# On $b$-coloring of cartesian product of graphs 

Ramin Javadi and Behnaz Omoomi<br>Department of Mathematical Sciences<br>Isfahan University of Technology<br>84156-83111, Isfahan, Iran


#### Abstract

A $b$-coloring of a graph $G$ by $k$ colors is a proper $k$-coloring of the vertices of $G$ such that in each color class there exists a vertex having neighbors in all the other $k-1$ color classes. The $b$-chromatic number $\varphi(G)$ of a graph $G$ is the maximum $k$ for which $G$ has a $b$-coloring by $k$ colors. This concept was introduced by R.W. Irving and D.F. Manlove in 1999. In this paper we study the $b$-chromatic numbers of the cartesian products of paths and cycles with complete graphs and the cartesian product of two complete graphs.


Key Words: $b$-chromatic number, $b$-coloring, dominating coloring.

## 1 Introduction

Let $G$ be a graph without loops and multiple edges with vertex set $V(G)$ and edge set $E(G)$. A proper $k$-coloring of graph $G$ is a function $c$ defined on the $V(G)$, onto a set of colors $C=\{1,2, \ldots, k\}$ such that any two adjacent vertices have different colors. In fact, for every $i, 1 \leq i \leq k$, the set $c^{-1}(\{i\})$ is an independent set of vertices which is called a color class. The minimum cardinality $k$ for which $G$ has a proper $k$-coloring is the chromatic number $\chi(G)$ of $G$.

A $b$-coloring of a graph $G$ by $k$ colors is a proper $k$-coloring of the vertices of $G$ such that in each color class $i$ there exists a vertex $x_{i}$ having neighbors in all the other $k-1$ color classes. We will call such a vertex $x_{i}$, a $b$-dominating vertex and the set of vertices $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ a $b$-dominating system. The $b$-chromatic number $\varphi(G)$ of a graph $G$ is the maximum $k$ for which $G$ has a $b$-coloring by
$k$ colors. The $b$-chromatic number was introduced by R.W. Irving and D.F. Manlove in [2]. They proved that determining $\varphi(G)$ is NP-hard for general cases, but it is polynomial for trees. An immediate and useful bounds for $\varphi(G)$ is:

$$
\begin{equation*}
\chi(G) \leq \varphi(G) \leq \Delta(G)+1, \tag{1}
\end{equation*}
$$

where $\Delta(G)$ is the maximum degree of vertices in $G$.
The cartesian product of two graphs $G_{1}$ and $G_{2}$, denoted by $G_{1} \square G_{2}$, is a simple graph with $V\left(G_{1}\right) \times V\left(G_{2}\right)$ as its vertex set and two vertices ( $u_{1}, v_{1}$ ) and $\left(u_{2}, v_{2}\right)$ are adjacent in $G_{1} \square G_{2}$ if and only if either $u_{1}=u_{2}$ and $v_{1}, v_{2}$ are adjacent in $G_{2}$, or $u_{1}, u_{2}$ are adjacent in $G_{1}$ and $v_{1}=v_{2}$. In the sequel, where $\left|V\left(G_{1}\right)\right|=m$ and $\left|V\left(G_{2}\right)\right|=n$, we consider the vertex set of the graph $G_{1} \square G_{2}$, as an $m \times n$ array in which the entry $(i, j)$ corresponds to the vertex $(i, j), i \in V\left(G_{1}\right)$ and $j \in V\left(G_{2}\right)$, and each column induces a copy of graph $G_{1}$ and each row induces a copy of graph $G_{2}$. In Section 3, where $G_{2}=C_{n}$, the neighbors of entry $(i, j)$ in the row $i$ are entries $(i, j \pm 1)$. In Section 4, where $G_{2}=P_{n}$, the neighbors of entry $(i, j)$ in the row $i$ are entries $(i, j \pm 1)$, for $2 \leq j \leq n-2$ and for $j=1$ and $j=n$ are $(i, 2)$ and $(i, j-1)$, respectively. So through this paper all first components of entries are modulo $\left|V\left(G_{1}\right)\right|=m$ and all second components of entries are modulo $\left|V\left(G_{2}\right)\right|=n$.

The $b$-chromatic number of the cartesian product of some graphs such as $K_{1, n} \square K_{1, n}, K_{1, n} \square P_{k}, P_{n} \square P_{k}, C_{n} \square C_{k}$ and $C_{n} \square P_{k}$ was studied in [3]. In this paper we study the $b$-chromatic numbers of the cartesian products of paths and cycles with complete graphs and the cartesian product of two complete graphs.

## $2 b$-chromatic number of graph $K_{m} \square G$

In this section we present some results on the $b$-chromatic number of the cartesian product of the complete graphs with every graph $G$.

Proposition 1. Let c be a b-coloring of graph $K_{m} \square G$ by $\varphi$ colors, where $\varphi>m$, and $v \in V(G)$. Then the column corresponding to the vertex $v$, contains at most $\operatorname{deg}_{G}(v) b$-dominating vertices.

Proof. By assumption $\varphi>m$, therefore in the $b$-coloring $c$ there is at least one color that does not appear in the column corresponding to the vertex $v$ of $G$, we denote this column by $K_{m}^{v}$. On the other hand this missing color must appear in the neighbors of all $b$-dominating vertices in $K_{m}^{v}$, which are obviously in different columns. Therefore the number of $b$-dominating vertices in $K_{m}^{v}$ is at most $\operatorname{deg}_{G}(v)$.

If $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is the degree sequence of a graph $G$ with $n$ vertices, then by Proposition 1, in graph $K_{m} \square G$ each column, denoted by $K_{m}^{(i)}, 1 \leq i \leq n$, contains at most $d_{i} b$-dominating vertices. Therefore, every $b$-dominating system of $G$ contains at most $\sum_{i=1}^{n} d_{i}$ vertices. So we have the following upper bounds for $\varphi\left(K_{m} \square G\right)$ which improves the given upper bounds in [3].

Corollary 1. If $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is the degree sequence of graph $G$ with $n$ vertices and e edges, then

$$
\varphi\left(K_{m} \square G\right) \leq \sum_{i=1}^{n} d_{i}=2 e .
$$

Now we prove a lemma on completing a partial proper coloring of graph $K_{m} \square G$ for every graph $G$. A partial proper coloring of a graph is an assignment of colors to some vertices of $G$, such that the adjacent vertices receive different colors.

Let $S_{1}, \ldots, S_{n}$ be some sets. A system of distinct representatives (SDR) for these sets is an $n$-tuple $\left(x_{1}, \ldots, x_{n}\right)$ of elements with the properties that $x_{i} \in S_{i}$ for $i=1, \ldots, n$ and $x_{i} \neq x_{j}$ for $i \neq j$. It is a well known theorem that the family of sets $S_{i}$ has an SDR if and only if it satisfies the Hall's condition, which is for every subset $I \subseteq\{1,2, \ldots, n\},\left|\cup_{i \in I} S_{i}\right| \geq|I|,[1]$.

Lemma 1. Let $G$ be a graph and $m$ be a positive integer, which $m \geq 2 \Delta(G)$. If $c$ is a partial proper coloring of graph $K_{m} \square G$ by $m$ colors, such that each column has no uncolored vertices or at least $2 \Delta(G)$ uncolored vertices, then $c$ can be extended to a proper coloring of graph $K_{m} \square G$ by $m$ colors.

Proof. In a partial proper coloring of graph $K_{m} \square G$ by $m$ colors, consider a column with $k \geq 1$ uncolored vertices $v_{1}, v_{2}, \ldots, v_{k}$, where by assumption $k \geq$
$2 \Delta(G)$. Without loss of generality we denote $k$ missing colors by $1,2, \ldots, k$. For each $i=1,2, \ldots, k$, let $S_{i}$ be the set of colors that can be used to color the vertex $v_{i}$, properly, so $S_{i} \subseteq\{1,2, \ldots, k\}$. For extending this coloring to a proper coloring of this column, it is enough to find an SDR for the family of sets $S_{i}, 1 \leq i \leq k$. For this purpose we show that the family of sets $S_{i}, 1 \leq i \leq k$, satisfies the Hall's condition. Let $I \subseteq\{1,2, \ldots, k\}$, which $|I|=r$.

If $r \leq \Delta(G)$, then for some $i_{0} \in I$ we have

$$
\left|\cup_{i \in I} S_{i}\right| \geq\left|S_{i_{0}}\right| \geq k-\Delta(G) \geq \Delta(G) \geq r=|I| .
$$

If $r>\Delta(G)$, then $\cup_{i \in I} S_{i}=\{1,2, \ldots, k\}$. Because if a color say $i_{0}, 1 \leq i_{0} \leq k$, does not appear in any set $S_{i}, i \in I$, then each vertex $v_{i}, i \in I$, has a neighbor say $u_{i}$ of color $i_{0}$ in the row containing $v_{i}$. Since all of the vertices $u_{i}$ have the same color, they are in different columns. Hence we must have $r=|I| \leq \Delta(G)$, which is a contradiction. Therefore

$$
\left|\cup_{i \in I} S_{i}\right|=k \geq|I| .
$$

So the coloring of each column can be extended and the proof is completed.

Proposition 2. For every two graphs $G$ and $H$, if graph $H^{\prime}$ is obtained by replacing one of the edges of $H$ with a path of length 3 , then $\varphi\left(G \square H^{\prime}\right) \geq \varphi(G \square H)$.

Proof. Let $e=x y$ be an edge in $H$ and $H^{\prime}$ be obtained by replacing $e$ with the path $x w z y$. Moreover, assume that $c$ is a $b$-coloring of graph $G \square H$ by $\varphi(G \square H)$ colors. We define a $b$-coloring $c^{\prime}$ of graph $G \square H^{\prime}$ as follows. We color the vertices in the columns corresponding to the vertices $w$ and $z$ in $H^{\prime}$ the same as the color of vertices in the columns $y$ and $x$ in the coloring $c$, respectively. Finally we color the rest of the vertices the same as the coloring $c$. It is easy to see that $c^{\prime}$ is a proper coloring and the $b$-dominating system in $c$ is a $b$-dominating system in $c^{\prime}$.

Corollary 2. For every positive integers $m, n$,

$$
\varphi\left(K_{m} \square C_{n+2}\right) \geq \varphi\left(K_{m} \square C_{n}\right) \text { and } \varphi\left(K_{m} \square P_{n+2}\right) \geq \varphi\left(K_{m} \square C_{n}\right) .
$$

Proof. Let $\varphi\left(K_{m} \square C_{n}\right)=k$. The graph $C_{n+2}$ is obtained by replacing one edge $e=x y$ in $C_{n}$ by the path $x w z y$. So by Proposition 2 , there is a $b$-coloring $c$ of graph $K_{m} \square C_{n+2}$ by $k$ colors. Furthermore by the proof of Proposition 2 , we see that there is no $b$-dominating vertex in the columns corresponding to the vertices $w$ and $z$ in the coloring $c$. Thus $c$ is also a $b$-coloring of graph $K_{m} \square P_{n+2}$, where $P_{n+2}$ is obtained by deleting the edge $w z$ in $C_{n+2}$.

## $3 b$-chromatic number of graph $K_{m} \square C_{n}$

In this section we determine the exact value of $\varphi\left(K_{m} \square C_{n}\right)$. We know that $\chi\left(K_{m} \square C_{n}\right)=m$ and $\Delta\left(K_{m} \square C_{n}\right)=m+1$. Therefore by (1),

$$
\begin{equation*}
m \leq \varphi\left(K_{m} \square C_{n}\right) \leq m+2 \tag{2}
\end{equation*}
$$

To prove our main theorem in this section, we need the following lemma.

Lemma 2. If $c$ is a b-coloring of graph $K_{m} \square C_{n}$ by colors and $S$ is abdominating system in $c$, such that:
(i) there is one b-dominating vertex, say $(r, s), r \neq m$, in a color class $x$, such that the vertices $(r, s)$ and $(r, s \pm 1)$ are not in $S$,
(ii) row $m$ have no vertex in $S$,
(iii) when $n$ is odd, $c(m, s-1) \neq x$.

Then $\varphi\left(K_{m+1} \square C_{n}\right) \geq k+1$.

Proof. Without loss of generality we assume that $(r, s)=(1,1)$. We present a $b$-coloring $c^{\prime}$ of graph $K_{m+1} \square C_{n}$ by $k+1$ colors as follows:

$$
c^{\prime}(i, j)= \begin{cases}x & \text { if }(i, j)=(m+1,1) \\ k+1 & \text { if }(i, j)=(1,1) \\ k+1 & \text { if }(i, j)=(m+1,2 t), 1 \leq t \leq\left\lfloor\frac{n}{2}\right\rfloor \\ c(m, 2 t-1) & \text { if }(i, j)=(m+1,2 t-1), 2 \leq t \leq\left\lceil\frac{n}{2}\right\rceil \\ k+1 & \text { if }(i, j)=(m, 2 t-1), 2 \leq t \leq\left\lceil\frac{n}{2}\right\rceil \\ c(i, j) & \text { otherwise. }\end{cases}
$$

From the definition of $c^{\prime}$ and the property (iii) it is easy to see that $c^{\prime}$ is a proper coloring. Moreover, because of the properties (i), (ii) and since in coloring $c^{\prime}$ each
column has a vertex with color $k+1$, every vertex in $S$ is a $b$-dominating vertex in $c^{\prime}$. Also the vertex $(1,1)$ is a $b$-dominating vertex with color $k+1$. Therefore $c^{\prime}$ is a $b$-dominating coloring by $k+1$ colors.

Theorem 1. For positive integers $m, n \geq 4$ :

$$
\varphi\left(K_{m} \square C_{n}\right)= \begin{cases}m & \text { if } m \geq 2 n \\ m+1 & \text { if } m=2 n-1 \\ m+2 & \text { if } m \leq 2 n-2\end{cases}
$$

Proof. Assume $m \geq 2 n$. By Corollary 1, $\varphi\left(K_{m} \square C_{n}\right) \leq 2 n$. Hence by (2), we have $\varphi\left(K_{m} \square C_{n}\right)=m$.

Now let $m=2 n-1$, by Corollary $1, \varphi\left(K_{m} \square C_{n}\right) \leq 2 n=m+1$. To prove the equality we present a $b$-coloring of graph $K_{m} \square C_{n}$ by $m+1$ colors.

Consider an $(m+1) \times n$ array and fill some of the entries of this array as follows. We denote this partial proper coloring by $c$. All second components of entries are modulo $n, 1 \leq j \leq n, 1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$ and $r=0,1$.

$$
\begin{aligned}
& c\left(2\left\lceil\frac{j}{2}\right\rceil-r, j\right)=2 j-r \\
& c(2 k, 2 k-2)=4 k-1, c(2 k, 2 k+1)=4 k-3 \\
& c(m+1,2 k-r)=4 k+2 r-3
\end{aligned}
$$

If n is odd, then we also define

$$
c(m+1, n)=c(n, n-1)=c(n+1,1)=4
$$

In Figure 1, this array with the filled entries for $n=4$ is shown.
It is not hard to see that, this array with some filled entries is a partial proper coloring of graph $K_{m+1} \square C_{n}$, which each column has three filled entries. Since $m=2 n-1 \geq 7$, every column has at least 4 uncolored vertices. Hence by Lemma 1, $c$ can be extended to a proper coloring of graph $K_{m+1} \square C_{n}$ by $m+1$ colors. Now to obtain the desired coloring, we delete the last row. Note that in this coloring of graph $K_{m} \square C_{n}$, each column has exactly one missing color. The set of vertices $\{(2\lceil j / 2\rceil-r, j) \mid 1 \leq j \leq n, r=0,1\}$ is a $b$-dominating system.

| 1 | 3 |  |  |
| :---: | :---: | :---: | :---: |
| 2 | 4 | 1 | 3 |
|  |  | 5 | 7 |
| 5 | 7 | 6 | 8 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
| 3 | 1 | 7 | 5 |

Figure 1: A partial proper coloring of graph $K_{8} \square C_{4}$.

Because for $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$, the missing color of column $2 k$ is $4 k-3$ which is the color of vertices $(2 k, 2 k+1)$ and $(2 k-1,2 k-1)$ and the missing color of column $2 k-1$ is $4 k-1$ which is the color of vertices $(2 k, 2 k-2)$ and $(2 k-1,2 k)$.

Now assume $9 \leq m \leq 2 n-2$; by (2), $\varphi\left(K_{m} \square C_{n}\right) \leq m+2$. To show the equality, we present a $b$-coloring of graph $K_{m} \square C_{n}$ by $m+2$ colors. Consider an $(m+2) \times n$ array and fill some of the entries of this array as follows. We denote this partial proper coloring by $c$. All second components of entries are modulo $n$ and the values are modulo $m+2,1 \leq j \leq\lceil m / 2\rceil+1,1 \leq k \leq\left\lceil\frac{m}{4}\right\rceil$ and $r=0,1$.

$$
\begin{aligned}
& c\left(2\left\lceil\frac{j}{2}\right\rceil-r, j\right)=2 j-r, \\
& c(2 k-r, 2 k-2)=4 k+r-1, c(2 k-r, 2 k+1)=4 k+r-3, \\
& c(m+1,2 k-r)=4 k+2 r-3, c(m+2,2 k-r)=4 k+2 r-2 .
\end{aligned}
$$

If $m \equiv 0,3 \quad(\bmod 4)$, then we also define

$$
\begin{aligned}
& c(\lceil m / 2\rceil+2-r,\lceil m / 2\rceil)=6-r, \\
& c(\lceil m / 2\rceil+2-r,\lceil m / 2\rceil+2)=5+r, \\
& c(m+1+r,\lceil m / 2\rceil+1)=6-r .
\end{aligned}
$$

In Figure 2, this array with the filled entries for $m=9$ and $n=6$ is shown.
It is not hard to see that, this array with some filled entries is a partial proper coloring of graph $K_{m+2} \square C_{n}$, which each column has four filled entries. Since $m \geq 9$, every column has at least 4 uncolored vertices. Hence by Lemma $1, c$ can be extended to a proper coloring of graph $K_{m+2} \square C_{n}$ by $m+2$ colors. Now to

| 1 | 3 | 2 |  |  | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 4 | 1 |  |  | 3 |
|  | 8 | 5 | 7 | 6 |  |
|  | 7 | 6 | 8 | 5 |  |
| 10 |  |  | 1 | 9 | 11 |
| 9 |  |  | 11 | 10 | 1 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 3 | 1 | 7 | 5 | 11 | 9 |
| 4 | 2 | 8 | 6 | 1 | 10 |

Figure 2: A partial proper coloring of graph $K_{11} \square C_{6}$.
obtain the desired coloring, we delete the last two rows. Note that in this coloring of graph $K_{m} \square C_{n}$, each column has exactly two missing colors. Similarly, it is not hard to see that the set of vertices $\{(2\lceil j / 2\rceil-r, j) \mid 1 \leq j \leq\lceil m / 2\rceil+1, r=0,1\}$ is a $b$-dominating system. Because for $1 \leq k \leq\left\lceil\frac{m}{4}\right\rceil$, the missing colors of column $2 k$ are $4 k-3$ and $4 k-2$, while we have $c(2 k, 2 k+1)=c(2 k-1,2 k-1)=4 k-3$ and $c(2 k-1,2 k+1)=c(2 k, 2 k-1)=4 k-2$. Moreover, the missing colors of column $2 k-1$ are $4 k-1$ and $4 k$, while we have $c(2 k, 2 k-2)=c(2 k-1,2 k)=4 k-1$ and $c(2 k-1,2 k-2)=c(2 k, 2 k)=4 k$.

Now assume $4 \leq m \leq 8$ and $m \leq 2 n-2$. In Figure 3 we provide a $b$ coloring of graphs $K_{4} \square C_{n}, n=4,5$ and $K_{7} \square C_{n}, n=5,6$. In these colorings the $b$-dominating system, $S$ is the set of circled vertices. Then we apply Lemma 2 for the given coloring of $K_{4} \square C_{4}$ twice, first for $(r, s)=(3,4)$ and second for $(r, s)=(2,3)$. Also, we apply that lemma for the given coloring of graph $K_{4} \square C_{5}$, twice, first for $(r, s)=(3,4)$ and second for $(r, s)=(3,4)$. Thus we obtain the desired $b$-colorings of graphs $K_{m} \square C_{n}, m=5,6, n=4,5$. Moreover, we apply Lemma 2 for the given colorings of graphs $K_{7} \square C_{5}$ and $K_{7} \square C_{6}$ for $(r, s)=(6,5)$ and obtain the desired $b$-colorings of graphs $K_{8} \square C_{n}, n=5,6$. By Corollary 2, to obtain a $b$-coloring of graph $K_{m} \square C_{n}, n \geq t$, it is enough to have a $b$-coloring of graphs $K_{m} \square C_{t}$ and $K_{m} \square C_{t+1}$. Therefore, from the $b$-coloring obtained above we have the desired $b$-coloring of graphs $K_{m} \square C_{n}, 4 \leq m \leq 9$ and $m \leq 2 n-2$.

| 1 | 3 | 5 | 6 |
| :---: | :---: | :---: | :---: |
| 2 | 6 | $\mathbf{2}$ | 3 |
| 5 | 4 | 1 | $\mathbf{4}$ |
| 4 | 2 | 4 | 2 |


| 3 | 2 | 5 | 9 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 1 | 4 | 8 | 2 |
| 7 | 5 | 9 | 4 | 8 |
| 6 | 3 | 8 | 6 | 7 |
| 8 | 4 | 1 | 2 | 5 |
| 9 | 6 | 7 | 3 | 4 |
| 5 | 8 | 2 | 7 | 6 |


| 1 | 3 | 5 | 2 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | 4 | 6 | 3 |
| 5 | 4 | 1 | $\mathbf{5}$ | 4 |
| 4 | 2 | $\mathbf{6}$ | 3 | 5 |


| 1 | 3 | 2 | 3 | 7 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 4 | 1 | 4 | 8 | 3 |
| 7 | 8 | 5 | 7 | 6 | 9 |
| 9 | 7 | 6 | 8 | 5 | 8 |
| 5 | 9 | 4 | 1 | 9 | 2 |
| 6 | 5 | 9 | 2 | $\mathbf{3}$ | 1 |
| 8 | 6 | 3 | 9 | 4 | 7 |

Figure 3: A $b$-coloring of graphs $K_{4} \square C_{n}, n=4,5$ and $K_{7} \square C_{n}, n=5,6$.

## $4 b$-chromatic number of graph $K_{m} \square P_{n}$

In this section, by using the results of Section 2, we determine the exact value of $\varphi\left(K_{m} \square P_{n}\right)$. We know that $\chi\left(K_{m} \square P_{n}\right)=m$ and $\Delta\left(K_{m} \square P_{n}\right)=m+1$. Therefore by (1),

$$
\begin{equation*}
m \leq \varphi\left(K_{m} \square P_{n}\right) \leq m+2 . \tag{3}
\end{equation*}
$$

Theorem 2. For positive integers $m, n \geq 4$ :

$$
\varphi\left(K_{m} \square P_{n}\right)= \begin{cases}m & \text { if } \quad m \geq 2 n-2, \\ m+1 & \text { if } 2 n-5 \leq m \leq 2 n-3, \\ m+2 & \text { if } \quad m \leq 2 n-6 .\end{cases}
$$

Proof. Assume $m \geq 2 n-2$. By Corollary 1, $\varphi\left(K_{m} \square P_{n}\right) \leq 2(n-1)$. Hence by (3), $\varphi\left(K_{m} \square P_{n}\right)=m$.

If $\varphi\left(K_{m} \square P_{n}\right)=m+2$, then there is not any $b$-dominating vertex in the first and the last columns of graph $K_{m} \square P_{n}$, because the vertices in the first and the last columns are of degree $m$. Furthermore, by Proposition 1, the other $n-2$
columns each contains at most two $b$-dominating vertices. Therefore, $m+2=$ $\varphi\left(K_{m} \square P_{n}\right) \leq 2(n-2)$. Hence for $m \geq 2 n-5$, we have $\varphi\left(K_{m} \square P_{n}\right) \leq m+1$.

Now let $2 n-5 \leq m \leq 2 n-3$, we present a $b$-coloring of graph $K_{m} \square P_{n}$ by $m+1$ colors. We consider two cases.

Case 1. $m=2 n-3$.
We define a coloring $c: V\left(K_{m} \square P_{n}\right) \rightarrow\{1,2, \ldots, m+1\}$ by:

$$
c(i, j)= \begin{cases}m-1 & \text { if }(i, j)=(m, 1), \\ m+1 & \text { if }(i, j)=(3 j-4, j), 1 \leq j \leq n-1, \\ m+1 & \text { if }(i, j)=(3 n-6, n), \\ i+j-1 \quad(\bmod m) & \text { otherwise. }\end{cases}
$$

It is not hard to see that the above assignment is a proper coloring of graph $K_{m} \square P_{n}$. In fact this assignment presents a partial circular latin rectangle with the rest entries filled as above.

The set $S=\{(m-1,1),(3 n-5, n),(3 j-5, j),(3 j-3, j) \mid 2 \leq j \leq n-1\}$ (the summations are modulo $m$ ) is a $b$-dominating system. Obviously, each vertex dominates $m-1$ neighbors on its column, which are in different color classes. So for a vertex to be a $b$-dominating vertex it is enough to dominate a vertex with the color which is missed in its column. The missing color in column $j$, $2 \leq j \leq n-1$ is $4 j-5$, in column 1 is $m$ and in column $n$ is $4 n-7$. Moreover, we have $c(m-1,2)=m, c(3 n-5, n-1)=4 n-7, c(3 j-5, j+1)=4 j-5$, and $c(3 j-3, j-1)=4 j-5$. Therefore, the set $S$ is $b$-dominating system of colors $\{1,2, \ldots, m+1\}$. In Figure $5(\mathrm{a})$, this coloring is shown for $m=5$, where the circled vertices are $b$-dominating vertices.

Now let $m=2 n-5$, consider a $b$-coloring of graph $K_{m} \square P_{n-1}$ by $m+1$ colors as above. We add a column and color it the same as column 1. This yields a $b$-coloring of graph $K_{m} \square P_{n}$ by $m+1$ colors.

Case 2. $m=2 n-4$.
As illustrated in Figure 4, $\varphi\left(K_{4} \square P_{4}\right)=5$, the $b$-dominating vertices are circled.

| 5 | 2 | 5 | 4 |
| :---: | :---: | :---: | :---: |
| 1 | 3 | 4 | 1 |
| 3 | 5 | 1 | 2 |
| 4 | 1 | 2 | 3 |

Figure 4: A $b$-coloring of graph $K_{4} \square P_{4}$ by 5 colors.

Assume $n \geq 5$, we define the coloring $c: V\left(K_{m} \square P_{n}\right) \rightarrow\{1,2, \ldots, m+1\}$ by:
$c(i, j)= \begin{cases}m-1 & \text { if }(i, j)=(m, 1), \\ m+1 & \text { if }(i, j)=(3 j-4, j), 1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil, \\ m+1 & \text { if }(i, j)=(3 j-5, j),\left\lceil\frac{n}{2}\right\rceil+1 \leq j \leq n-1, \\ m+1 & \text { if }(i, j)=(3 n-7, n), \\ i+j-1 \quad(\bmod m) & \text { otherwise. }\end{cases}$
It is not hard to see that, the assignment above is a proper coloring of graph $K_{m} \square P_{n}$. Similar to Case 1, it can be easily checked that the set $\{(m-1,1),(3 n-$ $6, n),(3 j-5, j),(3 j-3, j),(i, 3 i-6),(i, 3 i-4) \left\lvert\,\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n-1\right.,2 \leq j \leq$ $\left.\left\lceil\frac{n}{2}\right\rceil\right\}$ (the summations in the first components are modulo $m$ and in the second components are modulo $n$ ) is a $b$-dominating system. In Figure 5(b) this coloring is shown for $m=6$, which the circled vertices are $b$-dominating vertices.

| 1 | 2 | 3 | 6 |
| :---: | :---: | :---: | :---: |
| 2 | 6 | 4 | 5 |
| 3 | 4 | 5 | 1 |
| 6 | 5 | 1 | 2 |
| 4 | 1 | 6 | 3 |

(a)

| 1 | 2 | 3 | 7 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 7 | 4 | 5 | 7 |
| 3 | 4 | 5 | 6 | 1 |
| 4 | 5 | 6 | 1 | 2 |
| 7 | 6 | 7 | 2 | 3 |
| 5 | 1 | 2 | 3 | 4 |

(b)

Figure 5: A $b$-coloring of graphs $K_{5} \square P_{4}$ and $K_{6} \square P_{5}$ by 6 and 7 colors.
Now assume $m \leq 2 n-6$, and let $n^{\prime}=n-2$. Since $m \leq 2 n^{\prime}-2$, by Theorem 1 , $\varphi\left(K_{m} \square C_{n^{\prime}}\right)=m+2, n^{\prime} \geq 4$. Hence by Corollary $2, \varphi\left(K_{m} \square P_{n}\right) \geq m+2$. Therefore by (3), $\varphi\left(K_{m} \square P_{n}\right)=m+2$, for $n \geq 6$.

For $n=5$ a $b$-coloring of graph $K_{m} \square P_{n}$ is shown in Figure 6, the $b$-dominating vertices are circled.

| 5 | 1 | 6 | 4 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| 6 | 2 | 5 | 3 | 1 |
| 4 | 3 | 4 | 2 | 4 |
| 1 | 4 | 1 | 6 | 5 |

Figure 6: A $b$-coloring of graph $K_{4} \square P_{5}$ by 6 colors.

## 5 b-chromatic number of graph $K_{n} \square K_{n}$

We know that $\chi\left(K_{n} \square K_{n}\right)=n$ and $\Delta\left(K_{n} \square K_{n}\right)=2 n-2$. So by (1), $n \leq$ $\varphi\left(K_{n} \square K_{n}\right) \leq 2 n-1$. In this section we improve these bounds and prove that $2 n-3 \leq \varphi\left(K_{n} \square K_{n}\right) \leq 2 n-2$. Finally we provide a conjecture that $\varphi\left(K_{n} \square K_{n}\right)=$ $2 n-3, n \geq 5$.

Lemma 3. Let c be a b-coloring of graph $K_{n} \square K_{n}$ by $2 n-1$ colors. If two vertices $(i, j)$ and $(i, t)$ are $b$-dominating vertices in the $b$-coloring $c$, then in columns $j$ and $t$ there are no other b-dominating vertices.

Proof. Let $c$ be a $b$-coloring of graph $K_{n} \square K_{n}$ by $2 n-1$ colors. It is obvious that if a vertex $(x, y)$ is a $b$-dominating vertex in the $b$-coloring $c$, then all its $2 n-2$ neighbors must have different colors. So the colors of the vertices in the row $x$ and the column $y$ are different. Now, assume to the contrary that the vertices $(i, j),(i, t)$ and $\left(i^{\prime}, j\right), i^{\prime} \neq i$, are $b$-dominating vertices. Since the vertex $(i, t)$ is a $b$-dominating vertex, the vertices in row $i$ and column $t$ all have different colors. Therefore, if $c\left(i^{\prime}, t\right)=a$, then no vertex in row $i$ has color $a$. On the other hand the vertex $(i, j)$ is a $b$-dominating vertex, hence in column $j$ we must have a vertex with color $a$. Now, in both row $i^{\prime}$ and column $j$ we have vertices by color $a$. It contradicts our assumption that the vertex $\left(i^{\prime}, j\right)$ is a $b$-dominating vertex. By the same reason the vertex $\left(i^{\prime}, t\right)$, for $i^{\prime} \neq i$, is not $b$-dominating vertex.

Theorem 3. For every positive integer $n \geq 2$, we have

$$
\varphi\left(K_{n} \square K_{n}\right) \leq 2 n-2 .
$$

Proof. We know that $\varphi\left(K_{n} \square K_{n}\right) \leq 2 n-1$. Let $\varphi\left(K_{n} \square K_{n}\right)=2 n-1$ and $c$ be a $b$-coloring by $2 n-1$ colors. Without loss of generality we assume that rows 1
to $r$ each has at least two $b$-dominating vertices and rows $r+1$ to $n$ each has at most one $b$-dominating vertex. Moreover, without loss of generality, we assume that the $b$-dominating vertices in the first $r$ rows are in the first $s$ columns. By Lemma 3, in each column $j, 1 \leq j \leq s$, there is only one $b$-dominating vertex. If $r=0$ or $s=n$, then we have at most $n b$-dominating vertices which is a contradiction. The size of the $b$-dominating system in coloring $c$ is at most $s+(n-r)$. Now if $r>0$ and $s<n$, then the number of $b$-dominating vertices is at most $s+(n-r) \leq 2 n-1-r<2 n-1$ which also contradicts our assumption.

Theorem 4. For every positive integer $n \geq 5$, we have

$$
\varphi\left(K_{n} \square K_{n}\right) \geq 2 n-3
$$

Proof. We present a $b$-coloring $c$ by $2 n-3$ colors, for two cases $n$ odd and $n$ even. First, we define a function $f: \mathbb{N} \rightarrow \mathbb{Z}$ by:

$$
f(x)= \begin{cases}x & x \text { is odd } \\ x-2 & x \text { is even }\end{cases}
$$

Case 1. $n$ is odd.
In this case we define the assignment $c: V\left(K_{n} \square K_{n}\right) \rightarrow \mathbb{N}$ by:

$$
c((i, j))= \begin{cases}i+j-1 \quad(\bmod n-1) & i \leq j \leq n-i-1 \\ f(i+j) \quad(\bmod n-1) & n-i \leq j \leq n-2, i \leq j \\ (i+j-2 \quad(\bmod n-2))+(n-1) & j<i \leq n-1 \\ & (i, j) \neq(n-1, n-2) \\ n-3 & \\ & (i, j)=(n-1, n-2)\end{cases}
$$

For columns $n-1, n$ and row $n$, the assignment $c$ is as follows.

$$
\begin{aligned}
& c((i, n-1))=\left\{\begin{array}{lll}
2 i-2 & (\bmod n-1) & 1 \leq i \leq \frac{n-1}{2} \\
2 i-1 & (\bmod n-1) \\
2 n-4 & \frac{n+1}{2} \leq i \leq n-2, \\
i=n-1
\end{array}\right. \\
& c((i, n))= \begin{cases}(2 i-2(\bmod n-2))+(n-1) & i \text { odd, } i \leq n-2, \\
i-2(\bmod n-1) & i \text { even } i \leq n-2, \\
n-2 & i=n-1 .\end{cases}
\end{aligned}
$$

$$
c((n, j))= \begin{cases}j-1 \quad(\bmod n-1) & j \text { odd, } j \leq n-3 \\ (2 j-2 \quad(\bmod n-2))+(n-1) & j \text { even } \\ 2 n-5 & j=n-2, \\ 1 & j=n .\end{cases}
$$

The assignment $c$ is a $b$-coloring and the set $S=\{(i, i),(j+1, j) \mid 1 \leq i \leq$ $n-1,1 \leq j \leq n-2\}$ is a $b$-dominating system. Because the vertices in $S$ all have different colors and for each vertex in $S$ the colors in its row and columns all have different colors except two entries. As an example such a coloring for $n=7$ is illustrated in Figure 7, the $b$-dominating vertices are circled.

| 1 | 2 | 3 | 4 | 5 | 6 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 3 | 4 | 5 | 1 | 2 | 6 |
| 8 | 9 | 5 | 1 | 6 | 4 | 10 |
| 9 | 10 | 11 | 6 | 3 | 1 | 2 |
| 10 | 11 | 7 | 8 | 2 | 3 | 9 |
| 11 | 7 | 8 | 9 | 4 | 10 | 5 |
| 6 | 8 | 2 | 7 | 9 | 11 | 1 |

Figure 7: A $b$-coloring of graphs $K_{7} \square K_{7}$ by 11 colors.
Case 2. $n$ is even.
In this case we define the assignment $c: V\left(K_{n} \square K_{n}\right) \rightarrow \mathbb{N}$ by:
$c((i, j))= \begin{cases}i+j-2(\bmod n-2) & i+1 \leq j \leq n-i-1, \\ f(i+j-1)(\bmod n-2) & n-i \leq j \leq n-2, i+1 \leq j, \\ (i+j-1 \quad(\bmod n-1))+(n-2) & j \leq i \leq n-1, \\ & (i, j) \neq(n-1, n-2) \\ n-4 & (i, j)=(n-1, n-2) .\end{cases}$
For columns $n-1, n$ and row $n$, the assignment $c$ is as follows.

$$
c((i, n-1))=\left\{\begin{array}{lll}
2 i-2 & (\bmod n-2) & 1 \leq i \leq \frac{n-2}{2}, \\
2 i-1 & (\bmod n-2) & \frac{n}{2} \leq i \leq n-3, \\
2 n-5 & i=n-2, \\
2 n-4 & i=n-1, \\
n-3 & i=n .
\end{array}\right.
$$

$$
c((i, n))= \begin{cases}(2 i \quad(\bmod n-1))+(n-2) & i \text { odd, } i \leq n-2, \\ i-2(\bmod n-2) & i \text { even, } i \leq n-2, \\ n-3 & i=n-1, \\ 1 & i=n .\end{cases}
$$

$$
c((n, j))= \begin{cases}(2 j-2(\bmod n-1))+(n-2) & j \text { odd, } 3 \leq j \leq n-3 \\ j-2(\bmod n-2) & j \text { even, } j \leq n-3 \\ n-4 & j=1, \\ 2 n-5 & j=n-2 .\end{cases}
$$

The assignment $c$ is a $b$-coloring and the set $S=\{(i, i),(j-1, j) \mid 1 \leq i \leq$ $n-1,2 \leq j \leq n-2\} \cup\{(n-1, n-2)\}$ is $b$-dominating system. Because the vertices in $S$ all have different colors and for each vertex in $S$ the colors in its row and columns all have different colors except two entries. As an example such a coloring for $n=8$ is illustrated in Figure 8, the $b$-dominating vertices are circled.

| 7 | 1 | 2 | 3 | 4 | 5 | 6 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 9 | 3 | 4 | 5 | 1 | 2 | 6 |
| 9 | 10 | 11 | 5 | 1 | 6 | 4 | 12 |
| 10 | 11 | 12 | 13 | 6 | 3 | 1 | 2 |
| 11 | 12 | 13 | 7 | 8 | 2 | 3 | 9 |
| 12 | 13 | 7 | 8 | 9 | 10 | 11 | 4 |
| 13 | 7 | 8 | 9 | 10 | 4 | 12 | 5 |
| 4 | 6 | 10 | 2 | 7 | 11 | 5 | 1 |

Figure 8: A $b$-coloring of graphs $K_{8} \square K_{8}$ by 13 colors.

Remark. For $n=3$ the only way to have a $b$-coloring by 4 colors is Figure 9(a), with the circled vertices as $b$-dominating vertices; which is impossible, so $\varphi\left(K_{3} \square K_{3}\right)=3$. For $n=4$ there is a $b$-coloring of graph $K_{4} \square K_{4}$ by $2 n-2=6$ colors, see Figure 9(b).

Finally, we propose the following conjecture.

Conjecture 1. For every positive integer $n \geq 5, \varphi\left(K_{n} \square K_{n}\right)=2 n-3$.

| 1 | 2 | 3 |
| :---: | :---: | :---: |
| 4 | 3 | 1 |
| 2 | 4 | $?$ |

(a)

| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 5 | 4 | 1 | 2 |
| 6 | 5 | 4 | 3 |
| 3 | 6 | 2 | 1 |

(b)

Figure 9: A partial $b$-coloring of graphs $K_{3} \square K_{3}$ and $K_{4} \square K_{4}$.

## References

[1] P.J. Cameron, Combinatorics: Topics, Techniques, Algorithms. Cambridge University Press 1996.
[2] R.W. Irving and D.F. Manlove, The b-chromatic number of a graph, Discrete Applied Math. 91, (1999) 127-141.
[3] M. Kouider and M. Mahéo, Some bounds for the b-chromatic number of a graph, Discrete Math. 256, (2002) 267-277.

