xr′+c′+d′ of
Q3(H). Also xmin{r+1; c;d} and xmin{r′+1; c′ ;d′} cannot be cancelled in Q3(G) and Q3(H),
respectively. Therefore, we must have min{r+1; c; d}=min{r′+1; c′; d′}. We consider
two subcases: r + 16 c and r + 1¿c.
Subcase 1.1: r + 16 c.
In this subcase, we have min{r + 1; c; d} = r + 1 because c6d. Since c′6d′ and

r ¡ r′, we must have r + 1 = c′. Moreover Q4(G) = Q4(H), where

Q4(G) = (x + 1)(xc + xd) − xr+a+b − xa+c − xa+d − xb+c − xb+d;
Q4(H) = xr

′+1 + xr+2 + (x + 1)xd
′ − xr′+a+b − xa+r+1 − xa+d′ − xb+r+1 − xb+d′ ;

c + d= d′ + r′ + 1;

26 a6 r + 1; a6 b; r + 16 c6d; r + 16d′; and r ¡ r′:

The term xr+2 cannot be cancelled in Q4(H). Therefore, xr+2 is a term of Q4(G)
and hence, we must have c = r + 1 or c = r + 2 or d = r + 1 or d = r + 2. Since
r + 16 c6d, we only need to consider the >rst two possibilities.
Subcase 1.1.1: c = r + 1.
In this subcase, we have Q5(G) = Q5(H), where

Q5(G) = xr+1 + (x + 1)xd − xr+a+b − xa+r+1 − xa+d − xb+r+1 − xb+d;
Q5(H) = xr

′+1 + (x + 1)xd
′ − xr′+a+b − xa+r+1 − xa+d′ − xb+r+1 − xb+d′ ;

r + d= r′ + d′; 26 a6 r + 1; a6 b; r + 16d; r + 16d′; and r ¡ r′:

The term xr+1 cannot be cancelled in Q5(G). So it must also be in Q5(H). Since
r ¡ r′, we have d′ = r + 1. From r + d = r′ + d′, we get d = r′ + 1. Moreover
Q6(G) = Q6(H), where

Q6(G) = xd+1 − xr+a+b − xa+d − xb+d;
Q6(H) = xr+2 − xa+b+d−1 − xa+r+1 − xb+r+1;

26 a6 r + 1; a6 b; and r + 16d:

The term xr+2 cannot be cancelled in Q6(H). Hence, it must also be in Q6(G) which
gives us d= r+1. Since d= r′ +1, we have r= r′ and this contradicts our assumption.
Subcase 1.1.2: c = r + 2.
In this subcase, from Q4(G)=Q4(H), after cancelling equal terms, we have Q7(G)=

Q7(H), where

Q7(G) = xr+3 + (x + 1)xd − xr+a+b − xa+r+2 − xa+d − xb+r+2 − xb+d;
Q7(H) = xr

′+1 + (x + 1)xd
′ − xr′+a+b − xa+r+1 − xa+d′ − xb+r+1 − xb+d′ ;

r + d+ 1 = r′ + d′;

26 a6 r + 1; a6 b; r + 26d; r + 16d′; and r ¡ r′:
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Since the term xr+3 cannot be cancelled in Q7(G), we must have xr+3 is a term of
Q7(H). Therefore, we have r′ +1= r+3 (that is, r′ = r+2) or d′ = r+3 or d′ = r+2.
Subcase 1.1.2.1: r′ = r + 2.
In this subcase, from r+d+1=r′+d′, we have d=d′+1. Moreover Q8(G)=Q8(H),

where

Q8(G) = (x + 1)xd − xr+a+b − xa+r+2 − xa+d − xb+r+2 − xb+d;

Q8(H) = (x + 1)xd−1 − xr+a+b+2 − xa+r+1 − xa+d−1 − xb+r+1 − xb+d−1;

26 a6 r + 1; a6 b; and r + 26d:

The term −xb+d cannot be cancelled in Q8(G). Thus, we must have −xb+d is a
term of Q8(H). Since a6 b, r + 26d, we must have b+ d= r + a+ b+ 2 (that is,
d= r + a+ 2) and we get Q9(G) = Q9(H), where

Q9(G) = xr+a+3 − xr+a+b − xa+r+2 − x2a+r+2 − xb+r+2;

Q9(H) = −x2a+r+1 − xb+r+1 − xb+a+r+1:

In order to have Q9(G)=Q9(H), we must have −xa+b+r+1 is a term of Q9(G), and
this is possible only if a+b+ r+1=2a+ r+2 (that is, b=a+1). Thus, we get many
solutions for the equation Q(G) = Q(H): a = a, b = a + 1, c = r + 2, d = a + r + 2,
r¿ 2; a′ = a, b′ = b= a+ 1, c′ = r+ 1, d′ = d− 1 = a+ r+ 1 and r′ = r+ 2. In other
words, we have

H = G0
r+2(a; a+ 1; r + 1; a+ r + 1) ∼ G0

r (a; a+ 1; r + 2; a+ r + 2) = G

but H �∈ Cr(a; a+ 1; r + 2; a+ r + 2). Hence, we get the family (g).
Subcase 1.1.2.2: d′ = r + 3.
In this subcase, from r + d + 1 = r′ + d′, we have d = r′ + 2. Moreover from

Q7(G) = Q7(H), we get Q10(G) = Q10(H), where

Q10(G) = (x + 1)xd − xr+a+b − xa+r+2 − xa+d − xb+r+2 − xb+d;

Q10(H) = xd−1 + xr+4 − xa+b+d−2 − xa+r+1 − xa+r+3 − xb+r+1 − xb+r+3;

26 a6 r + 1; a6 b; and r + 2¡d= r′ + 2:

The term −xa+r+1 is in Q10(H), but −xa+r+1 is not a term in Q10(G). Thus −xa+r+1

must be cancelled by a positive term in Q10(H). So we have a+ r + 1 = d− 1 (that
is, d= a+ r + 2), or a+ r + 1 = r + 4 (that is, a= 3).

If the former holds (that is, d= a+ r + 2), then we have Q11(G) =Q11(H), where

Q11(G) = xa+r+3 − xr+a+b − x2a+r+2 − xb+r+2 − xa+b+r+2;

Q11(H) = xr+4 − x2a+b+r − xa+r+3 − xb+r+1 − xb+r+3;

26 a6 r + 1; and a6 b:
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The term xr+4 must be cancelled in Q11(H). This is possible only if b = 3. Since
a6 b, we have a= 2 or a= 3. If a= 3, then the term −xb+r+2 =−xr+5 is in Q11(G),
but it is not in Q11(H). Also, this term cannot be cancelled by a positive term in
Q11(G). So the equation Q(G) = Q(H) has no solution. For the case of a = 2, the
equation Q(G) = Q(H) has a solution: G0

r+2(2; 3; r + 1; r + 3) ∼ G0
r (2; 3; r + 2; r + 4).

This solution is a special case of the solution in Subcase 1.1.2.1.
If the latter holds (that is, a= 3), then we have Q12(G) = Q12(H), where

Q12(G) = (x + 1)xd − xr+b+3 − xr+5 − xd+3 − xb+r+2 − xb+d;

Q12(H) = xd−1 − xb+d+1 − xr+6 − xb+r+1 − xb+r+3;

3 = a6 b; and r + 2¡d= r′ + 2:

The term −xb+d cannot be cancelled in Q12(G); thus, this term must be in Q12(H).
Since d¿r+2, −xb+d is a term of Q12(H) only if b+d=b+ r+3 (that is, d= r+3)
or b + d = r + 6. Note that b + d = r + 6 also implies that d = r + 3 because b¿ 3
and d¿r + 2. Therefore, in each case, xd−1 = xr+2 cannot be cancelled in Q12(H),
but xd−1 is not a term of Q12(G); so the equation Q(G) = Q(H) has no solution.
Subcase 1.1.2.3: d′ = r + 2.
In this subcase, from r + d + 1 = r′ + d′, we have d = r′ + 1. Moreover from

Q7(G) = Q7(H), we get Q13(G) = Q13(H), where

Q13(G) = xd+1 − xr+a+b − xa+d − xb+d;

Q13(H) = xr+2 − xa+b+d−1 − xa+r+1 − xb+r+1;

26 a6 r + 1; a6 b; and r + 26d:

Since r + 26d, there is no solution for the equation Q(G) = Q(H).
Subcase 1.2: r + 1¿c.
In this subcase, min{r+1; c; d}= c. Recall that min{r+1; c; d}=min{r′ +1; c′; d′}.

Therefore, c = r′ + 1 or c = c′. Since c¡ r + 1¡r′ + 1, c = r′ + 1 is not possible;
thus we have c = c′. From Q3(G) = Q3(H), after cancelling equal terms, we have
Q14(G) = Q14(H), where

Q14(G) = xr+1 + (x + 1)xd − xr+a+b − xa+d − xb+d;

Q14(H) = xr
′+1 + (x + 1)xd

′ − xr′+a+b − xa+d′ − xb+d′ ;

d+ r = d′ + r′; 26 a6 r + 1; a6 b; c¡ r + 1; c6d;

c = c′6 r′ + 1; c6d′; and r ¡ r′:

Now min{r+1; d}=min{r′ +1; d′}. If min{r+1; d}= r+1, then r+1=d′ because
r ¡ r′. Since d+ r=d′ + r′, we have d= r′ + 1. Proceed as in Subcase 1.1.1, we will
get r = r′, which contradicts our assumption. If min{r + 1; d} = d, then d= r′ + 1 or
d= d′. Since d6 r + 1¡r′ + 1, d= r′ + 1 is impossible. Also since d+ r = d′ + r′,
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the case of d = d′ implies r = r′, which contradicts our assumption r ¡ r′. Thus, the
equation Q(G) = Q(H) has no solution.
Case 2: b6 c (b �= b′).
In this case, the equation Q(G) = Q(H) has no solution.
Case 3: b¿ c (b �= b′).
In this case, the equation Q(G) =Q(H) has a solution only when r+ 16 c, c= d′,

and b= r+ 2. The solution is a= a, b= r+ 2, c= a+ 1, d= a+ r+ 2, r¿ 2; a′ = a,
b′ = a+ r + 1, c′ = r + 1, d′ = a+ 1 and r′ = r + 2. In other words, we have

H = G0
r+2(a; a+ r + 1; r + 1; a+ 1) ∼ G0

r (a; r + 2; a+ 1; a+ r + 2) = G;

but H �∈ Cr(a; r + 2; a+ 1; a+ r + 2). This solution gives us the family (f).
The proof for Cases 2 and 3 above are similar to that of Case 1. The detail proof can

be obtained by e-mail from the second author or view at http://www.fsas.upm.edu.my/
yhpeng/publish/p3c23.pdf.

From Theorems 1, E, and H, we have the following result.

Theorem 2. If r¿ 2 and min{a; b; c; d}¿ 2, then the family of graphs Cr(a; b; c; d)
is a chromatic equivalence class except those graphs listed in Theorem 1.

Theorems F and G and the corollary of Theorem H together with Theorem 1 com-
pletely determine the chromatic equivalence classes of any Gst (a; b; c; d). Hence Prob-
lem 2 of [3] is solved.

Theorem 3. The chromatic equivalence classes are all single Cr(a; b; c; d) with the
exception of the following unions of Cr(a; b; c; d).

(a) C0(1; b; c; d)∪Cb−1(1; c; 1; d)∪Cc−1(1; b; 1; d)∪Cd−1(1; b; 1; c), for b; c; d¿ 2;
(b) Cr(1; b; c; d)∪Cc−1(1; b; r+1; d)∪Cd−1(1; b; c; r+1), for r¿ 1 and b; c; d¿ 2,

except for r = 2 and b= d= c + 1;
(c) C0(2; b; b+1; b+2)∪C2(1; b+1; b; b+1)∪Cb−1(1; b+1; 3; b+1)∪Cb(1; b+1; 3; b),

for any b¿ 2;
(d) C1(3; 5; 5; 8) ∪ C5(2; 6; 4; 5);
(e) C1(3; 3; c; c + 2) ∪ Cc−1(2; 4; 3; c + 1), for any c¿ 3;
(f) C1(3; b; 3; b+ 2) ∪ Cb−1(2; b+ 1; 3; 4), for any b¿ 3;
(g) Cr(r+2; b; b+1; b+ r+2)∪Cr+2(r+1; b+1; b; b+ r+1), for any b¿ r+2¿ 2

or r = 1 and b¿ 2;
(h) Cr(r+2; c+ r+2; c; c+1)∪Cr+2(r+1; c+ r+1; c; c+1), for any c¿ r+2¿ 2

or r = 1 and c¿ 2.
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