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Abstract

A b-coloring of a graph G by k colors is a proper k-coloring of
the vertices of G such that in each color class there exists a vertex
having neighbors in all the other k — 1 color classes. The b-chromatic
number ¢(G) of a graph G is the maximum k for which G has a
b-coloring by k colors. This concept was introduced by R.W. Irving
and D.F. Manlove in 1999. In this paper we study the b-chromatic
numbers of the cartesian products of paths and cycles with complete
graphs and the cartesian product of two complete graphs.
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1 Introduction

Let G be a graph without loops and multiple edges with vertex set V(G) and edge
set E(G). A proper k-coloring of graph G is a function ¢ defined on the V(G),
onto a set of colors C' = {1,2,...,k} such that any two adjacent vertices have
different colors. In fact, for every i, 1 <14 < k, the set ¢~ ({i}) is an independent
set of vertices which is called a color class. The minimum cardinality k for which

G has a proper k-coloring is the chromatic number X (G) of G.

A b-coloring of a graph G by k colors is a proper k-coloring of the vertices of
G such that in each color class i there exists a vertex x; having neighbors in all
the other k — 1 color classes. We will call such a vertex x;, a b-dominating vertex
and the set of vertices {z1,z2,..., 2k} a b-dominating system. The b-chromatic

number ¢(G) of a graph G is the maximum k for which G has a b-coloring by



k colors. The b-chromatic number was introduced by R.W. Irving and D.F.
Manlove in [2]. They proved that determining ¢(G) is NP-hard for general cases,

but it is polynomial for trees. An immediate and useful bounds for ¢(G) is:

X(G) < ¢(G) <AG) +1, (1)
where A(G) is the maximum degree of vertices in G.

The cartesian product of two graphs G1 and G2, denoted by G10Go, is a
simple graph with V(G1) x V(G2) as its vertex set and two vertices (u1,v1) and
(uz2, v2) are adjacent in G1OG> if and only if either w1 = w2 and v1, v2 are adjacent
in Go, or u1, uz are adjacent in G1 and v1 = v2. In the sequel, where |V (G1)| = m
and |V(G2)| = n, we consider the vertex set of the graph G10G2, as an m X n
array in which the entry (i,5) corresponds to the vertex (i,j), ¢ € V(G1) and
j € V(G2), and each column induces a copy of graph G1 and each row induces
a copy of graph Ga. In Section 3, where G2 = C,, the neighbors of entry (i, j)
in the row ¢ are entries (i,7 £ 1). In Section 4, where G2 = P,, the neighbors
of entry (i,7) in the row ¢ are entries (7,7 +1),for 2<j <n—2and for j =1
and j = n are (4,2) and (i,7 — 1), respectively. So through this paper all first
components of entries are modulo |V (G1)| = m and all second components of

entries are modulo |V (Gz)| = n.

The b-chromatic number of the cartesian product of some graphs such as
K1 ,0K1,n, K1,,0P, P,0P,, C,OC); and C,OP; was studied in [3]. In this
paper we study the b-chromatic numbers of the cartesian products of paths and

cycles with complete graphs and the cartesian product of two complete graphs.

2 b-chromatic number of graph K,,0G

In this section we present some results on the b-chromatic number of the cartesian

product of the complete graphs with every graph G.

Proposition 1. Let ¢ be a b-coloring of graph K,,OG by ¢ colors, where ¢ > m,
and v € V(G). Then the column corresponding to the vertex v, contains at most

dega(v) b-dominating vertices.



Proof. By assumption ¢ > m, therefore in the b-coloring c there is at least
one color that does not appear in the column corresponding to the vertex v of
G, we denote this column by Kj,. On the other hand this missing color must
appear in the neighbors of all b-dominating vertices in K},, which are obviously
in different columns. Therefore the number of b-dominating vertices in K7, is at

most dega(v). O

If d = (dy,d2,...,dy) is the degree sequence of a graph G with n vertices,
then by Proposition 1, in graph K,,0G each column, denoted by KT(Y?7 1<i<n,
contains at most d; b-dominating vertices. Therefore, every b-dominating system
of G contains at most Z?:l d; vertices. So we have the following upper bounds

for ¢(K,»OG) which improves the given upper bounds in [3].

Corollary 1. If d = (di,d2,...,dn) is the degree sequence of graph G with n

vertices and e edges, then

»(KmOG) < Zdi = 2e.

=1

Now we prove a lemma on completing a partial proper coloring of graph
K,,OG for every graph G. A partial proper coloring of a graph is an assignment
of colors to some vertices of GG, such that the adjacent vertices receive different

colors.

Let Si,...,Sn be some sets. A system of distinct representatives (SDR) for
these sets is an n-tuple (z1,...,z,) of elements with the properties that z; € S;
fori=1,...,n and x; # x; for i # j. It is a well known theorem that the family
of sets S; has an SDR if and only if it satisfies the Hall’s condition, which is for
every subset I C {1,2,...,n}, | Uicr Si| > |1, [1].

Lemma 1. Let G be a graph and m be a positive integer, which m > 2A(G). If
¢ is a partial proper coloring of graph K,,OG by m colors, such that each column
has no uncolored vertices or at least 2A(G) uncolored vertices, then ¢ can be

extended to a proper coloring of graph K,.,,OG by m colors.

Proof. In a partial proper coloring of graph K,,0G by m colors, consider a

column with k£ > 1 uncolored vertices v1,vs,...,vr, where by assumption k >



2A(G). Without loss of generality we denote k missing colors by 1,2,...,k. For
eachi=1,2,...,k, let S; be the set of colors that can be used to color the vertex
v;, properly, so S; C {1,2,...,k}. For extending this coloring to a proper coloring
of this column, it is enough to find an SDR for the family of sets S;, 1 < i < k.
For this purpose we show that the family of sets S;, 1 < i < k, satisfies the Hall’s
condition. Let I C {1,2,...,k}, which |I| =r.

If r < A(G), then for some ig € I we have

| Uier Si| 2 |Sip| 2 k= A(G) 2 A(G) =2 r =[],

If r > A(G), then U;erS; = {1,2, ..., k}. Because if a color say ig, 1 < ig < k,
does not appear in any set S;, ¢ € I, then each vertex v;, ¢ € I, has a neighbor
say u; of color i in the row containing v;. Since all of the vertices u; have the
same color, they are in different columns. Hence we must have r = |I| < A(G),

which is a contradiction. Therefore
| Uier Si| =k > |I].

So the coloring of each column can be extended and the proof is completed. 0O

Proposition 2. For every two graphs G and H, if graph H' is obtained by
replacing one of the edges of H with a path of length 3, then p(GOH') > o(GOH).

Proof. Let e = zy be an edge in H and H' be obtained by replacing e with the
path zwzy. Moreover, assume that c is a b-coloring of graph GOH by ¢(GOH)
colors. We define a b-coloring ¢’ of graph GOH' as follows. We color the vertices
in the columns corresponding to the vertices w and z in H' the same as the color
of vertices in the columns y and z in the coloring c, respectively. Finally we color
the rest of the vertices the same as the coloring c. It is easy to see that ¢’ is a
proper coloring and the b-dominating system in c is a b-dominating system in ¢’.

]

Corollary 2. For every positive integers m,n,

P(KmOCnht2) > o(KnOC,) and @(K,OPny2) > o(K,0OC,).



Proof. Let ¢(K,,,OC,) = k. The graph Cp42 is obtained by replacing one edge
e = zy in C, by the path zwzy. So by Proposition 2, there is a b-coloring ¢ of
graph K,,,0C, 42 by k colors. Furthermore by the proof of Proposition 2, we see
that there is no b-dominating vertex in the columns corresponding to the vertices
w and z in the coloring ¢. Thus c is also a b-coloring of graph K, 0P, 2, where

P42 is obtained by deleting the edge wz in Cpyo. O

3 b-chromatic number of graph K,,0C,

In this section we determine the exact value of ¢(K,,,0C,). We know that
X(K»OCy,) =m and A(K,,0C,) = m + 1. Therefore by (1),

m < p(K,O0C,) <m+ 2. (2)

To prove our main theorem in this section, we need the following lemma.

Lemma 2. If ¢ is a b-coloring of graph K,,OC, by k colors and S is a b-
dominating system in c, such that:

(i) there is one b-dominating vertex, say (r,s), r # m, in a color class x, such
that the vertices (r,s) and (r,s £ 1) are not in S,

(ii) row m have no vertex in S,

(iii) when n is odd, c(m,s — 1) # x.

Then o(Km+10C,) > k+ 1.

Proof. Without loss of generality we assume that (r,s) = (1,1). We present a
b-coloring ¢’ of graph K,,+10C, by k + 1 colors as follows:

x if (i,7)=(m+1,1),
k41 it (i,5) = (1,1),
cigy=d Bl if (4,5) = (m+1,2t), 1<t <|2],
’ c(m,2t =1) if (4,5)=(m+1,2t-1), 2<t < [5],
E+1 if (i,5) =(m,2t—-1), 2<t < [§],
c(i,7) otherwise.

From the definition of ¢’ and the property (iii) it is easy to see that ¢’ is a proper

coloring. Moreover, because of the properties (i), (ii) and since in coloring ¢’ each



column has a vertex with color k + 1, every vertex in S is a b-dominating vertex
in ¢’. Also the vertex (1,1) is a b-dominating vertex with color k + 1. Therefore

¢ is a b-dominating coloring by k -+ 1 colors. a

Theorem 1. For positive integers m,n > 4:

m if m > 2n,
P(KmOCrp) =< m+1 if m=2n-1,
m+2 if m<2n-—2.

Proof. Assume m > 2n. By Corollary 1, ¢(K,,0C,) < 2n. Hence by (2), we
have ¢(K,,OC,) = m.

Now let m = 2n — 1, by Corollary 1, ¢(K,,OCy) < 2n =m+ 1. To prove the
equality we present a b-coloring of graph K,,0C,, by m + 1 colors.

Consider an (m + 1) x n array and fill some of the entries of this array as
follows. We denote this partial proper coloring by c. All second components of

entries are modulon, 1 <j<n,1<k<[%] andr=0,1.

C(2|‘%-| _T7j) = 2j_r7
c(2k,2k — 2) =4k — 1, c(2k,2k + 1) = 4k — 3,
c(m+1,2k —r) = 4k 4 2r — 3.

If n is odd, then we also define
cm+1,n)=cn,n—1)=c(n+1,1) =4.

In Figure 1, this array with the filled entries for n = 4 is shown.

It is not hard to see that, this array with some filled entries is a partial proper
coloring of graph K,,+10C),, which each column has three filled entries. Since
m = 2n — 1 > 7, every column has at least 4 uncolored vertices. Hence by
Lemma 1, ¢ can be extended to a proper coloring of graph K,,+10C, by m + 1
colors. Now to obtain the desired coloring, we delete the last row. Note that in
this coloring of graph K,,,0C,, each column has exactly one missing color. The

set of vertices { (2[j/2] —r,j) | 1 <j < n,r = 0,1} is a b-dominating system.
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Figure 1: A partial proper coloring of graph KgOC,.

Because for 1 < k < | %, the missing color of column 2k is 4k — 3 which is the
color of vertices (2k,2k + 1) and (2k — 1,2k — 1) and the missing color of column
2k — 1 is 4k — 1 which is the color of vertices (2k, 2k — 2) and (2k — 1, 2k).

Now assume 9 < m < 2n — 2; by (2), ¢(K,»OC,) < m + 2. To show the
equality, we present a b-coloring of graph K,,,0C,, by m + 2 colors. Consider an
(m 4+ 2) x n array and fill some of the entries of this array as follows. We denote
this partial proper coloring by ¢. All second components of entries are modulo n
and the values are modulo m 42,1 <5< [m/2]+1,1<k<[2] andr=0,1.

6(2[%] _ij) :Qj_T,
c(2k —1r,2k—2)=4k+r—1, c(2k —r,2k+1) =4k +r — 3,
c(m+1,2k —r) =4k +2r — 3, c(m+ 2,2k —r) = 4k + 2r — 2.

If m=0,3 (mod 4), then we also define

c([m/2] +2—r,[m/2]) =6 —r,
c(f[m/21+2—r,[m/2]+2)=5+r,
ecm+1+r[m/2]4+1)=6—r.

In Figure 2, this array with the filled entries for m =9 and n = 6 is shown.

It is not hard to see that, this array with some filled entries is a partial proper
coloring of graph K,,120C),, which each column has four filled entries. Since
m > 9, every column has at least 4 uncolored vertices. Hence by Lemma 1, ¢ can

be extended to a proper coloring of graph K,,+20C,, by m + 2 colors. Now to
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Figure 2: A partial proper coloring of graph K1;0C5.

obtain the desired coloring, we delete the last two rows. Note that in this coloring
of graph K,,,0C,, each column has exactly two missing colors. Similarly, it is not
hard to see that the set of vertices { (2[j/2] —r,7) |1 <j < [m/2]+1,r=0,1}
is a b-dominating system. Because for 1 < k < [2t], the missing colors of column
2k are 4k —3 and 4k—2, while we have ¢(2k, 2k+1) = ¢(2k—1,2k—1) = 4k—3 and
c(2k—1,2k+1) = ¢(2k, 2k — 1) = 4k — 2. Moreover, the missing colors of column
2k — 1 are 4k — 1 and 4k, while we have ¢(2k,2k — 2) = ¢(2k — 1,2k) = 4k — 1
and c(2k — 1,2k — 2) = c(2k, 2k) = 4k.

Now assume 4 < m < 8 and m < 2n — 2. In Figure 3 we provide a b-
coloring of graphs K40C,,, n = 4,5 and K70C,,, n = 5,6. In these colorings the
b-dominating system, S is the set of circled vertices. Then we apply Lemma 2
for the given coloring of K4OC4 twice, first for (r,s) = (3,4) and second for
(r,s) = (2,3). Also, we apply that lemma for the given coloring of graph K,0Cs5,
twice, first for (r,s) = (3,4) and second for (r,s) = (3,4). Thus we obtain the
desired b-colorings of graphs K,,,0C,, m = 5,6, n = 4,5. Moreover, we apply
Lemma 2 for the given colorings of graphs K70OC5s and K70OCs for (r,s) = (6,5)
and obtain the desired b-colorings of graphs KsOC,, n = 5,6. By Corollary 2,
to obtain a b-coloring of graph K,,,0C,, n > t, it is enough to have a b-coloring
of graphs K,,,0C; and K,,0C;41. Therefore, from the b-coloring obtained above
we have the desired b-coloring of graphs K,,0C,,,4 <m <9and m <2n—2. O



0©)
() 6
s (D

=l )

WOt | O | N

0
©

1
2
9

5

4

9
1

=

0©
00

N N |0 [© (W

ENOORE
»boo@cn o oo [~

(o)
3
4
2

©)
2
8
7
5
4
6

O
@

©
=

Figure 3: A b-coloring of graphs K,0C,,, n =4,5 and K,0C,, n =5,6.
4 b-chromatic number of graph K,,0F,

In this section, by using the results of Section 2, we determine the exact value of
o(KnOP,). We know that X (K, OP,) = m and A(K,,,0P,) = m+1. Therefore
by (1),

m < p(KpnOP,) <m+ 2. (3)

Theorem 2. For positive integers m,n > 4:

m if m>2n-—2,
o(KnOP,) = m+1 if 2n—5<m <2n—3,
m+2 if m<2n-—6.

Proof. Assume m > 2n — 2. By Corollary 1, ¢(K,,0P,) < 2(n — 1). Hence
by (3), ¢(KmBPp) =m.

If p(K»OP,) = m+2, then there is not any b-dominating vertex in the first
and the last columns of graph K,,0PF,, because the vertices in the first and the

last columns are of degree m. Furthermore, by Proposition 1, the other n — 2



columns each contains at most two b-dominating vertices. Therefore, m + 2 =

P(KmOP,) < 2(n — 2). Hence for m > 2n — 5, we have p(K,,OP,) < m+ 1.

Now let 2n — 5 < m < 2n — 3, we present a b-coloring of graph K,,0P, by

m + 1 colors. We consider two cases.
Case 1. m = 2n — 3.

We define a coloring ¢ : V(K,,0P,) — {1,2,...,m + 1} by:

m—1 if (7’7]):(m71)7
. m+1 if (i,5)=(3j—4,7), 1<j<n-—1,
i) =93 mi1 if (i,7) = (3n — 6,7),
i+j—1 (modm) otherwise.

It is not hard to see that the above assignment is a proper coloring of graph
K,,OP,. In fact this assignment presents a partial circular latin rectangle with

the rest entries filled as above.

The set S = {(m—1,1),(3n—5,n),(35—5,7),(37—3,7) | 2 < j <n-—1} (the
summations are modulo m) is a b-dominating system. Obviously, each vertex
dominates m — 1 neighbors on its column, which are in different color classes.
So for a vertex to be a b-dominating vertex it is enough to dominate a vertex
with the color which is missed in its column. The missing color in column j,
2<j<n-—1is4j5—5, in column 1 is m and in column n is 4n — 7. Moreover,
we have c(m —1,2) =m, c(3n—5,n—1) =4n -7, ¢(3j — 5,7+ 1) =45 — 5, and
¢(3j — 3,7 — 1) = 45 — 5. Therefore, the set S is b-dominating system of colors
{1,2,...,m 4+ 1}. In Figure 5(a), this coloring is shown for m = 5, where the

circled vertices are b-dominating vertices.

Now let m = 2n — 5, consider a b-coloring of graph K,,0P,_1 by m+1 colors
as above. We add a column and color it the same as column 1. This yields a

b-coloring of graph K,, 0P, by m + 1 colors.
Case 2. m = 2n — 4.

As illustrated in Figure 4, o(K40P;) = 5, the b-dominating vertices are

circled.

10
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Assume n > 5, we define the coloring ¢ : V(K,,OP,) — {1,2,...,m+ 1} by:

m—1 if (ivj):(m71)7

m+1 it (i,5) = (37 —4,5), 1 <j<[5],
c(i,j) = m+1 it (i,5) = (37 —=5,7), [§]1+1<j<n—1,

m+1 it (i,5) = (3n = 7,n),

i+j7—1 (modm) otherwise.

It is not hard to see that, the assignment above is a proper coloring of graph
K,,OP,. Similar to Case 1, it can be easily checked that the set {(m—1,1), (3n—
6,1), (35 — 5,), (3 — 3,7), (1,3 — 6), (6,31 —4) | [2]+1<i<n—1,2<j<
[51} (the summations in the first components are modulo m and in the second
components are modulo n) is a b-dominating system. In Figure 5(b) this coloring

is shown for m = 6, which the circled vertices are b-dominating vertices.
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Figure 5: A b-coloring of graphs K5OP, and KgOPs by 6 and 7 colors.

Now assume m < 2n—6, and let n’ = n—2. Since m < 2n’ —2, by Theorem 1,
o(KnOC,) = m+ 2, n’ > 4. Hence by Corollary 2, ¢(K,OP,) > m + 2.
Therefore by (3), ¢(KmOP,) = m+ 2, for n > 6.

For n = 5 a b-coloring of graph K,,,0P, is shown in Figure 6, the b-dominating

vertices are circled. O

11
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Figure 6: A b-coloring of graph K4OP;5 by 6 colors.

5 Ob-chromatic number of graph K,0K,

We know that X(K,OK,) = n and A(K,O0K,) = 2n — 2. So by (1), n <
p(KpOK,) < 2n — 1. In this section we improve these bounds and prove that
2n—3 < p(K,0K,) < 2n—2. Finally we provide a conjecture that ¢(K,0K,) =
2n — 3, n > 5.

Lemma 3. Let ¢ be a b-coloring of graph K,0OK,, by 2n—1 colors. If two vertices
(i,7) and (i,t) are b-dominating vertices in the b-coloring ¢, then in columns j

and t there are no other b-dominating vertices.

Proof. Let ¢ be a b-coloring of graph K, 0K, by 2n — 1 colors. It is obvious
that if a vertex (x,y) is a b-dominating vertex in the b-coloring ¢, then all its
2n — 2 neighbors must have different colors. So the colors of the vertices in the
row x and the column y are different. Now, assume to the contrary that the
vertices (7,7), (4,t) and (¢',7), i’ # 4, are b-dominating vertices. Since the vertex
(i,t) is a b-dominating vertex, the vertices in row i and column ¢ all have different
colors. Therefore, if c(i’,t) = a, then no vertex in row i has color a. On the other
hand the vertex (i, 7) is a b-dominating vertex, hence in column j we must have a
vertex with color a. Now, in both row i’ and column j we have vertices by color
a. Tt contradicts our assumption that the vertex (i, j) is a b-dominating vertex.

By the same reason the vertex (i, t), for i’ # i, is not b-dominating vertex. O

Theorem 3. For every positive integer n > 2, we have

o(KpOK,) < 2n — 2.

Proof. We know that p(K,0K,) <2n—1. Let ¢(K,0K,) =2n—1 and ¢ be

a b-coloring by 2n — 1 colors. Without loss of generality we assume that rows 1

12



to r each has at least two b-dominating vertices and rows r + 1 to n each has at

most one b-dominating vertex. Moreover, without loss of generality, we assume

that the b-dominating vertices in the first r rows are in the first s columns.

By Lemma 3, in each column j, 1 < j < s, there is only one b-dominating

vertex. If r = 0 or s = n, then we have at most n b-dominating vertices which

is a contradiction. The size of the b-dominating system in coloring c is at most

s+ (n—r). Now if r > 0 and s < n, then the number of b-dominating vertices is

at most s+ (n—r) < 2n—1—r < 2n— 1 which also contradicts our assumption.

O

Theorem 4. For every positive integer n > 5, we have

e(K,O0K,) > 2n — 3.

Proof. We present a b-coloring ¢ by 2n — 3 colors, for two cases n odd and n

even. First, we define a function f : N — Z by:

x is even.

f(a:):{ §72  is odd,

Case 1. n is odd.

In this case we define the assignment ¢ : V(K,0K,) — N by:

c((i,5)) =

i+j—1 (modn-—1) 1<j<n—i-—1,
fi+4) (modn—1) n—1<j<n-—21<j
(i+7—2 (modn-—2)+(n—1) j<i<n-—1,

(i) £ (n— 1,0 —2)
n—3 (,5)=(n—1,n—2).

For columns n — 1, n and row n, the assignment c is as follows.

2n —4 1

2i—2 (modn-—1) 1<i<zzt
c((i,n—1)=4 2i—1 (modn—1) ntl <j<n—2,
1

c((i,n))

i—2 (modn—1) teven, i <n—2

{(21’—2 (mod n—2)) 4+ (n—1) itodd, it <n—2,
n—2 1=n—1.

13



j—1 (modn-—1) jodd, j<n-—3,

. 27—2 (modn-—2)+(n-—1 | even,
(=4 2 Pri gee
1 j=n.

The assignment c¢ is a b-coloring and the set S = {(4,4),(j +1,7) | 1 < <
n—11<j <n-—2}is a b-dominating system. Because the vertices in S all
have different colors and for each vertex in S the colors in its row and columns
all have different colors except two entries. As an example such a coloring for

n = 7 is illustrated in Figure 7, the b-dominating vertices are circled.

M 2]3|4]5]6 |1
DG a|s5]1]2 6
s ()] 1]6] 4|10
9 10| @[3 ] 1|2
wo|[1n] 7 |®G) 3|9
7] s |9|( 5
6 s |2 7|01

Figure 7: A b-coloring of graphs K7;OK7 by 11 colors.

Case 2. n is even.

In this case we define the assignment ¢ : V(K,0K,) — N by:

i+j—2 (modn—2) i+1<j<n—-i—-1,
fi+j—1) (modn —2) n—i<j<n—2i+1<j,
(i) ={ i+j—1 (modn—1)+(n-2 j<i<n-—1,
(ivj)7é(n717n72)
n—4 (4,j) =(n—1,n—2).

For columns n — 1, n and row n, the assignment c is as follows.

2i —2 (mod n —2) 1<i< 2
2t—1 (modn—2) 5 <i<n-—3,

c((i,n—1))=4¢ 2n—-5 i=n-—2,
2n—4 i=n—1,
n—3 1 =n.
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(26 (modn-—1))+ (n—2) iodd, i <n—2,

. i—2 (modn—2 ieven, 1 <n— 2,
AGm)=9 3 ( ) i=n-1,
1 i =n.

(2j —2 (modn—1))+ (n—2) jodd, 3<j<n-3,

v _ ) 7—2 (modn-—2) jeven, j<n-—3
C((’I’L,]))— n—4 ]:17
2n -5 j=n-—2

The assignment c¢ is a b-coloring and the set S = {(4,4),(j — 1,7) | 1 < <
n—1,2<j<n-2}U{(n—1,n—2)} is b-dominating system. Because the
vertices in S all have different colors and for each vertex in S the colors in its row
and columns all have different colors except two entries. As an example such a
coloring for n = 8 is illustrated in Figure 8, the b-dominating vertices are circled.

]

D] 2|3 ]4a]5]|6]|s
s (D) 4|51 ] 26
9 |10 |@|G)| 1] 6| 4|12
011206 3|1 ]2
1 12] 13 7 (2] 3|9
1213 7|8 |9 1 | 4
13078 |9 |10 12| 5
1610 2 7115 |1

Figure 8: A b-coloring of graphs KsOKg by 13 colors.

Remark. For n = 3 the only way to have a b-coloring by 4 colors is Fig-
ure 9(a), with the circled vertices as b-dominating vertices; which is impossible,
so o(K30OK3) = 3. For n = 4 there is a b-coloring of graph K,OK4 by 2n—2 =16

colors, see Figure 9(b).

Finally, we propose the following conjecture.

Conjecture 1. For every positive integer n > 5, o(K,0K,) = 2n — 3.
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Figure 9: A partial b-coloring of graphs K3OK3 and K4OK,.
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