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Abstract

A b-coloring of a graph G by k colors is a proper k-coloring of
the vertices of G such that in each color class there exists a vertex
having neighbors in all the other k−1 color classes. The b-chromatic
number ϕ(G) of a graph G is the maximum k for which G has a
b-coloring by k colors. This concept was introduced by R.W. Irving
and D.F. Manlove in 1999. In this paper we study the b-chromatic
numbers of the cartesian products of paths and cycles with complete
graphs and the cartesian product of two complete graphs.
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1 Introduction

Let G be a graph without loops and multiple edges with vertex set V (G) and edge

set E(G). A proper k-coloring of graph G is a function c defined on the V (G),

onto a set of colors C = {1, 2, . . . , k} such that any two adjacent vertices have

different colors. In fact, for every i, 1 ≤ i ≤ k, the set c−1({i}) is an independent

set of vertices which is called a color class. The minimum cardinality k for which

G has a proper k-coloring is the chromatic number χ(G) of G.

A b-coloring of a graph G by k colors is a proper k-coloring of the vertices of

G such that in each color class i there exists a vertex xi having neighbors in all

the other k−1 color classes. We will call such a vertex xi, a b-dominating vertex

and the set of vertices {x1, x2, . . . , xk} a b-dominating system. The b-chromatic

number ϕ(G) of a graph G is the maximum k for which G has a b-coloring by
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k colors. The b-chromatic number was introduced by R.W. Irving and D.F.

Manlove in [2]. They proved that determining ϕ(G) is NP-hard for general cases,

but it is polynomial for trees. An immediate and useful bounds for ϕ(G) is:

χ(G) ≤ ϕ(G) ≤ Δ(G) + 1, (1)

where Δ(G) is the maximum degree of vertices in G.

The cartesian product of two graphs G1 and G2, denoted by G1�G2, is a

simple graph with V (G1)× V (G2) as its vertex set and two vertices (u1, v1) and

(u2, v2) are adjacent in G1�G2 if and only if either u1 = u2 and v1, v2 are adjacent

in G2, or u1, u2 are adjacent in G1 and v1 = v2. In the sequel, where |V (G1)| = m

and |V (G2)| = n, we consider the vertex set of the graph G1�G2, as an m × n

array in which the entry (i, j) corresponds to the vertex (i, j), i ∈ V (G1) and

j ∈ V (G2), and each column induces a copy of graph G1 and each row induces

a copy of graph G2. In Section 3, where G2 = Cn, the neighbors of entry (i, j)

in the row i are entries (i, j ± 1). In Section 4, where G2 = Pn, the neighbors

of entry (i, j) in the row i are entries (i, j ± 1), for 2 ≤ j ≤ n − 2 and for j = 1

and j = n are (i, 2) and (i, j − 1), respectively. So through this paper all first

components of entries are modulo |V (G1)| = m and all second components of

entries are modulo |V (G2)| = n.

The b-chromatic number of the cartesian product of some graphs such as

K1,n�K1,n, K1,n�Pk, Pn�Pk, Cn�Ck and Cn�Pk was studied in [3]. In this

paper we study the b-chromatic numbers of the cartesian products of paths and

cycles with complete graphs and the cartesian product of two complete graphs.

2 b-chromatic number of graph Km�G

In this section we present some results on the b-chromatic number of the cartesian

product of the complete graphs with every graph G.

Proposition 1. Let c be a b-coloring of graph Km�G by ϕ colors, where ϕ > m,

and v ∈ V (G). Then the column corresponding to the vertex v, contains at most

degG(v) b-dominating vertices.
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Proof. By assumption ϕ > m, therefore in the b-coloring c there is at least

one color that does not appear in the column corresponding to the vertex v of

G, we denote this column by Kv
m. On the other hand this missing color must

appear in the neighbors of all b-dominating vertices in Kv
m, which are obviously

in different columns. Therefore the number of b-dominating vertices in Kv
m is at

most degG(v). �

If d = (d1, d2, . . . , dn) is the degree sequence of a graph G with n vertices,

then by Proposition 1, in graph Km�G each column, denoted by K
(i)
m , 1 ≤ i ≤ n,

contains at most di b-dominating vertices. Therefore, every b-dominating system

of G contains at most
∑n

i=1
di vertices. So we have the following upper bounds

for ϕ(Km�G) which improves the given upper bounds in [3].

Corollary 1. If d = (d1, d2, . . . , dn) is the degree sequence of graph G with n

vertices and e edges, then

ϕ(Km�G) ≤
n∑

i=1

di = 2e.

Now we prove a lemma on completing a partial proper coloring of graph

Km�G for every graph G. A partial proper coloring of a graph is an assignment

of colors to some vertices of G, such that the adjacent vertices receive different

colors.

Let S1, . . . , Sn be some sets. A system of distinct representatives (SDR) for

these sets is an n-tuple (x1, . . . , xn) of elements with the properties that xi ∈ Si

for i = 1, . . . , n and xi �= xj for i �= j. It is a well known theorem that the family

of sets Si has an SDR if and only if it satisfies the Hall’s condition, which is for

every subset I ⊆ {1, 2, . . . , n}, | ∪i∈I Si| ≥ |I|, [1].

Lemma 1. Let G be a graph and m be a positive integer, which m ≥ 2Δ(G). If

c is a partial proper coloring of graph Km�G by m colors, such that each column

has no uncolored vertices or at least 2Δ(G) uncolored vertices, then c can be

extended to a proper coloring of graph Km�G by m colors.

Proof. In a partial proper coloring of graph Km�G by m colors, consider a

column with k ≥ 1 uncolored vertices v1, v2, . . . , vk, where by assumption k ≥
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2Δ(G). Without loss of generality we denote k missing colors by 1, 2, . . . , k. For

each i = 1, 2, . . . , k, let Si be the set of colors that can be used to color the vertex

vi, properly, so Si ⊆ {1, 2, . . . , k}. For extending this coloring to a proper coloring

of this column, it is enough to find an SDR for the family of sets Si, 1 ≤ i ≤ k.

For this purpose we show that the family of sets Si, 1 ≤ i ≤ k, satisfies the Hall’s

condition. Let I ⊆ {1, 2, . . . , k}, which |I| = r.

If r ≤ Δ(G), then for some i0 ∈ I we have

| ∪i∈I Si| ≥ |Si0 | ≥ k − Δ(G) ≥ Δ(G) ≥ r = |I|.

If r > Δ(G), then ∪i∈ISi = {1, 2, . . . , k}. Because if a color say i0, 1 ≤ i0 ≤ k,

does not appear in any set Si, i ∈ I, then each vertex vi, i ∈ I, has a neighbor

say ui of color i0 in the row containing vi. Since all of the vertices ui have the

same color, they are in different columns. Hence we must have r = |I| ≤ Δ(G),

which is a contradiction. Therefore

| ∪i∈I Si| = k ≥ |I|.

So the coloring of each column can be extended and the proof is completed. �

Proposition 2. For every two graphs G and H, if graph H ′ is obtained by

replacing one of the edges of H with a path of length 3, then ϕ(G�H ′) ≥ ϕ(G�H).

Proof. Let e = xy be an edge in H and H ′ be obtained by replacing e with the

path xwzy. Moreover, assume that c is a b-coloring of graph G�H by ϕ(G�H)

colors. We define a b-coloring c′ of graph G�H ′ as follows. We color the vertices

in the columns corresponding to the vertices w and z in H ′ the same as the color

of vertices in the columns y and x in the coloring c, respectively. Finally we color

the rest of the vertices the same as the coloring c. It is easy to see that c′ is a

proper coloring and the b-dominating system in c is a b-dominating system in c′.

�

Corollary 2. For every positive integers m, n,

ϕ(Km�Cn+2) ≥ ϕ(Km�Cn) and ϕ(Km�Pn+2) ≥ ϕ(Km�Cn).
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Proof. Let ϕ(Km�Cn) = k. The graph Cn+2 is obtained by replacing one edge

e = xy in Cn by the path xwzy. So by Proposition 2, there is a b-coloring c of

graph Km�Cn+2 by k colors. Furthermore by the proof of Proposition 2, we see

that there is no b-dominating vertex in the columns corresponding to the vertices

w and z in the coloring c. Thus c is also a b-coloring of graph Km�Pn+2, where

Pn+2 is obtained by deleting the edge wz in Cn+2. �

3 b-chromatic number of graph Km�Cn

In this section we determine the exact value of ϕ(Km�Cn). We know that

χ(Km�Cn) = m and Δ(Km�Cn) = m + 1. Therefore by (1),

m ≤ ϕ(Km�Cn) ≤ m + 2. (2)

To prove our main theorem in this section, we need the following lemma.

Lemma 2. If c is a b-coloring of graph Km�Cn by k colors and S is a b-

dominating system in c, such that:

(i) there is one b-dominating vertex, say (r, s), r �= m, in a color class x, such

that the vertices (r, s) and (r, s ± 1) are not in S,

(ii) row m have no vertex in S,

(iii) when n is odd, c(m, s − 1) �= x.

Then ϕ(Km+1�Cn) ≥ k + 1.

Proof. Without loss of generality we assume that (r, s) = (1, 1). We present a

b-coloring c′ of graph Km+1�Cn by k + 1 colors as follows:

c′(i, j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x if (i, j) = (m + 1, 1),
k + 1 if (i, j) = (1, 1),
k + 1 if (i, j) = (m + 1, 2t), 1 ≤ t ≤ �n

2
	,

c(m, 2t − 1) if (i, j) = (m + 1, 2t − 1), 2 ≤ t ≤ 
n
2
�,

k + 1 if (i, j) = (m, 2t − 1), 2 ≤ t ≤ 
n
2
�,

c(i, j) otherwise.

From the definition of c′ and the property (iii) it is easy to see that c′ is a proper

coloring. Moreover, because of the properties (i), (ii) and since in coloring c′ each
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column has a vertex with color k + 1, every vertex in S is a b-dominating vertex

in c′. Also the vertex (1, 1) is a b-dominating vertex with color k + 1. Therefore

c′ is a b-dominating coloring by k + 1 colors. �

Theorem 1. For positive integers m, n ≥ 4:

ϕ(Km�Cn) =

{
m if m ≥ 2n,
m + 1 if m = 2n − 1,
m + 2 if m ≤ 2n − 2.

Proof. Assume m ≥ 2n. By Corollary 1, ϕ(Km�Cn) ≤ 2n. Hence by (2), we

have ϕ(Km�Cn) = m.

Now let m = 2n− 1, by Corollary 1, ϕ(Km�Cn) ≤ 2n = m+1. To prove the

equality we present a b-coloring of graph Km�Cn by m + 1 colors.

Consider an (m + 1) × n array and fill some of the entries of this array as

follows. We denote this partial proper coloring by c. All second components of

entries are modulo n, 1 ≤ j ≤ n, 1 ≤ k ≤ �n
2
	 and r = 0, 1.

c(2
 j
2
� − r, j) = 2j − r,

c(2k, 2k − 2) = 4k − 1, c(2k, 2k + 1) = 4k − 3,

c(m + 1, 2k − r) = 4k + 2r − 3.

If n is odd, then we also define

c(m + 1, n) = c(n, n − 1) = c(n + 1, 1) = 4.

In Figure 1, this array with the filled entries for n = 4 is shown.

It is not hard to see that, this array with some filled entries is a partial proper

coloring of graph Km+1�Cn, which each column has three filled entries. Since

m = 2n − 1 ≥ 7, every column has at least 4 uncolored vertices. Hence by

Lemma 1, c can be extended to a proper coloring of graph Km+1�Cn by m + 1

colors. Now to obtain the desired coloring, we delete the last row. Note that in

this coloring of graph Km�Cn, each column has exactly one missing color. The

set of vertices { (2
j/2� − r, j) | 1 ≤ j ≤ n, r = 0, 1} is a b-dominating system.
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�1 �3
�2 �4 1 3

�5 �7
5 7 �6 �8

3 1 7 5

Figure 1: A partial proper coloring of graph K8�C4.

Because for 1 ≤ k ≤ �n
2
	, the missing color of column 2k is 4k − 3 which is the

color of vertices (2k, 2k + 1) and (2k − 1, 2k − 1) and the missing color of column

2k − 1 is 4k − 1 which is the color of vertices (2k, 2k − 2) and (2k − 1, 2k).

Now assume 9 ≤ m ≤ 2n − 2; by (2), ϕ(Km�Cn) ≤ m + 2. To show the

equality, we present a b-coloring of graph Km�Cn by m + 2 colors. Consider an

(m + 2)× n array and fill some of the entries of this array as follows. We denote

this partial proper coloring by c. All second components of entries are modulo n

and the values are modulo m + 2, 1 ≤ j ≤ 
m/2�+ 1, 1 ≤ k ≤ 
m
4
� and r = 0, 1.

c(2
 j
2
� − r, j) = 2j − r,

c(2k − r, 2k − 2) = 4k + r − 1, c(2k − r, 2k + 1) = 4k + r − 3,

c(m + 1, 2k − r) = 4k + 2r − 3, c(m + 2, 2k − r) = 4k + 2r − 2.

If m ≡ 0, 3 (mod 4), then we also define

c(
m/2� + 2 − r, 
m/2�) = 6 − r,

c(
m/2� + 2 − r, 
m/2� + 2) = 5 + r,

c(m + 1 + r, 
m/2� + 1) = 6 − r.

In Figure 2, this array with the filled entries for m = 9 and n = 6 is shown.

It is not hard to see that, this array with some filled entries is a partial proper

coloring of graph Km+2�Cn, which each column has four filled entries. Since

m ≥ 9, every column has at least 4 uncolored vertices. Hence by Lemma 1, c can

be extended to a proper coloring of graph Km+2�Cn by m + 2 colors. Now to
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�1 �3 2 4

�2 �4 1 3

8 �5 �7 6

7 �6 �8 5

10 1 �9 �11

9 11 �10 �1

3 1 7 5 11 9

4 2 8 6 1 10

Figure 2: A partial proper coloring of graph K11�C6.

obtain the desired coloring, we delete the last two rows. Note that in this coloring

of graph Km�Cn, each column has exactly two missing colors. Similarly, it is not

hard to see that the set of vertices { (2
j/2�− r, j) | 1 ≤ j ≤ 
m/2�+1, r = 0, 1}
is a b-dominating system. Because for 1 ≤ k ≤ 
m

4
�, the missing colors of column

2k are 4k−3 and 4k−2, while we have c(2k, 2k+1) = c(2k−1, 2k−1) = 4k−3 and

c(2k−1, 2k +1) = c(2k, 2k−1) = 4k−2. Moreover, the missing colors of column

2k − 1 are 4k − 1 and 4k, while we have c(2k, 2k − 2) = c(2k − 1, 2k) = 4k − 1

and c(2k − 1, 2k − 2) = c(2k, 2k) = 4k.

Now assume 4 ≤ m ≤ 8 and m ≤ 2n − 2. In Figure 3 we provide a b-

coloring of graphs K4�Cn, n = 4, 5 and K7�Cn, n = 5, 6. In these colorings the

b-dominating system, S is the set of circled vertices. Then we apply Lemma 2

for the given coloring of K4�C4 twice, first for (r, s) = (3, 4) and second for

(r, s) = (2, 3). Also, we apply that lemma for the given coloring of graph K4�C5,

twice, first for (r, s) = (3, 4) and second for (r, s) = (3, 4). Thus we obtain the

desired b-colorings of graphs Km�Cn, m = 5, 6, n = 4, 5. Moreover, we apply

Lemma 2 for the given colorings of graphs K7�C5 and K7�C6 for (r, s) = (6, 5)

and obtain the desired b-colorings of graphs K8�Cn, n = 5, 6. By Corollary 2,

to obtain a b-coloring of graph Km�Cn, n ≥ t, it is enough to have a b-coloring

of graphs Km�Ct and Km�Ct+1. Therefore, from the b-coloring obtained above

we have the desired b-coloring of graphs Km�Cn, 4 ≤ m ≤ 9 and m ≤ 2n− 2. �
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�1 �3 �5 �6
�2 6 2 3

5 �4 1 4

4 2 4 2

�1 �3 �5 2 �6
�2 6 4 6 3

5 �4 1 5 4

4 2 6 3 5

�3 2 5 �9 �1
�4 1 4 8 2

7 �5 9 4 8

6 3 �8 6 7

8 4 1 �2 5

9 �6 �7 3 4

5 8 2 7 6

�1 �3 2 3 7 4

�2 �4 1 4 8 3

7 8 �5 �7 6 9

9 7 �6 �8 5 8

5 9 4 1 �9 2

6 5 9 2 3 1

8 6 3 9 4 7

Figure 3: A b-coloring of graphs K4�Cn, n = 4, 5 and K7�Cn, n = 5, 6.

4 b-chromatic number of graph Km�Pn

In this section, by using the results of Section 2, we determine the exact value of

ϕ(Km�Pn). We know that χ(Km�Pn) = m and Δ(Km�Pn) = m+1. Therefore

by (1),

m ≤ ϕ(Km�Pn) ≤ m + 2. (3)

Theorem 2. For positive integers m, n ≥ 4:

ϕ(Km�Pn) =

{
m if m ≥ 2n − 2,
m + 1 if 2n − 5 ≤ m ≤ 2n − 3,
m + 2 if m ≤ 2n − 6.

Proof. Assume m ≥ 2n − 2. By Corollary 1, ϕ(Km�Pn) ≤ 2(n − 1). Hence

by (3), ϕ(Km�Pn) = m.

If ϕ(Km�Pn) = m + 2, then there is not any b-dominating vertex in the first

and the last columns of graph Km�Pn, because the vertices in the first and the

last columns are of degree m. Furthermore, by Proposition 1, the other n − 2
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columns each contains at most two b-dominating vertices. Therefore, m + 2 =

ϕ(Km�Pn) ≤ 2(n − 2). Hence for m ≥ 2n − 5, we have ϕ(Km�Pn) ≤ m + 1.

Now let 2n − 5 ≤ m ≤ 2n − 3, we present a b-coloring of graph Km�Pn by

m + 1 colors. We consider two cases.

Case 1. m = 2n − 3.

We define a coloring c : V (Km�Pn) → {1, 2, . . . , m + 1} by:

c(i, j) =

⎧⎪⎨
⎪⎩

m − 1 if (i, j) = (m, 1),
m + 1 if (i, j) = (3j − 4, j), 1 ≤ j ≤ n − 1,
m + 1 if (i, j) = (3n − 6, n),
i + j − 1 (mod m) otherwise.

It is not hard to see that the above assignment is a proper coloring of graph

Km�Pn. In fact this assignment presents a partial circular latin rectangle with

the rest entries filled as above.

The set S = {(m−1, 1), (3n−5, n), (3j−5, j), (3j−3, j) | 2 ≤ j ≤ n−1} (the

summations are modulo m) is a b-dominating system. Obviously, each vertex

dominates m − 1 neighbors on its column, which are in different color classes.

So for a vertex to be a b-dominating vertex it is enough to dominate a vertex

with the color which is missed in its column. The missing color in column j,

2 ≤ j ≤ n − 1 is 4j − 5, in column 1 is m and in column n is 4n − 7. Moreover,

we have c(m− 1, 2) = m, c(3n− 5, n− 1) = 4n− 7, c(3j − 5, j + 1) = 4j − 5, and

c(3j − 3, j − 1) = 4j − 5. Therefore, the set S is b-dominating system of colors

{1, 2, . . . , m + 1}. In Figure 5(a), this coloring is shown for m = 5, where the

circled vertices are b-dominating vertices.

Now let m = 2n−5, consider a b-coloring of graph Km�Pn−1 by m+1 colors

as above. We add a column and color it the same as column 1. This yields a

b-coloring of graph Km�Pn by m + 1 colors.

Case 2. m = 2n − 4.

As illustrated in Figure 4, ϕ(K4�P4) = 5, the b-dominating vertices are

circled.
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�5 2 5 4

1 �3 �4 1

3 5 1 2

4 �1 �2 3

Figure 4: A b-coloring of graph K4�P4 by 5 colors.

Assume n ≥ 5, we define the coloring c : V (Km�Pn) → {1, 2, . . . , m + 1} by:

c(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m − 1 if (i, j) = (m, 1),
m + 1 if (i, j) = (3j − 4, j), 1 ≤ j ≤ 
n

2
�,

m + 1 if (i, j) = (3j − 5, j), 
n
2
� + 1 ≤ j ≤ n − 1,

m + 1 if (i, j) = (3n − 7, n),
i + j − 1 (mod m) otherwise.

It is not hard to see that, the assignment above is a proper coloring of graph

Km�Pn. Similar to Case 1, it can be easily checked that the set {(m−1, 1), (3n−
6, n), (3j − 5, j), (3j − 3, j), (i, 3i − 6), (i, 3i − 4) | 
n

2
� + 1 ≤ i ≤ n − 1, 2 ≤ j ≤


n
2
�} (the summations in the first components are modulo m and in the second

components are modulo n) is a b-dominating system. In Figure 5(b) this coloring

is shown for m = 6, which the circled vertices are b-dominating vertices.

1 �2 �3 6

2 6 4 �5
3 �4 5 1

�6 5 �1 2

4 1 6 3

1 �2 3 7 5

2 7 4 �5 7

3 �4 5 6 �1
4 5 �6 1 2

�7 6 7 2 3

5 1 �2 �3 4

(a) (b)

Figure 5: A b-coloring of graphs K5�P4 and K6�P5 by 6 and 7 colors.

Now assume m ≤ 2n−6, and let n′ = n−2. Since m ≤ 2n′−2, by Theorem 1,

ϕ(Km�Cn′) = m + 2, n′ ≥ 4. Hence by Corollary 2, ϕ(Km�Pn) ≥ m + 2.

Therefore by (3), ϕ(Km�Pn) = m + 2, for n ≥ 6.

For n = 5 a b-coloring of graph Km�Pn is shown in Figure 6, the b-dominating

vertices are circled. �
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5 �1 6 4 6

6 �2 �5 �3 1

4 3 �4 2 4

1 4 1 �6 5

Figure 6: A b-coloring of graph K4�P5 by 6 colors.

5 b-chromatic number of graph Kn�Kn

We know that χ(Kn�Kn) = n and Δ(Kn�Kn) = 2n − 2. So by (1), n ≤
ϕ(Kn�Kn) ≤ 2n − 1. In this section we improve these bounds and prove that

2n−3 ≤ ϕ(Kn�Kn) ≤ 2n−2. Finally we provide a conjecture that ϕ(Kn�Kn) =

2n − 3, n ≥ 5.

Lemma 3. Let c be a b-coloring of graph Kn�Kn by 2n−1 colors. If two vertices

(i, j) and (i, t) are b-dominating vertices in the b-coloring c, then in columns j

and t there are no other b-dominating vertices.

Proof. Let c be a b-coloring of graph Kn�Kn by 2n − 1 colors. It is obvious

that if a vertex (x, y) is a b-dominating vertex in the b-coloring c, then all its

2n − 2 neighbors must have different colors. So the colors of the vertices in the

row x and the column y are different. Now, assume to the contrary that the

vertices (i, j), (i, t) and (i′, j), i′ �= i, are b-dominating vertices. Since the vertex

(i, t) is a b-dominating vertex, the vertices in row i and column t all have different

colors. Therefore, if c(i′, t) = a, then no vertex in row i has color a. On the other

hand the vertex (i, j) is a b-dominating vertex, hence in column j we must have a

vertex with color a. Now, in both row i′ and column j we have vertices by color

a. It contradicts our assumption that the vertex (i′, j) is a b-dominating vertex.

By the same reason the vertex (i′, t), for i′ �= i, is not b-dominating vertex. �

Theorem 3. For every positive integer n ≥ 2, we have

ϕ(Kn�Kn) ≤ 2n − 2.

Proof. We know that ϕ(Kn�Kn) ≤ 2n− 1. Let ϕ(Kn�Kn) = 2n− 1 and c be

a b-coloring by 2n − 1 colors. Without loss of generality we assume that rows 1
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to r each has at least two b-dominating vertices and rows r + 1 to n each has at

most one b-dominating vertex. Moreover, without loss of generality, we assume

that the b-dominating vertices in the first r rows are in the first s columns.

By Lemma 3, in each column j, 1 ≤ j ≤ s, there is only one b-dominating

vertex. If r = 0 or s = n, then we have at most n b-dominating vertices which

is a contradiction. The size of the b-dominating system in coloring c is at most

s + (n− r). Now if r > 0 and s < n, then the number of b-dominating vertices is

at most s + (n− r) ≤ 2n− 1− r < 2n− 1 which also contradicts our assumption.

�

Theorem 4. For every positive integer n ≥ 5, we have

ϕ(Kn�Kn) ≥ 2n − 3.

Proof. We present a b-coloring c by 2n − 3 colors, for two cases n odd and n

even. First, we define a function f : N → Z by:

f(x) =

{
x x is odd,
x − 2 x is even.

Case 1. n is odd.

In this case we define the assignment c : V (Kn�Kn) → N by:

c((i, j)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i + j − 1 (mod n − 1) i ≤ j ≤ n − i − 1,
f(i + j) (mod n − 1) n − i ≤ j ≤ n − 2, i ≤ j,
(i + j − 2 (mod n − 2)) + (n − 1) j < i ≤ n − 1,

(i, j) �= (n − 1, n − 2)
n − 3 (i, j) = (n − 1, n − 2).

For columns n − 1, n and row n, the assignment c is as follows.

c((i, n − 1)) =

{
2i − 2 (mod n − 1) 1 ≤ i ≤ n−1

2
,

2i − 1 (mod n − 1) n+1
2

≤ i ≤ n − 2,
2n − 4 i = n − 1.

c((i, n)) =

{
(2i − 2 (mod n − 2)) + (n − 1) i odd, i ≤ n − 2,
i − 2 (mod n − 1) i even, i ≤ n − 2,
n − 2 i = n − 1.
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c((n, j)) =

⎧⎪⎨
⎪⎩

j − 1 (mod n − 1) j odd, j ≤ n − 3,
(2j − 2 (mod n − 2)) + (n − 1) j even,
2n − 5 j = n − 2,
1 j = n.

The assignment c is a b-coloring and the set S = {(i, i), (j + 1, j) | 1 ≤ i ≤
n − 1, 1 ≤ j ≤ n − 2} is a b-dominating system. Because the vertices in S all

have different colors and for each vertex in S the colors in its row and columns

all have different colors except two entries. As an example such a coloring for

n = 7 is illustrated in Figure 7, the b-dominating vertices are circled.

�1 2 3 4 5 6 11

�7 �3 4 5 1 2 6

8 �9 �5 1 6 4 10

9 10 �11 �6 3 1 2

10 11 7 �8 �2 3 9

11 7 8 9 �4 �10 5

6 8 2 7 9 11 1

Figure 7: A b-coloring of graphs K7�K7 by 11 colors.

Case 2. n is even.

In this case we define the assignment c : V (Kn�Kn) → N by:

c((i, j)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i + j − 2 (mod n − 2) i + 1 ≤ j ≤ n − i − 1,
f(i + j − 1) (mod n − 2) n − i ≤ j ≤ n − 2, i + 1 ≤ j,
(i + j − 1 (mod n − 1)) + (n − 2) j ≤ i ≤ n − 1,

(i, j) �= (n − 1, n − 2)
n − 4 (i, j) = (n − 1, n − 2).

For columns n − 1, n and row n, the assignment c is as follows.

c((i, n − 1)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2i − 2 (mod n − 2) 1 ≤ i ≤ n−2
2

,
2i − 1 (mod n − 2) n

2
≤ i ≤ n − 3,

2n − 5 i = n − 2,
2n − 4 i = n − 1,
n − 3 i = n.
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c((i, n)) =

⎧⎪⎨
⎪⎩

(2i (mod n − 1)) + (n − 2) i odd, i ≤ n − 2,
i − 2 (mod n − 2) i even, i ≤ n − 2,
n − 3 i = n − 1,
1 i = n.

c((n, j)) =

⎧⎪⎨
⎪⎩

(2j − 2 (mod n − 1)) + (n − 2) j odd, 3 ≤ j ≤ n − 3,
j − 2 (mod n − 2) j even, j ≤ n − 3
n − 4 j = 1,
2n − 5 j = n − 2.

The assignment c is a b-coloring and the set S = {(i, i), (j − 1, j) | 1 ≤ i ≤
n − 1, 2 ≤ j ≤ n − 2} ∪ {(n − 1, n − 2)} is b-dominating system. Because the

vertices in S all have different colors and for each vertex in S the colors in its row

and columns all have different colors except two entries. As an example such a

coloring for n = 8 is illustrated in Figure 8, the b-dominating vertices are circled.

�

�7 �1 2 3 4 5 6 8

8 �9 �3 4 5 1 2 6

9 10 �11 �5 1 6 4 12

10 11 12 �13 �6 3 1 2

11 12 13 7 �8 �2 3 9

12 13 7 8 9 �10 11 4

13 7 8 9 10 �4 �12 5

4 6 10 2 7 11 5 1

Figure 8: A b-coloring of graphs K8�K8 by 13 colors.

Remark. For n = 3 the only way to have a b-coloring by 4 colors is Fig-

ure 9(a), with the circled vertices as b-dominating vertices; which is impossible,

so ϕ(K3�K3) = 3. For n = 4 there is a b-coloring of graph K4�K4 by 2n−2 = 6

colors, see Figure 9(b).

Finally, we propose the following conjecture.

Conjecture 1. For every positive integer n ≥ 5, ϕ(Kn�Kn) = 2n − 3.
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�1 �2 3

�4 �3 1

2 4 ?

�1 �2 3 4

�5 4 1 2

6 5 �4 �3
3 �6 2 1

(a) (b)

Figure 9: A partial b-coloring of graphs K3�K3 and K4�K4.
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