

Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

On randomly k-dimensional graphs

Mohsen Jannesari, Behnaz Omoomi*

Department of Mathematical Sciences, Isfahan University of Technology, 84156-83111, Isfahan, Iran

ARTICLE INFO

Article history:
Received 15 January 2011
Received in revised form 14 March 2011
Accepted 16 March 2011

Keywords: Resolving set Metric dimension Basis Resolving number Basis number

ABSTRACT

For an ordered set $W = \{w_1, w_2, \dots, w_k\}$ of vertices and a vertex v in a connected graph G, the ordered k-vector $r(v|W) := (d(v, w_1), d(v, w_2), \dots, d(v, w_k))$ is called the (metric) representation of v with respect to W, where d(x, y) is the distance between the vertices x and y. The set W is called a resolving set for G if distinct vertices of G have distinct representations with respect to W. A resolving set for G with minimum cardinality is called a basis of G and its cardinality is the metric dimension of G. A connected graph G is called a randomly g-dimensional graph if each g-set of vertices of g is a basis of g. In this work, we study randomly g-dimensional graphs and provide some properties of these graphs.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

We refer the reader to [1] for graphical notation and terminology not described in this work. Throughout the work, G = (V, E) is a finite, simple, and connected graph. The distance between two vertices u and v, denoted by d(u, v), is the length of a shortest path between u and v in G. Also, N(v) is the set of all neighbors of vertex v and $\deg(v) = |N(v)|$ is the degree of vertex v. The maximum degree of the graph G, G, is $\max_{v \in V(G)} \deg(v)$. We mean by G0 the number of vertices in a maximum clique in G1. For a subset G2 of G3 is the subgraph G3 induced by G4 or G5 in G5. A set G5 is a separating set in G6 if G7 has at least two connected components. We call a vertex G5 or G6 if G7 is a separating set in G7. If G7 in G8 has no cut vertex, then G9 is called a 2-connected graph. G9 and G9 denote the adjacency and non-adjacency relations between G8 and G9 is symbol (G9, G9, G9 in this symbol (G9, G9) represents a path of order G9.

For an ordered set $W = \{w_1, w_2, \dots, w_k\} \subseteq V(G)$ and a vertex v of G, the k-vector

$$r(v|W) := (d(v, w_1), d(v, w_2), \dots, d(v, w_k))$$

is called the (metric) representation of v with respect to W. The set W is called a resolving set for G if distinct vertices have different representations. A resolving set for G with minimum cardinality is called a basis of G, and its cardinality is the metric dimension of G, denoted by G.

For example, the graphs G and H in Fig. 1 have the basis $B = \{v_1, v_2\}$ and hence $\beta(G) = \beta(H) = 2$. The representations of vertices of G with respect to B are

$$r(v_1|B) = (0, 1),$$
 $r(v_2|B) = (1, 0),$ $r(v_3|B) = (2, 1),$ $r(v_4|B) = (2, 2),$ $r(v_5|B) = (1, 2).$

Also, the representations of vertices of H with respect to B are

$$r(v_1|B) = (0, 1),$$
 $r(v_2|B) = (1, 0),$ $r(v_3|B) = (1, 1),$ $r(v_4|B) = (2, 2),$ $r(v_5|B) = (1, 2).$

^{*} Corresponding author.

E-mail address: bomoomi@cc.iut.ac.ir (B. Omoomi).

Fig. 1. $bas(G) = \beta(G) = res(G)$ and $bas(H) \neq \beta(H) \neq res(H)$.

To see whether a given set W is a resolving set for G, it is sufficient to look at the representations of vertices in $V(G) \setminus W$, because $w \in W$ is the unique vertex of G for which d(w, w) = 0. When W is a resolving set for G, we say that W resolves G. In general, we say that an ordered set W resolves a set T of vertices in G if the representations of vertices in T are distinct with respect to W. When $W = \{x\}$, we say that vertex X resolves T.

In [2], Slater introduced the idea of a resolving set and used a *locating set* and the *location number* for what we call a resolving set and the metric dimension, respectively. He described the usefulness of these concepts when working with US Sonar and Coast Guard Loran stations. Independently, Harary and Melter [3] discovered the concept of the location number as well and called it the metric dimension. For more results related to these concepts see [4–8]. The concept of a resolving set has various applications in diverse areas including coin weighing problems [9], network discovery and verification [10], robot navigation [7], the mastermind game [4], problems of pattern recognition and image processing [11], and combinatorial search and optimization [9].

The following simple result is very useful.

Observation 1 ([12]). Let *G* be a graph and $u, v \in V(G)$ such that $N(v) \setminus \{u\} = N(u) \setminus \{v\}$. If *W* resolves *G*, then *u* or *v* is in *W*.

It is obvious that for a graph *G* of order n, $1 \le \beta(G) \le n - 1$.

Theorem A ([13]). Let G be a graph of order n. Then,

- (i) $\beta(G) = 1$ if and only if $G = P_n$,
- (ii) $\beta(G) = n 1$ if and only if $G = K_n$.

The basis number, bas(G), of G is the maximum integer r such that every r-set of vertices of G is a subset of some basis of G. Also, the resolving number, $\operatorname{res}(G)$, of G is the minimum integer k such that every k-set of vertices of G is a resolving set for G. These parameters are introduced in [14,15], respectively. Clearly, if G is a graph of order n, then $0 \le \operatorname{bas}(G) \le \beta(G)$ and $\beta(G) \le \operatorname{res}(G) \le n-1$. Chartrand et al. in [14] considered graphs G with $\operatorname{bas}(G) = \beta(G)$. They called these graphs randomly k-dimensional graphs, where $k = \beta(G)$. Obviously, $\operatorname{bas}(G) = \beta(G)$ if and only if $\operatorname{res}(G) = \beta(G)$. In other words, a randomly k-dimensional graph is a graph for which every k-set of its vertices is a basis. For example in graph G of Fig. 1, if G is a set of two adjacent vertices, then the representations of vertices in G is a vertices in G with respect to G are G with respect to G are G with respect to G are G and G. Therefore, G is a randomly two-dimensional graph. But, in graph G of Fig. 1, G is not a resolving set; hence G is not a randomly two-dimensional graph. Since G is a resolving set in G is a res

Obviously, K_1 and K_2 are the only randomly one-dimensional graphs. Chartrand et al. [14] proved that a graph G is randomly two-dimensional if and only if G is an odd cycle. In this work, we first characterize all graphs of order n and resolving number 1 and n-1. Then, we provide some properties of randomly k-dimensional graphs.

2. The main results

We first characterize all graphs G with res(G) = 1 and all graphs G of order n with res(G) = n - 1.

Theorem 1. Let G be a graph of order n. Then,

- (i) res(G) = 1 if and only if $G \in \{P_1, P_2\}$,
- (ii) $\operatorname{res}(G) = n 1$ if and only if $N(v) \setminus \{u\} = N(u) \setminus \{v\}$, for some $u, v \in V(G)$.

Proof. (i) It is easy to see that for $G \in \{P_1, P_2\}$, $\operatorname{res}(G) = 1$. Conversely, suppose that $\operatorname{res}(G) = 1$. Thus, $1 \le \beta(G) \le \operatorname{res}(G) = 1$ and hence, $\beta(G) = 1$. Therefore, by Theorem A, $G = P_n$. If $n \ge 3$, then P_n has a vertex of degree 2 and this vertex does not resolve its neighbors. Thus, $\operatorname{res}(G) \ge 2$, which is a contradiction. Consequently, $n \le 2$, that is $G \in \{P_1, P_2\}$.

(ii) Let $u, v \in V(G)$ be such that $N(v) \setminus \{u\} = N(u) \setminus \{v\}$. If $\operatorname{res}(G) \le n-2$, then the set $V(G) \setminus \{u, v\}$ is a resolving set for G. But, by Observation 1, every resolving set for G contains at least one of the vertices u and v. This contradiction implies

that $\operatorname{res}(G) = n - 1$. Conversely, suppose that $\operatorname{res}(G) = n - 1$. Thus, there exists a subset T of V(G) with cardinality n - 2 such that T is not a resolving set for G. Assume that $T = V(G) \setminus \{u, v\}$. If $N(u) \setminus \{v\} \neq N(v) \setminus \{u\}$, then there exists a vertex $w \in T$ which is adjacent to only one of the vertices u and v and hence, $d(u, w) \neq d(v, w)$. Since $w \in T$, T resolves G, which is a contradiction. Therefore, $N(u) \setminus \{v\} = N(v) \setminus \{u\}$. \square

Corollary 1. If $G \neq K_n$ is a randomly k-dimensional graph, then for each pair of vertices $u, v \in V(G), N(v) \setminus \{u\} \neq N(u) \setminus \{v\}$.

Proof. If $N(v) \setminus \{u\} = N(u) \setminus \{v\}$ for some $u, v \in V(G)$, then by Theorem 1, $\operatorname{res}(G) = n - 1$, where n is the order of G. Since G is a randomly k-dimensional graph, $\beta(G) = \operatorname{res}(G) = n - 1$. Therefore, by Theorem A, $G = K_n$, which is a contradiction. Hence, for each $u, v \in V(G)$, $N(v) \setminus \{u\} \neq N(u) \setminus \{v\}$. \square

Lemma 1. If G is a randomly k-dimensional graph with k > 2 and minimum degree δ , then $\delta > 2$.

Proof. Suppose on the contrary that there exists a vertex $u \in V(G)$ with $\deg(u) = 1$. Let v be the unique neighbor of u and $T \subseteq V(G)$ be a subset of V(G) with |T| = k and $u, v \in T$. Since G is a randomly k-dimensional graph, $T \setminus \{v\}$ is not a resolving set for G. Thus, there exists a pair of vertices $x, y \in V(G)$ such that $d(x, v) \neq d(y, v)$ and d(x, t) = d(y, t) for each $t \in T \setminus \{v\}$. Hence, d(x, u) = d(y, u). Clearly, if $u \in \{x, y\}$, then $d(x, u) \neq d(y, u)$, which is a contradiction. Consequently, $u \notin \{x, y\}$. Therefore, d(x, u) = d(x, v) + 1 and d(y, u) = d(y, v) + 1. Thus, d(x, v) = d(y, v). This contradiction implies that $\delta > 2$.

Theorem 2. If k > 2, then every randomly k-dimensional graph is 2-connected.

Proof. Suppose on the contrary that u is a cut vertex in G. Let G_1 be a connected component of $G \setminus \{u\}$. Set $H_2 := G \setminus V(G_1)$ and $H_1 := \langle V(G_1) \cup \{u\} \rangle$, the induced subgraph by $V(G_1) \cup \{u\}$ of G. Note that for each $x \in V(H_1)$ and each $y \in V(H_2)$, d(x,y) = d(x,u) + d(u,y). By Lemma 1, G does not have any vertex of degree 1. Therefore, $|V(H_1)| \ge 3$ and $|V(H_2)| \ge 3$. Suppose that $a,b \in V(H_2)$ and $V(H_1)$ resolves $\{a,b\}$. Then, there exists a vertex $w \in V(H_1)$ such that $d(a,w) \ne d(b,w)$. Thus, $d(a,u) + d(u,w) \ne d(b,u) + d(u,w)$, that is $d(a,u) \ne d(b,u)$. Hence, $V(H_1)$ resolves a pair of vertices of $V(H_2)$ if and only if U resolves this pair. If $U(H_1)$ is a resolving set for U0, then U1 is a resolving set for U2. Therefore, by Theorem A, U3 is a path. Since U4 is a vertex of degree 1, which contradicts Lemma 1. Hence, U6 is an U7 is an only one of the following two cases can happen.

1. u belongs to a basis of H_2 . In this case u along with $\beta(H_2) - 1$ vertices of $V(H_2) \setminus \{u\}$ forms a basis T of H_2 . Since $\beta(H_2) \geq 2$, there exists a vertex $x \in T \setminus \{u\}$. Note that $T \cup V(H_1) \setminus \{x\}$ is not a resolving set for G; otherwise $T \setminus \{x\}$ is a resolving set for H_2 of size $\beta(H_2) - 1$. Thus,

$$res(G) > |T \cup V(H_1)| = \beta(H_2) + |V(H_1)| - 1.$$

Now, suppose that $z \in V(G_1)$. Since $|V(H_1)| \ge 3$ and G_1 is a connected component of $G \setminus \{u\}$, z has a neighbor in G_1 , say v. Therefore, $d(z, v) = 1 \ne d(y, v)$ for each $y \in V(H_2) \setminus \{u\}$. Hence, the set $T \cup V(H_1) \setminus \{z\}$ is a resolving set for G. Thus,

$$\beta(G) < |T \cup V(H_1) \setminus \{z\}| = \beta(H_2) + |V(H_1)| - 2.$$

Consequently, $\beta(G) < \text{res}(G)$, which is a contradiction.

2. u does not belong to any basis of H_2 . Let T be a basis of G and $x \in T$. Therefore, $T \cup V(H_1) \setminus \{x\}$ is not a resolving set for G. Hence,

$$res(G) \ge |T \cup V(H_1)| = \beta(H_2) + |V(H_1)|.$$

Now, suppose that $z \in V(G_1)$. Like in the previous case, $T \cup V(H_1) \setminus \{z\}$ is a resolving set for G. Thus,

$$\beta(G) \leq |T \cup V(H_1) \setminus \{z\}| = \beta(H_2) + |V(H_1)| - 1.$$

Therefore, $\beta(G) < \text{res}(G)$, which is impossible.

Consequently, G does not have any cut vertex. \square

Theorem 3. If G is a randomly k-dimensional graph with k > 4, then there are no adjacent vertices of degree 2 in G.

Proof. Suppose on the contrary that G has adjacent vertices of degree 2. Therefore, there is an induced subgraph $P_r = (a_1, a_2, \ldots, a_r)$, $r \geq 2$, such that for each i, $1 \leq i \leq r$, $\deg(a_i) = 2$ in G. Suppose that $x, y \in V(G) \setminus V(P_r)$ and $x \sim a_1, y \sim a_r$. Since $k \geq 4$, G is not a cycle. Thus, Theorem 2 implies that $x \neq y$; otherwise, x = y is a cut vertex in G. By assumption, G has a basis $B = \{x, y, a_i, a_j\} \cup T$, where $1 \leq i \neq j \leq r$ and T is a subset of $V(G) \setminus \{x, y, a_i, a_j\}$ with |T| = k - 4. Now, one of the following cases can happen.

1. r is odd. Suppose that $B_1 = B \cup \left\{a_{\frac{r+1}{2}}\right\} \setminus \{a_i, a_j\}$. We claim that B_1 is a resolving set for G. Otherwise, there exist vertices $u, v \in V(G)$ with $r(u|B_1) = r(v|B_1)$. If $v \in V(P_r)$ and $u \notin V(P_r)$, then $d\left(v, a_{\frac{r+1}{2}}\right) \leq \frac{r-1}{2}$ and $d\left(u, a_{\frac{r+1}{2}}\right) \geq \frac{r+1}{2}$. Hence, $r(u|B_1) \neq r(v|B_1)$, which is a contradiction. Therefore, both of the vertices u and v belong to $V(P_r)$ or $V(G) \setminus V(P_r)$. If $u, v \in V(P_r)$, then $d\left(u, a_{\frac{r+1}{2}}\right) = d\left(v, a_{\frac{r+1}{2}}\right)$ implies $u, v \in \left\{a_{\frac{r+1}{2}-i}, a_{\frac{r+1}{2}+i}\right\}$ for some $i, 1 \leq i \leq \frac{r-1}{2}$. On the other

hand, $d\left(x, a_{\frac{r+1}{2}-i}\right) = \frac{r+1}{2} - i$ and $d\left(x, a_{\frac{r+1}{2}+i}\right) = \min\left\{\frac{r+1}{2} + i, \frac{r+1}{2} - i + d(x, y)\right\}$. If $\frac{r+1}{2} + i \leq \frac{r+1}{2} - i + d(x, y)$, then $d\left(x, a_{\frac{r+1}{2}-i}\right) \neq d\left(x, a_{\frac{r+1}{2}+i}\right)$, which is a contradiction. Thus, $\frac{r+1}{2} - i + d(x, y) < \frac{r+1}{2} + i$ and hence, $\frac{r+1}{2} - i + d(x, y) = \frac{r+1}{2} - i$, because $d\left(x, a_{\frac{r+1}{2}-i}\right) = d\left(x, a_{\frac{r+1}{2}+i}\right)$. Therefore, d(x, y) = 0, which contradicts $x \neq y$. Thus, $u, v \in V(G) \setminus V(P_r)$. Since $r(u|B_1) = r(v|B_1)$ and B is a resolving set for G, there exists a vertex in $B \setminus B_1 = \{a_i, a_j\} \setminus \left\{a_{\frac{r+1}{2}}\right\}$ which resolves $\{u, v\}$. By symmetry, we can assume that a_i resolves $\{u, v\}$. Therefore, $d(u, a_i) \neq d(v, a_i)$, d(u, x) = d(v, x), and d(u, y) = d(v, y). But,

$$d(u, a_i) = \min\{d(u, x) + d(x, a_i), d(u, y) + d(y, a_i)\},\$$

and

$$d(v, a_i) = \min\{d(v, x) + d(x, a_i), d(v, y) + d(y, a_i)\}.$$

If $d(u, x) + d(x, a_i) \le d(u, y) + d(y, a_i)$ and $d(v, x) + d(x, a_i) \le d(v, y) + d(y, a_i)$, then $d(u, x) + d(x, a_i) \ne d(v, x) + d(x, a_i)$, which implies $d(u, x) \ne d(v, x)$, a contradiction. Similarly, if $d(u, y) + d(y, a_i) \le d(u, x) + d(x, a_i)$ and $d(v, y) + d(y, a_i) \le d(v, x) + d(x, a_i)$, then $d(u, y) \ne d(v, y)$, which is a contradiction. Therefore, by symmetry, we can assume that $d(u, x) + d(x, a_i) \le d(u, y) + d(y, a_i)$ and $d(v, y) + d(y, a_i) \le d(v, x) + d(x, a_i)$. Thus,

$$d(u, a_i) = d(u, x) + d(x, a_i) = d(v, x) + d(x, a_i) \ge d(v, a_i),$$

and

$$d(v, a_i) = d(v, y) + d(y, a_i) = d(u, y) + d(y, a_i) \ge d(u, a_i).$$

These imply that $d(u, a_i) = d(v, a_i)$, which is a contradiction. Therefore, B_1 is a resolving set for G with cardinality k-1. 2. r is even. Suppose that $B_2 = B \cup \left\{a_{\frac{r}{2}}\right\} \setminus \{a_i, a_j\}$. Like in the previous case, B_2 is a resolving set for G with cardinality k-1

In both cases, we get a contradiction to the assumption that G is a randomly k-dimensional graph. Therefore, there are no adjacent vertices of degree 2 in G. \Box

Theorem 4. If G is a randomly k-dimensional graph and T is a separating set of G with |T| = k - 1, then $G \setminus T$ has exactly two connected components and for each pair of vertices $u, v \in V(G) \setminus T$ with r(u|T) = r(v|T), u and v belong to different components.

Proof. Since $\beta(G) = k$ and |T| = k - 1, there exist two vertices $u, v \in V(G) \setminus T$ with r(u|T) = r(v|T). Let H be a connected component of $G \setminus T$ for which $u \notin H$ and $v \notin H$. If $w \in H$, then there exist two vertices $s, t \in T$ such that d(u, w) = d(u, s) + d(s, w) and d(v, w) = d(v, t) + d(t, w). Since r(u|T) = r(v|T), we have d(u, s) = d(v, s) and d(u, t) = d(v, t). Therefore,

$$d(u, w) = d(u, s) + d(s, w) = d(v, s) + d(s, w) > d(v, w).$$

Also,

$$d(v, w) = d(v, t) + d(t, w) = d(u, t) + d(t, w) > d(u, w).$$

Hence, d(u, w) = d(v, w). Thus, $r(u|T \cup \{w\}) = r(v|T \cup \{w\})$. Consequently, $T \cup \{w\}$ is not a resolving set for G and $|T \cup \{w\}| = k$. This contradicts the assumption that G is randomly k-dimensional. Therefore, $G \setminus T$ has exactly two components and u and v belong to different components. \Box

Corollary 2. *If* G is a randomly k-dimensional graph with $k \geq 2$, then $\Delta(G) \geq k$.

Proof. If $G = K_n$, then $\Delta(G) = n - 1 = k$. Now suppose that $G \neq K_n$, and suppose on the contrary that $\Delta(G) \leq k - 1$. Suppose that $u \in V(G)$, $\deg(u) = \Delta(G)$, and let T be a subset of V(G) with |T| = k - 1 and $N(u) \subseteq T$. By Theorem 4, $G \setminus T$ has exactly two connected components, of which one is $\{u\}$. Since |T| = k - 1 and $\beta(G) = k$, there exist two vertices $x, y \in V(G) \setminus T$ such that r(x|T) = r(y|T). By Theorem 4, x and y belong to different components. Therefore, one of them is u, say x = u. Since r(u|T) = r(y|T), we have $N(u) \subseteq N(y)$. By Corollary 1, G does not have any pair of vertices G0, G1, with G2, G3. Therefore, G3, G3. G4.

Corollary 3. If u and v are two non-adjacent vertices in a randomly k-dimensional graph, then $\deg(u) + \deg(v) > k$.

Proof. If $|N(u) \cup N(v)| \le k-1$, then let T be a subset of $V(G) \setminus \{u, v\}$ with |T| = k-1 and $N(u) \cup N(v) \subseteq T$. By Theorem 4, $G \setminus T$ has exactly two connected components $\{u\}$ and $\{v\}$. Hence, |T| = n-2. This implies that k = n-1 and by Theorem 1, $G = K_n$. Consequently, $u \sim v$, which is a contradiction. Thus, $\deg(u) + \deg(v) \ge |N(u) \cup N(v)| \ge k$. \square

Theorem 5. If G is a randomly k-dimensional graph of order at least 2, then $\omega(G) \le k + 1$. Moreover, $\omega(G) = k + 1$ if and only if $G = K_n$.

Proof. Let H be a clique of size $\omega(G)$ in G and T be a subset of V(H) with $|T| = \omega(G) - 2$. If $T = V(H) \setminus \{u, v\}$, then $r(u|T) = (1, 1, \ldots, 1) = r(v|T)$. Therefore, T is not a resolving set for G. Since G is a randomly k-dimensional graph, $|T| \le k - 1$. Thus, $\omega(G) - 2 = |T| \le k - 1$. Consequently, $\omega(G) \le k + 1$.

Clearly, if $G = K_n$, then $\omega(G) = k + 1$. Conversely, suppose that $\omega(G) = k + 1$. If $G \neq K_n$, then there exists a vertex $x \in V(G) \setminus V(H)$ such that x is adjacent to some vertices of V(H), because G is connected. Since $|V(H)| = \omega(G)$, x is not adjacent to all vertices of V(H). If there exist vertices $y, z \in V(H)$ such that $y \nsim x$ and $z \nsim x$, then d(x, y) = d(x, z) = 2, because x is adjacent to some vertices of H. Suppose that $S = \{x\} \cup V(H) \setminus \{y, z\}$. Therefore, $F(y|S) = \{x\} \cup F(z|S)$. Thus, $F(x) = \{x\} \cup V(H) \setminus \{y\} \cup V(H) \cup$

On the other hand, x is adjacent to at most one vertex of H. Otherwise, there exist vertices $s, t \in V(H)$ such that $s \sim x$ and $t \sim x$. Suppose that $R = \{x\} \cup V(H) \setminus \{s, t\}$. Therefore, $r(s|R) = (1, 1, \ldots, 1) = r(t|R)$. Thus, R is not a resolving set for G and |R| = k, which is a contradiction. Consequently, $\omega(G) = 2$ and $k = \omega(G) - 1 = 1$. Therefore, $G = K_2$, which contradicts $G \neq K_n$. Hence, $G = K_n$. \square

Lemma 2. If res(G) = k, then each two vertices of G have at most k - 1 common neighbors.

Proof. Suppose that $u, v \in V(G)$ and $T = N(u) \cap N(v)$. Thus, r(u|T) = (1, 1, ..., 1) = r(v|T). Therefore, T is not a resolving set for G. Since G is a randomly k-dimensional graph, $|N(u) \cap N(v)| = |T| \le k - 1$. \square

Theorem 6. If $G \neq K_n$ is a randomly k-dimensional graph of order n, then $\Delta(G) < n-2$.

Proof. Suppose on the contrary that there exists a vertex $u \in V(G)$ with $\deg(u) = n - 1$. For each $T \subseteq V(G) \setminus \{u\}$ with |T| = k - 1, the set $T \cup \{u\}$ is a resolving set for G while T is not a resolving set for G. Hence, there exist vertices $x, y \in V(G) \setminus T$ such that T(x|T) = T(y|T) and T(x) = T(y|T) by Lemma 2, |T(y)| = T(y|T). Hence, T(y) = T(y|T) because T(y) = T(y|T) is adjacent to all vertices of T(y) = T(y|T).

Now, suppose that $S = T \cup \{y\} \setminus \{v\}$, for an arbitrary vertex $v \in T$. Since |S| = k - 1, S is not a resolving set for G. Therefore, there exist vertices $a, b \in V(G) \setminus S$ such that r(a|S) = r(b|S). Since $S \cup \{u\}$ is a resolving set for G, we have $d(a, u) \neq d(b, u)$. Hence, $u \in \{a, b\}$, say b = u. Thus, $r(a|S) = r(u|S) = (1, 1, \ldots, 1)$. Consequently, $a \sim y$. Therefore, $a \in T$, because $N(y) = T \cup \{u\}$ and $a \neq u$. Hence, $a \in (V(G) \setminus S) \cap T = \{v\}$, that is a = v. Thus, v is adjacent to all vertices of $T \setminus \{v\}$. Since v is an arbitrary vertex of T, T is a clique. Therefore, $T \cup \{u, y\}$ is a clique of size k + 1 in G. Consequently, by Theorem 5, $G = K_n$, which is a contradiction. Thus, $\Delta(G) \leq n - 2$.

References

- [1] D.B. West, Introduction to Graph Theory, second ed., Prentice Hall Inc., Upper Saddle River, NJ, 2001, 07458.
- [2] P.J. Slater, Leaves of trees, Congressus Numerantium 14 (1975) 549–559.
- [3] F. Harary, R.A. Melter, On the metric dimension of a graph, Ars Combinatoria 2 (1976) 191–195.
- [4] J. Caceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara, D.R. Wood, On the metric dimension of Cartesian products of graphs, SIAM Journal on Discrete Mathematics 21 (2) (2007) 423–441.
- [5] G.G. Chappell, J. Gimbel, C. Hartman, Bounds on the metric and partition dimensions of a graph, Ars Combinatoria 88 (2008) 349–366.
- [6] G. Chartrand, P. Zhang, The theory and applications of resolvability in graphs. A survey, in: Proc. 34th Southeastern International Conf. on Combinatorics, Graph Theory and Computing, vol. 160, 2003, pp. 47–68.
- [7] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Applied Mathematics 70 (3) (1996) 217–229.
- [8] V. Saenpholphat, P. Zhang, Conditional resolvability in graphs: a survey, International Journal of Mathematics and Mathematical Sciences 38 (2004) 1997–2017.
- [9] A. Sebo, E. Tannier, On metric generators of graphs, Mathematics of Operations Research 29 (2) (2004) 383-393.
- [10] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal'ak, L.S. Ram, Network discovery and verification, IEEE Journal On Selected Areas in Communications 24 (12) (2006) 2168–2181.
- [11] R.A. Melter, I. Tomescu, Metric bases in digital geometry, Computer Vision, Graphics, and Image Processing 25 (1984) 113–121.
- [12] C. Hernando, M. Mora, I.M. Pelayo, C. Seara, D.R. Wood, Extremal graph theory for metric dimension and diameter, The Electronic Journal of Combinatorics (2010) #R30.
- [13] G. Chartrand, L. Eroh, M.A. Johnson, O.R. Ollerman, Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics 105 (2000) 99–113.
- [14] G. Chartrand, P. Zhang, On the chromatic dimension of a graph, Congressus Numerantium 145 (2000) 97–108.
- [15] C. Chartrand, C. Poisson, P. Zhang, Resolvability and the upper dimension of graphs, Computers and Mathematics with Applications 39 (2000) 19–28.