# On randomly $k$-dimensional graphs 

Mohsen Jannesari, Behnaz Omoomi*<br>Department of Mathematical Sciences, Isfahan University of Technology, 84156-83111, Isfahan, Iran

## ARTICLE INFO

## Article history:

Received 15 January 2011
Received in revised form 14 March 2011
Accepted 16 March 2011

## Keywords:

Resolving set
Metric dimension
Basis
Resolving number
Basis number


#### Abstract

For an ordered set $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ of vertices and a vertex $v$ in a connected graph $G$, the ordered $k$-vector $r(v \mid W):=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)$ is called the (metric) representation of $v$ with respect to $W$, where $d(x, y)$ is the distance between the vertices $x$ and $y$. The set $W$ is called a resolving set for $G$ if distinct vertices of $G$ have distinct representations with respect to $W$. A resolving set for $G$ with minimum cardinality is called a basis of $G$ and its cardinality is the metric dimension of $G$. A connected graph $G$ is called a randomly $k$-dimensional graph if each $k$-set of vertices of $G$ is a basis of $G$. In this work, we study randomly $k$-dimensional graphs and provide some properties of these graphs.


© 2011 Elsevier Ltd. All rights reserved.

## 1. Introduction

We refer the reader to [1] for graphical notation and terminology not described in this work. Throughout the work, $G=(V, E)$ is a finite, simple, and connected graph. The distance between two vertices $u$ and $v$, denoted by $d(u, v)$, is the length of a shortest path between $u$ and $v$ in G. Also, $N(v)$ is the set of all neighbors of vertex $v$ and $\operatorname{deg}(v)=|N(v)|$ is the degree of vertex $v$. The maximum degree of the graph $G, \Delta(G)$, is $\max _{v \in V(G)} \operatorname{deg}(v)$. We mean by $\omega(G)$ the number of vertices in a maximum clique in $G$. For a subset $S$ of $V(G), G \backslash S$ is the subgraph $\langle V(G) \backslash S\rangle$ induced by $V(G) \backslash S$ in $G$. A set $S \subseteq V(G)$ is a separating set in $G$ if $G \backslash S$ has at least two connected components. We call a vertex $v \in V(G)$ a cut vertex of $G$ if $\{v\}$ is a separating set in $G$. If $G \neq K_{n}$ has no cut vertex, then $G$ is called a 2-connected graph. $u \sim v$ and $u \nsim v$ denote the adjacency and non-adjacency relations between $u$ and $v$, respectively. The symbol $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ represents a path of order $n, P_{n}$.

For an ordered set $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\} \subseteq V(G)$ and a vertex $v$ of $G$, the $k$-vector

$$
r(v \mid W):=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)
$$

is called the (metric) representation of $v$ with respect to $W$. The set $W$ is called a resolving set for $G$ if distinct vertices have different representations. A resolving set for $G$ with minimum cardinality is called a basis of $G$, and its cardinality is the metric dimension of $G$, denoted by $\beta(G)$.

For example, the graphs $G$ and $H$ in Fig. 1 have the basis $B=\left\{v_{1}, v_{2}\right\}$ and hence $\beta(G)=\beta(H)=2$. The representations of vertices of $G$ with respect to $B$ are

$$
r\left(v_{1} \mid B\right)=(0,1), \quad r\left(v_{2} \mid B\right)=(1,0), \quad r\left(v_{3} \mid B\right)=(2,1), \quad r\left(v_{4} \mid B\right)=(2,2), \quad r\left(v_{5} \mid B\right)=(1,2)
$$

Also, the representations of vertices of $H$ with respect to $B$ are

$$
r\left(v_{1} \mid B\right)=(0,1), \quad r\left(v_{2} \mid B\right)=(1,0), \quad r\left(v_{3} \mid B\right)=(1,1), \quad r\left(v_{4} \mid B\right)=(2,2), \quad r\left(v_{5} \mid B\right)=(1,2)
$$

[^0]

Fig. 1. $\operatorname{bas}(G)=\beta(G)=\operatorname{res}(G)$ and $\operatorname{bas}(H) \neq \beta(H) \neq \operatorname{res}(H)$.

To see whether a given set $W$ is a resolving set for $G$, it is sufficient to look at the representations of vertices in $V(G) \backslash W$, because $w \in W$ is the unique vertex of $G$ for which $d(w, w)=0$. When $W$ is a resolving set for $G$, we say that $W$ resolves $G$. In general, we say that an ordered set $W$ resolves a set $T$ of vertices in $G$ if the representations of vertices in $T$ are distinct with respect to $W$. When $W=\{x\}$, we say that vertex $x$ resolves $T$.

In [2], Slater introduced the idea of a resolving set and used a locating set and the location number for what we call a resolving set and the metric dimension, respectively. He described the usefulness of these concepts when working with US Sonar and Coast Guard Loran stations. Independently, Harary and Melter [3] discovered the concept of the location number as well and called it the metric dimension. For more results related to these concepts see [4-8]. The concept of a resolving set has various applications in diverse areas including coin weighing problems [9], network discovery and verification [10], robot navigation [7], the mastermind game [4], problems of pattern recognition and image processing [11], and combinatorial search and optimization [9].

The following simple result is very useful.
Observation 1 ([12]). Let $G$ be a graph and $u, v \in V(G)$ such that $N(v) \backslash\{u\}=N(u) \backslash\{v\}$. If $W$ resolves $G$, then $u$ or $v$ is in $W$.

It is obvious that for a graph $G$ of order $n, 1 \leq \beta(G) \leq n-1$.
Theorem A ([13]). Let G be a graph of order n. Then,
(i) $\beta(G)=1$ if and only if $G=P_{n}$,
(ii) $\beta(G)=n-1$ if and only if $G=K_{n}$.

The basis number, bas $(G)$, of $G$ is the maximum integer $r$ such that every $r$-set of vertices of $G$ is a subset of some basis of $G$. Also, the resolving number, res $(G)$, of $G$ is the minimum integer $k$ such that every $k$-set of vertices of $G$ is a resolving set for $G$. These parameters are introduced in [14,15], respectively. Clearly, if $G$ is a graph of order $n$, then $0 \leq \operatorname{bas}(G) \leq \beta(G)$ and $\beta(G) \leq \operatorname{res}(G) \leq n-1$. Chartrand et al. in [14] considered graphs $G$ with bas $(G)=\beta(G)$. They called these graphs randomly $k$-dimensional graphs, where $k=\beta(G)$. Obviously, bas $(G)=\beta(G)$ if and only if res $(G)=\beta(G)$. In other words, a randomly $k$-dimensional graph is a graph for which every $k$-set of its vertices is a basis. For example in graph $G$ of Fig. 1 , if $W$ is a set of two adjacent vertices, then the representations of vertices in $V(G) \backslash W$ with respect to $W$ are (1, 2), (2, 2), and (2, 1). Also, if $W$ is a set of two non-adjacent vertices, then the representations of vertices in $V(G) \backslash W$ with respect to $W$ are (1, 1), (1, 2), and $(2,1)$. Therefore, $G$ is a randomly two-dimensional graph. But, in graph $H$ of Fig. $1,\left\{v_{1}, v_{4}\right\}$ is not a resolving set; hence $H$ is not a randomly two-dimensional graph. Since $\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\}$, and $\left\{v_{4}, v_{5}\right\}$ are bases of $H$, bas $(H)=1$. Also, res $(H)=3$, because every 3 -set of $V(H)$ is a resolving set in $H$.

Obviously, $K_{1}$ and $K_{2}$ are the only randomly one-dimensional graphs. Chartrand et al. [14] proved that a graph $G$ is randomly two-dimensional if and only if $G$ is an odd cycle. In this work, we first characterize all graphs of order $n$ and resolving number 1 and $n-1$. Then, we provide some properties of randomly $k$-dimensional graphs.

## 2. The main results

We first characterize all graphs $G$ with $\operatorname{res}(G)=1$ and all graphs $G$ of order $n$ with $\operatorname{res}(G)=n-1$.
Theorem 1. Let $G$ be a graph of order n. Then,
(i) $\operatorname{res}(G)=1$ if and only if $G \in\left\{P_{1}, P_{2}\right\}$,
(ii) $\operatorname{res}(G)=n-1$ if and only if $N(v) \backslash\{u\}=N(u) \backslash\{v\}$, for some $u, v \in V(G)$.

Proof. (i) It is easy to see that for $G \in\left\{P_{1}, P_{2}\right\}, \operatorname{res}(G)=1$. Conversely, suppose that res $(G)=1$. Thus, $1 \leq \beta(G) \leq \operatorname{res}(G)=$ 1 and hence, $\beta(G)=1$. Therefore, by Theorem A, $G=P_{n}$. If $n \geq 3$, then $P_{n}$ has a vertex of degree 2 and this vertex does not resolve its neighbors. Thus, $\operatorname{res}(G) \geq 2$, which is a contradiction. Consequently, $n \leq 2$, that is $G \in\left\{P_{1}, P_{2}\right\}$.
(ii) Let $u, v \in V(G)$ be such that $N(v) \backslash\{u\}=N(u) \backslash\{v\}$. If $\operatorname{res}(G) \leq n-2$, then the set $V(G) \backslash\{u, v\}$ is a resolving set for $G$. But, by Observation 1 , every resolving set for $G$ contains at least one of the vertices $u$ and $v$. This contradiction implies
that $\operatorname{res}(G)=n-1$. Conversely, suppose that $\operatorname{res}(G)=n-1$. Thus, there exists a subset $T$ of $V(G)$ with cardinality $n-2$ such that $T$ is not a resolving set for $G$. Assume that $T=V(G) \backslash\{u, v\}$. If $N(u) \backslash\{v\} \neq N(v) \backslash\{u\}$, then there exists a vertex $w \in T$ which is adjacent to only one of the vertices $u$ and $v$ and hence, $d(u, w) \neq d(v, w)$. Since $w \in T, T$ resolves $G$, which is a contradiction. Therefore, $N(u) \backslash\{v\}=N(v) \backslash\{u\}$.

Corollary 1. If $G \neq K_{n}$ is a randomly $k$-dimensional graph, then for each pair of vertices $u, v \in V(G), N(v) \backslash\{u\} \neq N(u) \backslash\{v\}$.
Proof. If $N(v) \backslash\{u\}=N(u) \backslash\{v\}$ for some $u, v \in V(G)$, then by Theorem 1 , $\operatorname{res}(G)=n-1$, where $n$ is the order of $G$. Since $G$ is a randomly $k$-dimensional graph, $\beta(G)=\operatorname{res}(G)=n-1$. Therefore, by Theorem A, $G=K_{n}$, which is a contradiction. Hence, for each $u, v \in V(G), N(v) \backslash\{u\} \neq N(u) \backslash\{v\}$.

Lemma 1. If $G$ is a randomly $k$-dimensional graph with $k \geq 2$ and minimum degree $\delta$, then $\delta \geq 2$.
Proof. Suppose on the contrary that there exists a vertex $u \in V(G)$ with $\operatorname{deg}(u)=1$. Let $v$ be the unique neighbor of $u$ and $T \subseteq V(G)$ be a subset of $V(G)$ with $|T|=k$ and $u, v \in T$. Since $G$ is a randomly $k$-dimensional graph, $T \backslash\{v\}$ is not a resolving set for $G$. Thus, there exists a pair of vertices $x, y \in V(G)$ such that $d(x, v) \neq d(y, v)$ and $d(x, t)=d(y, t)$ for each $t \in T \backslash\{v\}$. Hence, $d(x, u)=d(y, u)$. Clearly, if $u \in\{x, y\}$, then $d(x, u) \neq d(y, u)$, which is a contradiction. Consequently, $u \notin\{x, y\}$. Therefore, $d(x, u)=d(x, v)+1$ and $d(y, u)=d(y, v)+1$. Thus, $d(x, v)=d(y, v)$. This contradiction implies that $\delta \geq 2$.

## Theorem 2. If $k \geq 2$, then every randomly $k$-dimensional graph is 2 -connected.

Proof. Suppose on the contrary that $u$ is a cut vertex in $G$. Let $G_{1}$ be a connected component of $G \backslash\{u\}$. Set $H_{2}:=G \backslash V\left(G_{1}\right)$ and $H_{1}:=\left\langle V\left(G_{1}\right) \cup\{u\}\right\rangle$, the induced subgraph by $V\left(G_{1}\right) \cup\{u\}$ of $G$. Note that for each $x \in V\left(H_{1}\right)$ and each $y \in V\left(H_{2}\right), d(x, y)=$ $d(x, u)+d(u, y)$. By Lemma 1, $G$ does not have any vertex of degree 1. Therefore, $\left|V\left(H_{1}\right)\right| \geq 3$ and $\left|V\left(H_{2}\right)\right| \geq 3$. Suppose that $a, b \in V\left(H_{2}\right)$ and $V\left(H_{1}\right)$ resolves $\{a, b\}$. Then, there exists a vertex $w \in V\left(H_{1}\right)$ such that $d(a, w) \neq d(b, w)$. Thus, $d(a, u)+d(u, w) \neq d(b, u)+d(u, w)$, that is $d(a, u) \neq d(b, u)$. Hence, $V\left(H_{1}\right)$ resolves a pair of vertices of $V\left(H_{2}\right)$ if and only if $u$ resolves this pair. If $V\left(H_{1}\right)$ is a resolving set for $G$, then $\{u\}$ is a resolving set for $H_{2}$. Therefore, by Theorem $\mathrm{A}, H_{2}$ is a path. Since $\left|V\left(H_{2}\right)\right| \geq 3, G$ has a vertex of degree 1, which contradicts Lemma 1. Hence, $\beta\left(H_{2}\right) \geq 2$ and $V\left(H_{1}\right)$ does not resolve $G$. Now, one of the following two cases can happen.

1. $u$ belongs to a basis of $H_{2}$. In this case $u$ along with $\beta\left(H_{2}\right)-1$ vertices of $V\left(H_{2}\right) \backslash\{u\}$ forms a basis $T$ of $H_{2}$. Since $\beta\left(H_{2}\right) \geq 2$, there exists a vertex $x \in T \backslash\{u\}$. Note that $T \cup V\left(H_{1}\right) \backslash\{x\}$ is not a resolving set for $G$; otherwise $T \backslash\{x\}$ is a resolving set for $H_{2}$ of size $\beta\left(H_{2}\right)-1$. Thus,

$$
\operatorname{res}(G) \geq\left|T \cup V\left(H_{1}\right)\right|=\beta\left(H_{2}\right)+\left|V\left(H_{1}\right)\right|-1 .
$$

Now, suppose that $z \in V\left(G_{1}\right)$. Since $\left|V\left(H_{1}\right)\right| \geq 3$ and $G_{1}$ is a connected component of $G \backslash\{u\}, z$ has a neighbor in $G_{1}$, say $v$. Therefore, $d(z, v)=1 \neq d(y, v)$ for each $y \in V\left(H_{2}\right) \backslash\{u\}$. Hence, the set $T \cup V\left(H_{1}\right) \backslash\{z\}$ is a resolving set for $G$. Thus,

$$
\beta(G) \leq\left|T \cup V\left(H_{1}\right) \backslash\{z\}\right|=\beta\left(H_{2}\right)+\left|V\left(H_{1}\right)\right|-2 .
$$

Consequently, $\beta(G)<\operatorname{res}(G)$, which is a contradiction.
2. $u$ does not belong to any basis of $H_{2}$. Let $T$ be a basis of $G$ and $x \in T$. Therefore, $T \cup V\left(H_{1}\right) \backslash\{x\}$ is not a resolving set for $G$. Hence,

$$
\operatorname{res}(G) \geq\left|T \cup V\left(H_{1}\right)\right|=\beta\left(H_{2}\right)+\left|V\left(H_{1}\right)\right|
$$

Now, suppose that $z \in V\left(G_{1}\right)$. Like in the previous case, $T \cup V\left(H_{1}\right) \backslash\{z\}$ is a resolving set for $G$. Thus,

$$
\beta(G) \leq\left|T \cup V\left(H_{1}\right) \backslash\{z\}\right|=\beta\left(H_{2}\right)+\left|V\left(H_{1}\right)\right|-1 .
$$

Therefore, $\beta(G)<\operatorname{res}(G)$, which is impossible.
Consequently, $G$ does not have any cut vertex.
Theorem 3. If $G$ is a randomly $k$-dimensional graph with $k \geq 4$, then there are no adjacent vertices of degree 2 in $G$.
Proof. Suppose on the contrary that $G$ has adjacent vertices of degree 2. Therefore, there is an induced subgraph $P_{r}=$ $\left(a_{1}, a_{2}, \ldots, a_{r}\right), r \geq 2$, such that for each $i, 1 \leq i \leq r, \operatorname{deg}\left(a_{i}\right)=2$ in $G$. Suppose that $x, y \in V(G) \backslash V\left(P_{r}\right)$ and $x \sim a_{1}, y \sim a_{r}$. Since $k \geq 4, G$ is not a cycle. Thus, Theorem 2 implies that $x \neq y$; otherwise, $x=y$ is a cut vertex in $G$. By assumption, $G$ has a basis $B=\left\{x, y, a_{i}, a_{j}\right\} \cup T$, where $1 \leq i \neq j \leq r$ and $T$ is a subset of $V(G) \backslash\left\{x, y, a_{i}, a_{j}\right\}$ with $|T|=k-4$. Now, one of the following cases can happen.

1. $r$ is odd. Suppose that $B_{1}=B \cup\left\{a_{\frac{r+1}{2}}\right\} \backslash\left\{a_{i}, a_{j}\right\}$. We claim that $B_{1}$ is a resolving set for $G$. Otherwise, there exist vertices $u, v \in V(G)$ with $r\left(u \mid B_{1}\right)=r\left(v \mid B_{1}\right)$. If $v \in V\left(P_{r}\right)$ and $u \notin V\left(P_{r}\right)$, then $d\left(v, a_{\frac{r+1}{2}}\right) \leq \frac{r-1}{2}$ and $d\left(u, a_{\frac{r+1}{2}}\right) \geq \frac{r+1}{2}$. Hence, $r\left(u \mid B_{1}\right) \neq r\left(v \mid B_{1}\right)$, which is a contradiction. Therefore, both of the vertices $u$ and $v$ belong to $V\left(P_{r}\right)$ or $V(G) \backslash V\left(P_{r}\right)$. If $u, v \in V\left(P_{r}\right)$, then $d\left(u, a_{\frac{r+1}{2}}\right)=d\left(v, a_{\frac{r+1}{2}}\right)$ implies $u, v \in\left\{a_{\frac{r+1}{2}-i}, a_{\frac{r+1}{2}+i}\right\}$ for some $i, 1 \leq i \leq \frac{r-1}{2}$. On the other
hand, $d\left(x, a_{\frac{r+1}{2}-i}\right)=\frac{r+1}{2}-i$ and $d\left(x, a_{\frac{r+1}{2}+i}\right)=\min \left\{\frac{r+1}{2}+i, \frac{r+1}{2}-i+d(x, y)\right\}$. If $\frac{r+1}{2}+i \leq \frac{r+1}{2}-i+d(x, y)$, then $d\left(x, a_{\frac{r+1}{2}-i}\right) \neq d\left(x, a_{\frac{r+1}{2}+i}\right)$, which is a contradiction. Thus, $\frac{r+1}{2}-i+d(x, y)<\frac{r+1}{2}+i$ and hence, $\frac{r+1}{2}-i+d(x, y)=\frac{r+1}{2}-i$, because $d\left(x, a_{\frac{r+1}{2}-i}\right)=d\left(x, a_{\frac{r+1}{2}+i}\right)$. Therefore, $d(x, y)=0$, which contradicts $x \neq y$. Thus, $u, v \in V(G) \backslash V\left(P_{r}\right)$. Since $r\left(u \mid B_{1}\right)=r\left(v \mid B_{1}\right)$ and $B$ is a resolving set for $G$, there exists a vertex in $B \backslash B_{1}=\left\{a_{i}, a_{j}\right\} \backslash\left\{a_{\frac{r+1}{2}}\right\}$ which resolves $\{u, v\}$. By symmetry, we can assume that $a_{i}$ resolves $\{u, v\}$. Therefore, $d\left(u, a_{i}\right) \neq d\left(v, a_{i}\right), d(u, x)=d(v, x)$, and $d(u, y)=d(v, y)$. But,

$$
d\left(u, a_{i}\right)=\min \left\{d(u, x)+d\left(x, a_{i}\right), d(u, y)+d\left(y, a_{i}\right)\right\}
$$

and

$$
d\left(v, a_{i}\right)=\min \left\{d(v, x)+d\left(x, a_{i}\right), d(v, y)+d\left(y, a_{i}\right)\right\}
$$

If $d(u, x)+d\left(x, a_{i}\right) \leq d(u, y)+d\left(y, a_{i}\right)$ and $d(v, x)+d\left(x, a_{i}\right) \leq d(v, y)+d\left(y, a_{i}\right)$, then $d(u, x)+d\left(x, a_{i}\right) \neq d(v, x)+d\left(x, a_{i}\right)$, which implies $d(u, x) \neq d(v, x)$, a contradiction. Similarly, if $d(u, y)+d\left(y, a_{i}\right) \leq d(u, x)+d\left(x, a_{i}\right)$ and $d(v, y)+$ $d\left(y, a_{i}\right) \leq d(v, x)+d\left(x, a_{i}\right)$, then $d(u, y) \neq d(v, y)$, which is a contradiction. Therefore, by symmetry, we can assume that $d(u, x)+d\left(x, a_{i}\right) \leq d(u, y)+d\left(y, a_{i}\right)$ and $d(v, y)+d\left(y, a_{i}\right) \leq d(v, x)+d\left(x, a_{i}\right)$. Thus,

$$
d\left(u, a_{i}\right)=d(u, x)+d\left(x, a_{i}\right)=d(v, x)+d\left(x, a_{i}\right) \geq d\left(v, a_{i}\right)
$$

and

$$
d\left(v, a_{i}\right)=d(v, y)+d\left(y, a_{i}\right)=d(u, y)+d\left(y, a_{i}\right) \geq d\left(u, a_{i}\right)
$$

These imply that $d\left(u, a_{i}\right)=d\left(v, a_{i}\right)$, which is a contradiction. Therefore, $B_{1}$ is a resolving set for $G$ with cardinality $k-1$.
2. $r$ is even. Suppose that $B_{2}=B \cup\left\{a_{\frac{r}{2}}\right\} \backslash\left\{a_{i}, a_{j}\right\}$. Like in the previous case, $B_{2}$ is a resolving set for $G$ with cardinality $k-1$.

In both cases, we get a contradiction to the assumption that $G$ is a randomly $k$-dimensional graph. Therefore, there are no adjacent vertices of degree 2 in $G$.

Theorem 4. If $G$ is a randomly $k$-dimensional graph and $T$ is a separating set of $G$ with $|T|=k-1$, then $G \backslash T$ has exactly two connected components and for each pair of vertices $u, v \in V(G) \backslash T$ with $r(u \mid T)=r(v \mid T)$, $u$ and $v$ belong to different components.
Proof. Since $\beta(G)=k$ and $|T|=k-1$, there exist two vertices $u, v \in V(G) \backslash T$ with $r(u \mid T)=r(v \mid T)$. Let $H$ be a connected component of $G \backslash T$ for which $u \notin H$ and $v \notin H$. If $w \in H$, then there exist two vertices $s, t \in T$ such that $d(u, w)=d(u, s)+d(s, w)$ and $d(v, w)=d(v, t)+d(t, w)$. Since $r(u \mid T)=r(v \mid T)$, we have $d(u, s)=d(v, s)$ and $d(u, t)=d(v, t)$. Therefore,

$$
d(u, w)=d(u, s)+d(s, w)=d(v, s)+d(s, w) \geq d(v, w)
$$

Also,

$$
d(v, w)=d(v, t)+d(t, w)=d(u, t)+d(t, w) \geq d(u, w)
$$

Hence, $d(u, w)=d(v, w)$. Thus, $r(u \mid T \cup\{w\})=r(v \mid T \cup\{w\})$. Consequently, $T \cup\{w\}$ is not a resolving set for $G$ and $|T \cup\{w\}|=k$. This contradicts the assumption that $G$ is randomly $k$-dimensional. Therefore, $G \backslash T$ has exactly two components and $u$ and $v$ belong to different components.

Corollary 2. If $G$ is a randomly $k$-dimensional graph with $k \geq 2$, then $\Delta(G) \geq k$.
Proof. If $G=K_{n}$, then $\Delta(G)=n-1=k$. Now suppose that $G \neq K_{n}$, and suppose on the contrary that $\Delta(G) \leq k-1$. Suppose that $u \in V(G), \operatorname{deg}(u)=\Delta(G)$, and let $T$ be a subset of $V(G)$ with $|T|=k-1$ and $N(u) \subseteq T$. By Theorem 4, $G \backslash T$ has exactly two connected components, of which one is $\{u\}$. Since $|T|=k-1$ and $\beta(G)=k$, there exist two vertices $x, y \in V(G) \backslash T$ such that $r(x \mid T)=r(y \mid T)$. By Theorem 4, $x$ and $y$ belong to different components. Therefore, one of them is $u$, say $x=u$. Since $r(u \mid T)=r(y \mid T)$, we have $N(u) \subseteq N(y)$. By Corollary $1, G$ does not have any pair of vertices $u$, $v$ with $N(u) \backslash\{v\}=N(v) \backslash\{u\}$. Hence, $N(u) \subset N(y)$; this contradicts $\operatorname{deg}(u)=\Delta(G)$. Therefore, $\Delta(G) \geq k$.

Corollary 3. If $u$ and $v$ are two non-adjacent vertices in a randomly $k$-dimensional graph, then $\operatorname{deg}(u)+\operatorname{deg}(v) \geq k$.
Proof. If $|N(u) \cup N(v)| \leq k-1$, then let $T$ be a subset of $V(G) \backslash\{u, v\}$ with $|T|=k-1$ and $N(u) \cup N(v) \subseteq T$. By Theorem 4, $G \backslash T$ has exactly two connected components $\{u\}$ and $\{v\}$. Hence, $|T|=n-2$. This implies that $k=n-1$ and by Theorem 1, $G=K_{n}$. Consequently, $u \sim v$, which is a contradiction. Thus, $\operatorname{deg}(u)+\operatorname{deg}(v) \geq|N(u) \cup N(v)| \geq k$.

Theorem 5. If $G$ is a randomly $k$-dimensional graph of order at least 2 , then $\omega(G) \leq k+1$. Moreover, $\omega(G)=k+1$ if and only if $G=K_{n}$.

Proof. Let $H$ be a clique of size $\omega(G)$ in $G$ and $T$ be a subset of $V(H)$ with $|T|=\omega(G)-2$. If $T=V(H) \backslash\{u, v\}$, then $r(u \mid T)=(1,1, \ldots, 1)=r(v \mid T)$. Therefore, $T$ is not a resolving set for $G$. Since $G$ is a randomly $k$-dimensional graph, $|T| \leq k-1$. Thus, $\omega(G)-2=|T| \leq k-1$. Consequently, $\omega(G) \leq k+1$.

Clearly, if $G=K_{n}$, then $\omega(G)=k+1$. Conversely, suppose that $\omega(G)=k+1$. If $G \neq K_{n}$, then there exists a vertex $x \in V(G) \backslash V(H)$ such that $x$ is adjacent to some vertices of $V(H)$, because $G$ is connected. Since $|V(H)|=\omega(G), x$ is not adjacent to all vertices of $V(H)$. If there exist vertices $y, z \in V(H)$ such that $y \nsim x$ and $z \nsim x$, then $d(x, y)=d(x, z)=2$, because $x$ is adjacent to some vertices of $H$. Suppose that $S=\{x\} \cup V(H) \backslash\{y, z\}$. Therefore, $r(y \mid S)=(2,1,1, \ldots, 1)=r(z \mid S)$. Thus, $S$ is not a resolving set for $G$ and $|S|=k$, which is a contradiction. Hence, $x$ is adjacent to $\omega(G)-1$ vertices of $H$.

On the other hand, $x$ is adjacent to at most one vertex of $H$. Otherwise, there exist vertices $s, t \in V(H)$ such that $s \sim x$ and $t \sim x$. Suppose that $R=\{x\} \cup V(H) \backslash\{s, t\}$. Therefore, $r(s \mid R)=(1,1, \ldots, 1)=r(t \mid R)$. Thus, $R$ is not a resolving set for $G$ and $|R|=k$, which is a contradiction. Consequently, $\omega(G)=2$ and $k=\omega(G)-1=1$. Therefore, $G=K_{2}$, which contradicts $G \neq K_{n}$. Hence, $G=K_{n}$.

Lemma 2. If $\operatorname{res}(G)=k$, then each two vertices of $G$ have at most $k-1$ common neighbors.
Proof. Suppose that $u, v \in V(G)$ and $T=N(u) \cap N(v)$. Thus, $r(u \mid T)=(1,1, \ldots, 1)=r(v \mid T)$. Therefore, $T$ is not a resolving set for $G$. Since $G$ is a randomly $k$-dimensional graph, $|N(u) \cap N(v)|=|T| \leq k-1$.

Theorem 6. If $G \neq K_{n}$ is a randomly $k$-dimensional graph of order $n$, then $\Delta(G) \leq n-2$.
Proof. Suppose on the contrary that there exists a vertex $u \in V(G)$ with $\operatorname{deg}(u)=n-1$. For each $T \subseteq V(G) \backslash\{u\}$ with $|T|=k-1$, the set $T \cup\{u\}$ is a resolving set for $G$ while $T$ is not a resolving set for $G$. Hence, there exist vertices $x, y \in V(G) \backslash T$ such that $r(x \mid T)=r(y \mid T)$ and $d(x, u) \neq d(y, u)$. Since $u$ is adjacent to all vertices of $G$, we have $u \in\{x, y\}$, say $x=u$. Thus, $r(y \mid T)=r(u \mid T)=(1,1, \ldots, 1)$. By Lemma $2,|N(u) \cap N(y)| \leq k-1$. Hence, $\operatorname{deg}(y) \leq k$, because $u$ is adjacent to all vertices of $G$. This gives $N(y)=T \cup\{u\}$.

Now, suppose that $S=T \cup\{y\} \backslash\{v\}$, for an arbitrary vertex $v \in T$. Since $|S|=k-1, S$ is not a resolving set for $G$. Therefore, there exist vertices $a, b \in V(G) \backslash S$ such that $r(a \mid S)=r(b \mid S)$. Since $S \cup\{u\}$ is a resolving set for $G$, we have $d(a, u) \neq d(b, u)$. Hence, $u \in\{a, b\}$, say $b=u$. Thus, $r(a \mid S)=r(u \mid S)=(1,1, \ldots, 1)$. Consequently, $a \sim y$. Therefore, $a \in T$, because $N(y)=T \cup\{u\}$ and $a \neq u$. Hence, $a \in(V(G) \backslash S) \cap T=\{v\}$, that is $a=v$. Thus, $v$ is adjacent to all vertices of $T \backslash\{v\}$. Since $v$ is an arbitrary vertex of $T, T$ is a clique. Therefore, $T \cup\{u, y\}$ is a clique of size $k+1$ in $G$. Consequently, by Theorem $5, G=K_{n}$, which is a contradiction. Thus, $\Delta(G) \leq n-2$.

## References

[1] D.B. West, Introduction to Graph Theory, second ed., Prentice Hall Inc., Upper Saddle River, NJ, 2001, 07458.
[2] P.J. Slater, Leaves of trees, Congressus Numerantium 14 (1975) 549-559.
[3] F. Harary, R.A. Melter, On the metric dimension of a graph, Ars Combinatoria 2 (1976) 191-195.
[4] J. Caceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara, D.R. Wood, On the metric dimension of Cartesian products of graphs, SIAM Journal on Discrete Mathematics 21 (2) (2007) 423-441.
[5] G.G. Chappell, J. Gimbel, C. Hartman, Bounds on the metric and partition dimensions of a graph, Ars Combinatoria 88 (2008) $349-366$.
[6] G. Chartrand, P. Zhang, The theory and applications of resolvability in graphs. A survey, in: Proc. 34th Southeastern International Conf. on Combinatorics, Graph Theory and Computing, vol. 160, 2003, pp. 47-68.
[7] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Applied Mathematics 70 (3) (1996) 217-229.
[8] V. Saenpholphat, P. Zhang, Conditional resolvability in graphs: a survey, International Journal of Mathematics and Mathematical Sciences 38 (2004) 1997-2017.
[9] A. Sebo, E. Tannier, On metric generators of graphs, Mathematics of Operations Research 29 (2) (2004) 383-393.
[10] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal'ak, L.S. Ram, Network discovery and verification, IEEE Journal On Selected Areas in Communications $24(12)(2006)$ 2168-2181.
[11] R.A. Melter, I. Tomescu, Metric bases in digital geometry, Computer Vision, Graphics, and Image Processing 25 (1984) 113-121.
[12] C. Hernando, M. Mora, I.M. Pelayo, C. Seara, D.R. Wood, Extremal graph theory for metric dimension and diameter, The Electronic Journal of Combinatorics (2010) \#R30.
[13] G. Chartrand, L. Eroh, M.A. Johnson, O.R. Ollerman, Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics 105 (2000) 99-113.
[14] G. Chartrand, P. Zhang, On the chromatic dimension of a graph, Congressus Numerantium 145 (2000) 97-108.
[15] G. Chartrand, C. Poisson, P. Zhang, Resolvability and the upper dimension of graphs, Computers and Mathematics with Applications 39 (2000) 19-28.


[^0]:    * Corresponding author.

    E-mail address: bomoomi@cc.iut.ac.ir (B. Omoomi).

