

Available online at www.sciencedirect.com



Discrete Mathematics 271 (2003) 223-234

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

# Chromatic equivalence classes of certain generalized polygon trees, $III^{rack}$

Behnaz Omoomi<sup>a</sup>, Yee-Hock Peng<sup>b,\*</sup>

<sup>a</sup>Department of Mathematical Sciences, Isfahan University of Technology, 84154 Isfahan, Iran <sup>b</sup>Department of Mathematics, and, Institute for Mathematical Research, University Putra Malaysia, 43400UPM Serdang, Malaysia

Received 26 October 2000; received in revised form 4 September 2002; accepted 15 November 2002

#### Abstract

Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are chromatically equivalent, if P(G) = P(H). A set of graphs  $\mathscr{S}$  is called a *chromatic equivalence class* if for any graph H that is chromatically equivalent with a graph G in  $\mathscr{S}$ , then  $H \in \mathscr{S}$ . Peng et al. (Discrete Math. 172 (1997) 103–114), studied the chromatic equivalence classes of certain generalized polygon trees. In this paper, we continue that study and present a solution to Problem 2 in Koh and Teo (Discrete Math. 172 (1997) 59–78). (© 2003 Elsevier B.V. All rights reserved.

MSC: primary 05C15

### 1. Introduction

The graphs that we consider are finite, undirected and simple. Let  $P(G, \lambda)$  or simply P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are said to be *chromatically equivalent*, and we write  $G \sim H$ , if P(G) = P(H). Trivially, the relation "~" is an equivalence relation on the class of graphs. A graph G is *chromatically unique* if G is isomorphic with H for any graph H such that  $G \sim H$ . A set of graphs  $\mathscr{S}$  is called a *chromatic equivalence class* if for any graph H that is

\* Corresponding author.

E-mail addresses: yhpeng@fsas.upm.edu.my, yhpeng88@yahoo.com (Y.-H. Peng).

0012-365X/03/\$ - see front matter © 2003 Elsevier B.V. All rights reserved. doi:10.1016/S0012-365X(02)00874-9

 $<sup>^{</sup>m tr}$  This work was partly supported by the University Putra Malaysia research grant 2000.



Fig. 1.  $G_t^s(a, b; c, d)$ .

chromatically equivalent with a graph G in  $\mathscr{S}$ , then  $H \in \mathscr{S}$ . Although chromatically unique graphs have been the subject of many recent papers (see [2,3]), relatively fewer results concerning the chromatically equivalence class of graphs are known.

A path in G is called a *simple* path if the degree of each interior vertex is two in G. A generalized polygon tree is a graph defined recursively as follows. A cycle  $C_p$   $(p \ge 3)$  is a generalized polygon tree. Next, suppose H is a generalized polygon tree containing a simple path  $P_k$ , where  $k \ge 1$ . If G is a graph obtained from the union of H and a cycle  $C_r$ , where r > k, by identifying  $P_k$  in H with a path of length k in  $C_r$ , then G is also a generalized polygon tree. Consider the generalized polygon tree  $G_t^s(a,b; c,d)$  with three interior regions shown in Fig. 1. The integers a, b, c, d, s and t represent the lengths of the respective paths between the vertices of degree three, where  $s \ge 0$ ,  $t \ge 0$ . Without loss of generality, assume that  $a \le b$ , and  $a \le c \le d$ . Thus, min $\{a, b, c, d\} = a$ . Let r = s + t. We now form a family  $\mathscr{C}_r(a, b; c, d)$  of the graphs  $G_t^s(a, b; c, d)$  where the values of a, b, c, d and r are fixed but the values of s and t vary; that is

$$\mathscr{C}_r(a,b; c,d) = \{G_t^s(a,b; c,d) \mid r = s + t, s \ge 0, t \ge 0\}.$$

It is clear that the families  $\mathscr{C}_0(a,b; c,d)$  and  $\mathscr{C}_1(a,b; c,d)$  are singletons.

Note that  $G_t^s(a,b; c,d)$  is a connected (n,n+2)-graph, whose chromatic polynomials were computed by Chao and Zhao (see [1]), who also determined several chromatic equivalence classes, excluding among others the graph  $G_t^s(a,b; c,d)$ .

In [3], Koh and Teo posed the following problem.

**Problem** (Koh and Teo [3]). Study the chromaticity of  $\mathscr{C}_r(a,b; c,d)$  in general.

In order to solve the problem above, Peng et al. in [6], showed that  $\mathscr{C}_r(a,b; c,d)$  is a chromatic equivalence class for a, b, c, d at least r + 3. In [4], we characterized the chromaticity of  $\mathscr{C}_1(a,b; c,d)$ . Also in [5], we characterized the chromaticity of  $\mathscr{C}_r(a,b; c,d)$  for  $r \ge 2$  and the minimum of a, b, c, and d equals to r + 2. In [8], Xu et al. solved the problem for r = 0. In this paper, we present necessary and sufficient conditions for  $\mathscr{C}_r(a,b; c,d)$  to be a chromatic equivalence class when  $r \ge 2$  and the minimum of a, b, c and d less than r + 2. Thus the problem above is solved completely.

## 2. Basic results

In this section, we give some known results that will be used to prove our main theorems. The first result lists some well-known necessary conditions for chromatic equivalence. The girth of G, denoted by g(G), is the length of a shortest cycle of G.

**Theorem A** (Whitney [7]). Let G and H be chromatically equivalent graphs. Then

(a) |V(G)| = |V(H)|;
(b) |E(G)| = |E(H)|;
(c) g(G) = g(H);
(d) G and H have the same number of shortest cycles.

The next known result gives the chromatic polynomial of  $G_t^s(a,b; c,d)$ . In [1], Chao and Zhao also determined the chromatic polynomial of this graph, but we shall use the computed chromatic polynomial of  $G_t^s(a,b; c,d)$  in [6] to prove our main results.

**Theorem B** (Peng et al. [6]). Let the order of  $G_t^s(a,b; c,d)$  be n (n=a+b+c+d+r-2), and  $x = 1 - \lambda$ . Then we have

$$P(G_t^s(a,b;\ c,d)) = \frac{(-1)^n x}{(x-1)^2} Q(G_t^s(a,b;\ c,d)),$$

where

$$Q(G_t^s(a,b; c,d)) = (x^{n+1} - x^{a+b+r} - x^{c+d+r} + x^{r+1} - x)$$
$$-(1 + x + x^2) + (x + 1)(x^a + x^b + x^c + x^d)$$
$$-(x^{a+c} + x^{a+d} + x^{b+c} + x^{b+d}).$$

The following theorem is a consequence of Theorem B and it implies that  $P(G_r^0(a,b; c,d)) = P(G_t^s(a,b; c,d))$ , where r = s + t.

**Theorem C** (Chao and Zhao [1], and Peng et al. [6]). All the graphs in  $\mathscr{C}_r(a,b; c,d)$  are chromatically equivalent.

The next result follows from Lemma 2 in [6] and Case 1 in the proof of Theorem 6 in [6]. Note that despite the frequent mention of the condition  $\min\{a, b, c, d\} \ge r + 3$ , it is not used in the proof of Case 1 in Theorem 6 in [6].

**Theorem D** (Peng et al. [6]). If  $G_t^s(a,b; c,d)$  and  $G_{t'}^{s'}(a',b'; c',d')$  are chromatically equivalent and s + t = s' + t', then  $G_{t'}^{s'}(a',b'; c',d') \in \mathscr{C}_r(a,b; c,d)$ , where r = s + t.

In [6], Peng et al. present the following sufficient condition for  $\mathscr{C}_r(a,b; c,d)$  to be a chromatic equivalence class.

**Theorem E.** The family of graphs  $C_r(a,b; c,d)$  is a chromatic equivalence class if  $\min\{a,b,c,d\} \ge r+3$ .

Xu et al. in [8] studied the chromaticity of  $\mathscr{C}_r(a,b; c,d)$  for min $\{a,b,c,d\} = 1$ .

Theorem F (Xu et al. [8]). The family of graphs

 $\mathscr{C}_0(1,b; c,d) \cup \mathscr{C}_{b-1}(1,c; 1,d) \cup \mathscr{C}_{c-1}(1,b; 1,d) \cup \mathscr{C}_{d-1}(1,b; 1,c),$ 

where  $b, c, d \ge 2$ , is a chromatic equivalence class. Also the family of graphs

$$\mathscr{F} = \mathscr{C}_r(1,b; c,d) \cup \mathscr{C}_{c-1}(1,b; r+1,d) \cup \mathscr{C}_{d-1}(1,b; c,r+1),$$

where  $r \ge 1$  and  $b, c, d \ge 2$ , is a chromatic equivalence class except for r = 2 and b = d = c + 1. Moreover, for r = 2 and b = d = c + 1 the family of graphs

$$\mathscr{C}_0(2,c; \ c+1,c+2) \cup \mathscr{C}_2(1,c+1; \ c,c+1) \cup \mathscr{C}_{c-1}(1,c+1; \ 3,c+1) \\ \cup \mathscr{C}_c(1,c+1; \ c,3)$$

is a chromatic equivalence class.

Remark 1. In the family of graphs

 $\mathscr{F} = \mathscr{C}_r(1,b; c,d) \cup \mathscr{C}_{c-1}(1,b; r+1,d) \cup \mathscr{C}_{d-1}(1,b; c,r+1),$ 

if c = d = r + 1, then  $\mathscr{F} = \mathscr{C}_r(1,b; r+1,r+1)$ . Therefore by Theorem F,  $\mathscr{C}_r(1,b; r+1,r+1)$  is a chromatic equivalence class.

In [4], Omoomi and Peng gave necessary and sufficient conditions for  $\mathscr{C}_r(a,b; c,d)$  to be a chromatic equivalence class when r = 1. As a consequence, they obtained all the families of chromatic equivalence classes containing  $\mathscr{C}_1(a,b;c,d)$  which is not chromatic equivalence class, where min $\{a,b,c,d\} \ge 2$ . We list them in the following theorem.

**Theorem G.** Each of the following families is a chromatic equivalence class:

(a)  $\mathscr{C}_1(2,3; 3,5) \cup \mathscr{C}_3(2,3; 2,4);$ (b)  $\mathscr{C}_1(3,5; 5,8) \cup \mathscr{C}_5(2,6; 4,5);$ (c)  $\mathscr{C}_1(3,c; c+1,c+3) \cup \mathscr{C}_3(2,c+1; c,c+2), \text{ for any } c \ge 3;$ (d)  $\mathscr{C}_1(3,c+3; c,c+1) \cup \mathscr{C}_3(2,c+2; c,c+1), \text{ for any } c \ge 3;$ (e)  $\mathscr{C}_1(3,3; c,c+2) \cup \mathscr{C}_{c-1}(2,4; 3,c+1), \text{ for any } c \ge 3;$ (f)  $\mathscr{C}_1(3,b; 3,b+2) \cup \mathscr{C}_{b-1}(2,b+1; 3,4), \text{ for any } b \ge 3.$ 

**Remark 2.** If c = 2 in the families (c) and (d), then we get the family (a).

The next known result gives necessary and sufficient conditions for  $\mathscr{C}_r(a,b; c,d)$  to be a chromatic equivalence class when  $r \ge 2$  and  $\min\{a,b,c,d\} = r + 2$ .

**Theorem H** (Omoomi and Peng [5]). The family of graphs  $\mathscr{C}_r(a,b; c,d)$  is a chromatic equivalence class if  $r \ge 2$  and  $\min\{a,b,c,d\} = r+2$ , except the two families  $\mathscr{C}_r(r+2,b; b+1,b+r+2)$  and  $\mathscr{C}_r(r+2,c+r+2; c,c+1)$ .

The following corollary follows from Theorem H.

**Corollary.** The following two families of graphs are chromatic equivalence classes.

(a)  $\mathscr{C}_r(r+2,b; b+1,b+r+2) \cup \mathscr{C}_{r+2}(r+1,b+1; b,b+r+1), \text{ for } b \ge r+2 \ge 2;$ (b)  $\mathscr{C}_r(r+2,c+r+2; c,c+1) \cup \mathscr{C}_{r+2}(r+1,c+r+1; c,c+1), \text{ for } c \ge r+2 \ge 2.$ 

**Proof.** From the proof of Theorem H, we get the chromatic equivalence classes (a) and (b) for  $r \ge 2$ . If r = 0, then we have

(a)  $\mathscr{C}_0(2,b; b+1,b+2) \cup \mathscr{C}_2(1,b+1; b,b+1)$ , for  $b \ge 2$ ; (b)  $\mathscr{C}_0(2,c+2; c,c+1) \cup \mathscr{C}_2(1,c+1; c,c+1)$ , for  $c \ge 2$ ;

which are also chromatic equivalence classes. This follows from the proof of Theorem 1 in [8]. If r = 1, then we have

(a)  $\mathscr{C}_1(3,b; b+1,b+3) \cup \mathscr{C}_3(2,b+1; b,b+2)$ , for  $b \ge 3$ ; (b)  $\mathscr{C}_1(3,c+3; c,c+1) \cup \mathscr{C}_3(2,c+2; c,c+1)$ , for  $c \ge 3$ ;

which are exactly the families of graphs in (c) and (d) of Theorem G.  $\Box$ 

**Remark 3.** The families of graphs in Corollary of Theorem H can be written as follows.

(a)  $\mathscr{C}_r(a, r+2; a+1, a+r+2)$ , for  $r \ge 0, a \ge 2$ ; (b)  $\mathscr{C}_r(a, a+1; r+2, a+r+2)$ , for  $r \ge 0, a \ge 2$ ; (c)  $\mathscr{C}_r(r-1, c+1; c, c+r-1)$ , for  $r \ge 2, c \ge r$ ; (d)  $\mathscr{C}_r(r-1, c+r-1; c, c+1)$ , for  $r \ge 2, c \ge r$ .

#### 3. Main theorems

Suppose that *H* is a graph such that  $P(H) = P(G_t^s(a, b; c, d))$ . Then by Lemma 4 and Theorem 2 in [1], we know that  $H = G_{t'}^{s'}(a', b'; c', d')$ , where  $a', b', c', d' \ge 1$ . The question now is whether or not the graph  $G_{t'}^{s'}(a', b'; c', d')$  is in the family  $\mathscr{C}_r(a, b; c, d)$ . In other words, is  $\mathscr{C}_r(a, b; c, d)$  a chromatic equivalence class? In this section, we shall present necessary and sufficient conditions for  $\mathscr{C}_r(a, b; c, d)$  to be a chromatic equivalence class.

**Theorem 1.** The family of graphs  $C_r(a,b; c,d)$  is not a chromatic equivalence class for  $r \ge 2$  and  $2 \le \min\{a,b,c,d\} \le r+1$ , if and only if it is one of the following nine families:

(a) C<sub>5</sub>(2,6; 4,5);
(b) C<sub>3</sub>(2,c+1; c,c+2), for any c ≥ 2;
(c) C<sub>3</sub>(2,c+2; c,c+1), for any c ≥ 2;

(d)  $\mathscr{C}_{r}(2,4; 3,r+2);$ (e)  $\mathscr{C}_{r}(2,r+2; 3,4);$ (f)  $\mathscr{C}_{r}(a,r+2; a+1,a+r+2), \text{ for any } a \ge 2;$ (g)  $\mathscr{C}_{r}(a,a+1; r+2,a+r+2), \text{ for any } a \ge 2;$ (h)  $\mathscr{C}_{r}(r-1,c+1; c,c+r-1), \text{ for any } c \ge r;$ (i)  $\mathscr{C}_{r}(r-1,c+r-1; c,c+1), \text{ for any } c \ge r.$ 

**Proof.** The necessity follows immediately from Theorem G, Corollary of Theorem H, and Remark 3. To prove the sufficiency, we show that if  $\mathscr{C}_r(a,b; c,d)$  is not a chromatic equivalence class for  $r \ge 2$  and  $2 \le \min\{a,b,c,d\} \le r+1$ , then  $\mathscr{C}_r(a,b; c,d)$  is one of the nine families of graphs.

Let  $r \ge 2$  and  $2 \le \min\{a, b, c, d\} \le r + 1$ . Suppose that  $\mathscr{C}_r(a, b; c, d)$  is not a chromatic equivalence class. Let  $G = G_t^s(a, b; c, d) \in \mathscr{C}_r(a, b; c, d)$  and  $H \sim G$ . By Lemma 4 and Theorem 2 in [1],  $H = G_{t'}^{s'}(a', b'; c', d')$ , where  $a', b', c', d' \ge 1$ . Let r' = s' + t'. So  $H \in \mathscr{C}_{r'}(a', b'; c', d')$ . Without loss of generality, we assume that  $a \le b$  and  $a \le c \le d$ ; also  $a' \le b'$  and  $a' \le c' \le d'$ . We will now find G and H such that  $H \notin \mathscr{C}_r(a, b; c, d)$ . In other words, we will find a, b, c, d, and r; also a', b', c', d', and r' such that  $H = G_{t'}^{s'}(a', b'; c', d') \notin \mathscr{C}_r(a, b; c, d)$ , and the answers will give us the nine families of graphs.

By Theorems A and B, we have a + b + c + d + r = a' + b' + c' + d' + r', and Q(G) = Q(H). Now we solve the equation Q(G) = Q(H). After cancelling the terms  $x^{n+1}$ , -x and  $-(1 + x + x^2)$ , we have  $Q_1(G) = Q_1(H)$ , where

$$Q_{1}(G) = x^{r+1} + (x+1)(x^{a} + x^{b} + x^{c} + x^{d}) - x^{r+a+b}$$
  

$$-x^{r+c+d} - x^{a+c} - x^{a+d} - x^{b+c} - x^{b+d},$$
  

$$Q_{1}(H) = x^{r'+1} + (x+1)(x^{a'} + x^{b'} + x^{c'} + x^{d'}) - x^{r'+a'+b'}$$
  

$$-x^{r'+c'+d'} - x^{a'+c'} - x^{a'+d'} - x^{b'+c'} - x^{b'+d'},$$
  

$$a + b + c + d + r = a' + b' + c' + d' + r';$$
  

$$2 \leq a \leq r+1, \ a \leq b, \ a \leq c \leq d; \ a' \leq b', \ \text{and} \ a' \leq c' \leq d'.$$

**Claim.**  $\min\{r+1, a, b, c, d\} = \min\{r'+1, a', b', c', d'\}.$ 

To show this claim, let  $\min\{r+1, a, b, c, d\} = \alpha$  and  $\min\{r'+1, a', b', c', d'\} = \beta$ . Note that  $x^{\alpha}$  in  $Q_1(G)$  cannot be cancelled by any negative term of  $Q_1(G)$ , and similarly  $x^{\beta}$  in  $Q_1(H)$  cannot be cancelled by any negative term of  $Q_1(H)$ . If  $\alpha > \beta$ , then  $x^{\beta}$  appears in  $Q_1(H)$  but not in  $Q_1(G)$ , which is impossible. Similarly, if  $\alpha < \beta$ , then we have  $x^{\alpha}$  in  $Q_1(G)$  but not in  $Q_1(H)$ , and this is also impossible. Thus, we must have  $\alpha = \beta$  as claimed.

Since  $\min\{r + 1, a, b, c, d\} = a \ge 2$ , from the claim above, we have  $r' \ge 1$  and  $\min\{a', b', c', d'\} \ge 2$ . If r' = 1, then from Theorem G, we get the first five families. If  $r' \ge 2$  and r' = r, then by Theorem D,  $H \in \mathscr{C}_r(a, b; c, d)$ . Therefore, we may assume  $r' \ne r$  when  $r' \ge 2$ .

228

Now let  $r' \ge 2$  and let us look at the value of  $\min\{a', b', c', d'\}$ . If  $\min\{a', b', c', d'\} \ge r' + 3$ , then by Theorem E, the family  $\mathscr{C}_{r'}(a', b'; c', d')$  is a chromatic equivalence class. Since  $H \sim G$  and  $H \in \mathscr{C}_{r'}(a', b'; c', d')$ , we have  $G \in \mathscr{C}_{r'}(a', b'; c', d')$ . Thus  $\mathscr{C}_{r'}(a', b'; c', d') = \mathscr{C}_r(a, b; c, d)$ , that is r' = r. Therefore, we only need to consider  $\min\{a', b', c', d'\} \le r' + 2$ .

If  $\min\{a', b', c', d'\} = r' + 2$ , then by Corollary of Theorem H, we have

$$H = G_{r'}^{0}(r'+2,b'; b'+1,b'+r'+2) \sim G_{r'+2}^{0}(r'+1,b'+1; b',b'+r'+1) = G$$

or

$$H = G_{r'}^{0}(r'+2,c'+r'+2; c',c'+1) \sim G_{r'+2}^{0}(r'+1,c'+r'+1; c',c'+1) = G$$

for any  $b', c' \ge r'+2$ . Therefore,  $H \notin \mathscr{C}_{r'+2}(r'+1, b'+1; b', b'+r'+1)$  or  $H \notin \mathscr{C}_{r'+2}(r'+1, c'+r'+1; c', c'+1)$ , for  $b', c' \ge r'+2$ . Note that  $\mathscr{C}_{r'+2}(r'+1, b'+1; b', b'+r'+1)$  and  $\mathscr{C}_{r'+2}(r'+1, c'+r'+1; c', c'+1)$  can be written as  $\mathscr{C}_r(r-1, c+1; c, c+r-1)$ , for  $c \ge r$  and  $\mathscr{C}_r(r-1, c+r-1; c, c+1)$ , for  $c \ge r$ , respectively, which are the families (h) and (i).

We now need to consider  $2 \leq \min\{a', b', c', d'\} \leq r'+1$ . Since  $2 \leq \min\{a, b, c, d\} \leq r+1$ ,  $2 \leq \min\{a', b', c', d'\} \leq r'+1$ ,  $r \neq r'$ , and the chromatic equivalence is a symmetric relation, without loss of generality we may assume r < r'.

Since min $\{r+1, a, b, c, d\} = a$  and min $\{r'+1, a', b', c', d'\} = a'$ , by the claim above, we have a = a'. Now, we have  $Q_2(G) = Q_2(H)$ , where

$$Q_{2}(G) = x^{r+1} + (x+1)(x^{b} + x^{c} + x^{d}) - x^{r+a+b}$$
  

$$-x^{r+c+d} - x^{a+c} - x^{a+d} - x^{b+c} - x^{b+d},$$
  

$$Q_{2}(H) = x^{r'+1} + (x+1)(x^{b'} + x^{c'} + x^{d'}) - x^{r'+a+b'}$$
  

$$-x^{r'+c'+d'} - x^{a+c'} - x^{a+d'} - x^{b'+c'} - x^{b'+d'},$$
  

$$b + c + d + r = b' + c' + d' + r';$$

$$2 \leq a \leq r+1, a \leq b, a \leq c \leq d, a \leq b', a \leq c' \leq d', and r < r'.$$

We have either b = b' or  $b \neq b'$ . If  $b \neq b'$ , we consider either  $b \leq c$  or b > c. We proceed to prove this theorem by considering three main cases: Case 1 if b = b'; Case 2 if  $b \leq c$ ; and Case 3 if b > c.

*Case* 1: b = b'.

In this case, we have  $Q_3(G) = Q_3(H)$ , where  $Q_3(G) = x^{r+1} + (x+1)(x^c + x^d) - x^{r+a+b} - x^{r+c+d}$   $-x^{a+c} - x^{a+d} - x^{b+c} - x^{b+d}$ ,  $Q_3(H) = x^{r'+1} + (x+1)(x^{c'} + x^{d'}) - x^{r'+a+b} - x^{r'+c'+d'}$ 

$$-x^{a+c'} - x^{a+d'} - x^{b+c'} - x^{b+d'},$$

$$\begin{aligned} c+d+r &= c'+d'+r';\\ 2 \leqslant a \leqslant r+1, \ a \leqslant b, \ a \leqslant c \leqslant d, \ a \leqslant c' \leqslant d', \ \text{and} \ r < r'. \end{aligned}$$

Note that  $-x^{r+c+d}$  is a term of  $Q_3(G)$  and cancels with the term  $-x^{r'+c'+d'}$  of  $Q_3(H)$ . Also  $x^{\min\{r+1,c,d\}}$  and  $x^{\min\{r'+1,c',d'\}}$  cannot be cancelled in  $Q_3(G)$  and  $Q_3(H)$ , respectively. Therefore, we must have  $\min\{r+1,c,d\} = \min\{r'+1,c',d'\}$ . We consider two subcases:  $r+1 \le c$  and r+1 > c.

Subcase 1.1:  $r + 1 \leq c$ .

In this subcase, we have  $\min\{r+1, c, d\} = r+1$  because  $c \leq d$ . Since  $c' \leq d'$  and r < r', we must have r+1 = c'. Moreover  $Q_4(G) = Q_4(H)$ , where

$$Q_4(G) = (x+1)(x^c + x^d) - x^{r+a+b} - x^{a+c} - x^{a+d} - x^{b+c} - x^{b+d},$$
  

$$Q_4(H) = x^{r'+1} + x^{r+2} + (x+1)x^{d'} - x^{r'+a+b} - x^{a+r+1} - x^{a+d'} - x^{b+r+1} - x^{b+d'},$$
  

$$c + d = d' + r' + 1,$$
  

$$2 \le a \le r+1, \ a \le b, \ r+1 \le c \le d, \ r+1 \le d', \ \text{and} \ r < r'.$$

The term  $x^{r+2}$  cannot be cancelled in  $Q_4(H)$ . Therefore,  $x^{r+2}$  is a term of  $Q_4(G)$  and hence, we must have c = r + 1 or c = r + 2 or d = r + 1 or d = r + 2. Since  $r+1 \le c \le d$ , we only need to consider the first two possibilities.

Subcase 1.1.1: 
$$c = r + 1$$
.

In this subcase, we have  $Q_5(G) = Q_5(H)$ , where

$$\begin{aligned} Q_5(G) &= x^{r+1} + (x+1)x^d - x^{r+a+b} - x^{a+r+1} - x^{a+d} - x^{b+r+1} - x^{b+d}, \\ Q_5(H) &= x^{r'+1} + (x+1)x^{d'} - x^{r'+a+b} - x^{a+r+1} - x^{a+d'} - x^{b+r+1} - x^{b+d'}, \\ r+d &= r'+d'; 2 \leqslant a \leqslant r+1, \ a \leqslant b, \ r+1 \leqslant d, \ r+1 \leqslant d', \ \text{and} \ r < r' \end{aligned}$$

The term  $x^{r+1}$  cannot be cancelled in  $Q_5(G)$ . So it must also be in  $Q_5(H)$ . Since r < r', we have d' = r + 1. From r + d = r' + d', we get d = r' + 1. Moreover  $Q_6(G) = Q_6(H)$ , where

$$Q_{6}(G) = x^{d+1} - x^{r+a+b} - x^{a+d} - x^{b+d},$$
  

$$Q_{6}(H) = x^{r+2} - x^{a+b+d-1} - x^{a+r+1} - x^{b+r+1},$$
  

$$2 \le a \le r+1, \ a \le b, \text{ and } r+1 \le d.$$

The term  $x^{r+2}$  cannot be cancelled in  $Q_6(H)$ . Hence, it must also be in  $Q_6(G)$  which gives us d = r+1. Since d = r'+1, we have r = r' and this contradicts our assumption. Subcase 1.1.2: c = r+2.

In this subcase, from  $Q_4(G) = Q_4(H)$ , after cancelling equal terms, we have  $Q_7(G) = Q_7(H)$ , where

$$\begin{aligned} Q_7(G) &= x^{r+3} + (x+1)x^d - x^{r+a+b} - x^{a+r+2} - x^{a+d} - x^{b+r+2} - x^{b+d}, \\ Q_7(H) &= x^{r'+1} + (x+1)x^{d'} - x^{r'+a+b} - x^{a+r+1} - x^{a+d'} - x^{b+r+1} - x^{b+d'}, \\ r+d+1 &= r'+d', \\ 2 &\leqslant a \leqslant r+1, \ a \leqslant b, \ r+2 \leqslant d, \ r+1 \leqslant d', \ \text{and} \ r < r'. \end{aligned}$$

230

Since the term  $x^{r+3}$  cannot be cancelled in  $Q_7(G)$ , we must have  $x^{r+3}$  is a term of  $Q_7(H)$ . Therefore, we have r'+1=r+3 (that is, r'=r+2) or d'=r+3 or d'=r+2. Subcase 1.1.2.1: r'=r+2.

In this subcase, from r+d+1=r'+d', we have d=d'+1. Moreover  $Q_8(G)=Q_8(H)$ , where

$$Q_8(G) = (x+1)x^d - x^{r+a+b} - x^{a+r+2} - x^{a+d} - x^{b+r+2} - x^{b+d},$$
  

$$Q_8(H) = (x+1)x^{d-1} - x^{r+a+b+2} - x^{a+r+1} - x^{a+d-1} - x^{b+r+1} - x^{b+d-1},$$

 $2 \leq a \leq r+1, a \leq b, \text{ and } r+2 \leq d.$ 

The term  $-x^{b+d}$  cannot be cancelled in  $Q_8(G)$ . Thus, we must have  $-x^{b+d}$  is a term of  $Q_8(H)$ . Since  $a \le b$ ,  $r+2 \le d$ , we must have b+d=r+a+b+2 (that is, d=r+a+2) and we get  $Q_9(G) = Q_9(H)$ , where

$$Q_9(G) = x^{r+a+3} - x^{r+a+b} - x^{a+r+2} - x^{2a+r+2} - x^{b+r+2},$$
$$Q_9(H) = -x^{2a+r+1} - x^{b+r+1} - x^{b+a+r+1}.$$

In order to have  $Q_9(G) = Q_9(H)$ , we must have  $-x^{a+b+r+1}$  is a term of  $Q_9(G)$ , and this is possible only if a+b+r+1=2a+r+2 (that is, b=a+1). Thus, we get many solutions for the equation Q(G) = Q(H): a = a, b = a + 1, c = r + 2, d = a + r + 2,  $r \ge 2$ ; a' = a, b' = b = a + 1, c' = r + 1, d' = d - 1 = a + r + 1 and r' = r + 2. In other words, we have

$$H = G_{r+2}^{0}(a, a+1; r+1, a+r+1) \sim G_{r}^{0}(a, a+1; r+2, a+r+2) = G$$

but  $H \notin \mathscr{C}_r(a, a+1; r+2, a+r+2)$ . Hence, we get the family (g). Subcase 1.1.2.2: d' = r+3.

In this subcase, from r + d + 1 = r' + d', we have d = r' + 2. Moreover from  $Q_7(G) = Q_7(H)$ , we get  $Q_{10}(G) = Q_{10}(H)$ , where

$$Q_{10}(G) = (x+1)x^d - x^{r+a+b} - x^{a+r+2} - x^{a+d} - x^{b+r+2} - x^{b+d},$$
  

$$Q_{10}(H) = x^{d-1} + x^{r+4} - x^{a+b+d-2} - x^{a+r+1} - x^{a+r+3} - x^{b+r+1} - x^{b+r+3},$$
  

$$2 \le a \le r+1, \ a \le b, \text{ and } r+2 < d = r'+2.$$

The term  $-x^{a+r+1}$  is in  $Q_{10}(H)$ , but  $-x^{a+r+1}$  is not a term in  $Q_{10}(G)$ . Thus  $-x^{a+r+1}$  must be cancelled by a positive term in  $Q_{10}(H)$ . So we have a+r+1=d-1 (that is, d=a+r+2), or a+r+1=r+4 (that is, a=3).

If the former holds (that is, 
$$d = a + r + 2$$
), then we have  $Q_{11}(G) = Q_{11}(H)$ , where  
 $Q_{11}(G) = x^{a+r+3} - x^{r+a+b} - x^{2a+r+2} - x^{b+r+2} - x^{a+b+r+2}$ ,  
 $Q_{11}(H) = x^{r+4} - x^{2a+b+r} - x^{a+r+3} - x^{b+r+1} - x^{b+r+3}$ ,

$$2 \leq a \leq r+1$$
, and  $a \leq b$ .

The term  $x^{r+4}$  must be cancelled in  $Q_{11}(H)$ . This is possible only if b = 3. Since  $a \leq b$ , we have a = 2 or a = 3. If a = 3, then the term  $-x^{b+r+2} = -x^{r+5}$  is in  $Q_{11}(G)$ , but it is not in  $Q_{11}(H)$ . Also, this term cannot be cancelled by a positive term in  $Q_{11}(G)$ . So the equation Q(G) = Q(H) has no solution. For the case of a = 2, the equation Q(G) = Q(H) has a solution:  $G_{r+2}^0(2,3;r+1,r+3) \sim G_r^0(2,3;r+2,r+4)$ . This solution is a special case of the solution in Subcase 1.1.2.1.

If the latter holds (that is, a = 3), then we have  $Q_{12}(G) = Q_{12}(H)$ , where

$$Q_{12}(G) = (x+1)x^d - x^{r+b+3} - x^{r+5} - x^{d+3} - x^{b+r+2} - x^{b+d},$$
  

$$Q_{12}(H) = x^{d-1} - x^{b+d+1} - x^{r+6} - x^{b+r+1} - x^{b+r+3},$$
  

$$3 = a \le b, \text{ and } r+2 < d = r'+2.$$

The term  $-x^{b+d}$  cannot be cancelled in  $Q_{12}(G)$ ; thus, this term must be in  $Q_{12}(H)$ . Since d > r+2,  $-x^{b+d}$  is a term of  $Q_{12}(H)$  only if b+d=b+r+3 (that is, d=r+3) or b+d=r+6. Note that b+d=r+6 also implies that d=r+3 because  $b \ge 3$  and d > r+2. Therefore, in each case,  $x^{d-1} = x^{r+2}$  cannot be cancelled in  $Q_{12}(H)$ , but  $x^{d-1}$  is not a term of  $Q_{12}(G)$ ; so the equation Q(G) = Q(H) has no solution.

Subcase 1.1.2.3: d' = r + 2.

In this subcase, from r + d + 1 = r' + d', we have d = r' + 1. Moreover from  $Q_7(G) = Q_7(H)$ , we get  $Q_{13}(G) = Q_{13}(H)$ , where

$$Q_{13}(G) = x^{d+1} - x^{r+a+b} - x^{a+d} - x^{b+d},$$
  
$$Q_{13}(H) = x^{r+2} - x^{a+b+d-1} - x^{a+r+1} - x^{b+r+1},$$

$$2 \leq a \leq r+1, a \leq b, \text{ and } r+2 \leq d.$$

Since  $r + 2 \leq d$ , there is no solution for the equation Q(G) = Q(H).

Subcase 1.2: r + 1 > c.

In this subcase,  $\min\{r+1, c, d\} = c$ . Recall that  $\min\{r+1, c, d\} = \min\{r'+1, c', d'\}$ . Therefore, c = r' + 1 or c = c'. Since c < r + 1 < r' + 1, c = r' + 1 is not possible; thus we have c = c'. From  $Q_3(G) = Q_3(H)$ , after cancelling equal terms, we have  $Q_{14}(G) = Q_{14}(H)$ , where

$$\begin{aligned} \mathcal{Q}_{14}(G) &= x^{r+1} + (x+1)x^d - x^{r+a+b} - x^{a+d} - x^{b+d}, \\ \mathcal{Q}_{14}(H) &= x^{r'+1} + (x+1)x^{d'} - x^{r'+a+b} - x^{a+d'} - x^{b+d'}, \\ d+r &= d'+r'; \ 2 \leqslant a \leqslant r+1, \ a \leqslant b, \ c < r+1, \ c \leqslant d, \\ c &= c' \leqslant r'+1, \ c \leqslant d', \ \text{and} \ r < r'. \end{aligned}$$

Now  $\min\{r+1, d\} = \min\{r'+1, d'\}$ . If  $\min\{r+1, d\} = r+1$ , then r+1 = d' because r < r'. Since d+r = d'+r', we have d = r'+1. Proceed as in Subcase 1.1.1, we will get r = r', which contradicts our assumption. If  $\min\{r+1, d\} = d$ , then d = r'+1 or d = d'. Since  $d \le r+1 < r'+1$ , d = r'+1 is impossible. Also since d+r = d'+r',

232

the case of d = d' implies r = r', which contradicts our assumption r < r'. Thus, the equation Q(G) = Q(H) has no solution.

Case 2:  $b \leq c \ (b \neq b')$ .

In this case, the equation Q(G) = Q(H) has no solution.

Case 3:  $b \ge c$   $(b \ne b')$ .

In this case, the equation Q(G) = Q(H) has a solution only when  $r + 1 \le c$ , c = d', and b = r + 2. The solution is a = a, b = r + 2, c = a + 1, d = a + r + 2,  $r \ge 2$ ; a' = a, b' = a + r + 1, c' = r + 1, d' = a + 1 and r' = r + 2. In other words, we have

$$H = G_{r+2}^{0}(a, a+r+1; r+1, a+1) \sim G_{r}^{0}(a, r+2; a+1, a+r+2) = G,$$

but  $H \notin \mathscr{C}_r(a, r+2; a+1, a+r+2)$ . This solution gives us the family (f).

The proof for Cases 2 and 3 above are similar to that of Case 1. The detail proof can be obtained by e-mail from the second author or view at http://www.fsas.upm.edu.my/ yhpeng/publish/p3c23.pdf.  $\Box$ 

From Theorems 1, E, and H, we have the following result.

**Theorem 2.** If  $r \ge 2$  and  $\min\{a, b, c, d\} \ge 2$ , then the family of graphs  $C_r(a, b; c, d)$  is a chromatic equivalence class except those graphs listed in Theorem 1.

Theorems F and G and the corollary of Theorem H together with Theorem 1 completely determine the chromatic equivalence classes of any  $G_t^s(a,b; c,d)$ . Hence Problem 2 of [3] is solved.

**Theorem 3.** The chromatic equivalence classes are all single  $C_r(a,b; c,d)$  with the exception of the following unions of  $C_r(a,b; c,d)$ .

- (a)  $\mathscr{C}_0(1,b; c,d) \cup \mathscr{C}_{b-1}(1,c; 1,d) \cup \mathscr{C}_{c-1}(1,b; 1,d) \cup \mathscr{C}_{d-1}(1,b; 1,c), for b, c, d \ge 2;$
- (b)  $\mathscr{C}_r(1,b; c,d) \cup \mathscr{C}_{c-1}(1,b; r+1,d) \cup \mathscr{C}_{d-1}(1,b; c,r+1)$ , for  $r \ge 1$  and  $b,c,d \ge 2$ , except for r = 2 and b = d = c + 1;
- (c)  $\mathscr{C}_0(2,b; b+1,b+2) \cup \mathscr{C}_2(1,b+1; b,b+1) \cup \mathscr{C}_{b-1}(1,b+1; 3,b+1) \cup \mathscr{C}_b(1,b+1; 3,b),$ for any  $b \ge 2$ ;
- (d)  $\mathscr{C}_1(3,5; 5,8) \cup \mathscr{C}_5(2,6; 4,5);$
- (e)  $\mathscr{C}_1(3,3; c,c+2) \cup \mathscr{C}_{c-1}(2,4; 3,c+1)$ , for any  $c \ge 3$ ;
- (f)  $\mathscr{C}_1(3,b; 3,b+2) \cup \mathscr{C}_{b-1}(2,b+1; 3,4)$ , for any  $b \ge 3$ ;
- (g)  $\mathscr{C}_r(r+2,b; b+1,b+r+2) \cup \mathscr{C}_{r+2}(r+1,b+1; b,b+r+1)$ , for any  $b \ge r+2 \ge 2$ or r=1 and  $b \ge 2$ ;
- (h)  $\mathscr{C}_r(r+2, c+r+2; c, c+1) \cup \mathscr{C}_{r+2}(r+1, c+r+1; c, c+1)$ , for any  $c \ge r+2 \ge 2$ or r=1 and  $c \ge 2$ .

## Acknowledgements

The authors would like to express their sincere thanks to the referees for their helpful and valuable comments.

## References

- [1] C.Y. Chao, L.C. Zhao, Chromatic polynomials of a family of graphs, Ars Combin. 15 (1983) 111-129.
- [2] K.M. Koh, K.L. Teo, The search for chromatically unique graphs, Graphs and Combinatorics 6 (1990) 259–285.
- [3] K.M. Koh, K.L. Teo, The search for chromatically unique graphs, II, Discrete Math. 172 (1997) 59-78.
- [4] B. Omoomi, Y.H. Peng, Chromatic equivalence classes of certain cycles with edges, Discrete Math. 232 (2001) 175–183.
- [5] B. Omoomi Y.H. Peng, Chromatic equivalence classes of certain generalized polygon trees, II, submitted for publication.
- [6] Y.H. Peng, C.H.C. Little, K.L. Teo, H. Wang, Chromatic equivalence classes of certain generalized polygon trees, Discrete Math. 172 (1997) 103–114.
- [7] H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932) 572-579.
- [8] S.J. Xu, J.J. Liu, Y.H. Peng, The chromaticity of s-bridge graphs and related graphs, Discrete Math. 135 (1994) 349–358.