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a b s t r a c t

For an ordered set W = {w1, w2, . . . , wk} of vertices and a vertex v in a connected graph
G, the ordered k-vector r(v|W ) := (d(v, w1), d(v, w2), . . . , d(v, wk)) is called the (metric)
representation of v with respect to W , where d(x, y) is the distance between the vertices
x and y. The set W is called a resolving set for G if distinct vertices of G have distinct
representations with respect toW . A resolving set for Gwithminimum cardinality is called
a basis of G and its cardinality is the metric dimension of G. A connected graph G is called a
randomly k-dimensional graph if each k-set of vertices of G is a basis of G. In this work, we
study randomly k-dimensional graphs and provide some properties of these graphs.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

We refer the reader to [1] for graphical notation and terminology not described in this work. Throughout the work,
G = (V , E) is a finite, simple, and connected graph. The distance between two vertices u and v, denoted by d(u, v), is the
length of a shortest path between u and v in G. Also, N(v) is the set of all neighbors of vertex v and deg(v) = |N(v)| is
the degree of vertex v. The maximum degree of the graph G, ∆(G), is maxv∈V (G) deg(v). We mean by ω(G) the number of
vertices in a maximum clique in G. For a subset S of V (G),G \ S is the subgraph ⟨V (G) \ S⟩ induced by V (G) \ S in G. A set
S ⊆ V (G) is a separating set in G if G \ S has at least two connected components. We call a vertex v ∈ V (G) a cut vertex of
G if {v} is a separating set in G. If G ≠ Kn has no cut vertex, then G is called a 2-connected graph. u ∼ v and u � v denote
the adjacency and non-adjacency relations between u and v, respectively. The symbol (v1, v2, . . . , vn) represents a path of
order n, Pn.

For an ordered setW = {w1, w2, . . . , wk} ⊆ V (G) and a vertex v of G, the k-vector

r(v|W ) := (d(v, w1), d(v, w2), . . . , d(v, wk))

is called the (metric) representation of v with respect to W . The set W is called a resolving set for G if distinct vertices have
different representations. A resolving set forGwithminimum cardinality is called a basis ofG, and its cardinality is themetric
dimension of G, denoted by β(G).

For example, the graphs G and H in Fig. 1 have the basis B = {v1, v2} and hence β(G) = β(H) = 2. The representations
of vertices of Gwith respect to B are

r(v1|B) = (0, 1), r(v2|B) = (1, 0), r(v3|B) = (2, 1), r(v4|B) = (2, 2), r(v5|B) = (1, 2).

Also, the representations of vertices of H with respect to B are

r(v1|B) = (0, 1), r(v2|B) = (1, 0), r(v3|B) = (1, 1), r(v4|B) = (2, 2), r(v5|B) = (1, 2).
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Fig. 1. bas(G) = β(G) = res(G) and bas(H) ≠ β(H) ≠ res(H).

To see whether a given setW is a resolving set for G, it is sufficient to look at the representations of vertices in V (G) \W ,
because w ∈ W is the unique vertex of G for which d(w, w) = 0. WhenW is a resolving set for G, we say thatW resolves G.
In general, we say that an ordered set W resolves a set T of vertices in G if the representations of vertices in T are distinct
with respect toW . When W = {x}, we say that vertex x resolves T .

In [2], Slater introduced the idea of a resolving set and used a locating set and the location number for what we call a
resolving set and the metric dimension, respectively. He described the usefulness of these concepts when working with US
Sonar andCoast Guard Loran stations. Independently, Harary andMelter [3] discovered the concept of the locationnumber as
well and called it themetric dimension. Formore results related to these concepts see [4–8]. The concept of a resolving set has
various applications in diverse areas including coin weighing problems [9], network discovery and verification [10], robot
navigation [7], the mastermind game [4], problems of pattern recognition and image processing [11], and combinatorial
search and optimization [9].

The following simple result is very useful.

Observation 1 ([12]). Let G be a graph and u, v ∈ V (G) such that N(v) \ {u} = N(u) \ {v}. If W resolves G, then u or v is in
W .

It is obvious that for a graph G of order n, 1 ≤ β(G) ≤ n − 1.

Theorem A ([13]). Let G be a graph of order n. Then,

(i) β(G) = 1 if and only if G = Pn,
(ii) β(G) = n − 1 if and only if G = Kn.

The basis number, bas(G), of G is the maximum integer r such that every r-set of vertices of G is a subset of some basis of
G. Also, the resolving number, res(G), of G is the minimum integer k such that every k-set of vertices of G is a resolving set for
G. These parameters are introduced in [14,15], respectively. Clearly, if G is a graph of order n, then 0 ≤ bas(G) ≤ β(G) and
β(G) ≤ res(G) ≤ n−1. Chartrand et al. in [14] considered graphs Gwith bas(G) = β(G). They called these graphs randomly
k-dimensional graphs, where k = β(G). Obviously, bas(G) = β(G) if and only if res(G) = β(G). In other words, a randomly
k-dimensional graph is a graph for which every k-set of its vertices is a basis. For example in graph G of Fig. 1, ifW is a set of
two adjacent vertices, then the representations of vertices in V (G)\W with respect toW are (1, 2), (2, 2), and (2, 1). Also, if
W is a set of two non-adjacent vertices, then the representations of vertices in V (G)\W with respect toW are (1, 1), (1, 2),
and (2, 1). Therefore, G is a randomly two-dimensional graph. But, in graphH of Fig. 1, {v1, v4} is not a resolving set; henceH
is not a randomly two-dimensional graph. Since {v1, v2}, {v1, v3}, and {v4, v5} are bases of H, bas(H) = 1. Also, res(H) = 3,
because every 3-set of V (H) is a resolving set in H .

Obviously, K1 and K2 are the only randomly one-dimensional graphs. Chartrand et al. [14] proved that a graph G is
randomly two-dimensional if and only if G is an odd cycle. In this work, we first characterize all graphs of order n and
resolving number 1 and n − 1. Then, we provide some properties of randomly k-dimensional graphs.

2. The main results

We first characterize all graphs G with res(G) = 1 and all graphs G of order nwith res(G) = n − 1.

Theorem 1. Let G be a graph of order n. Then,

(i) res(G) = 1 if and only if G ∈ {P1, P2},
(ii) res(G) = n − 1 if and only if N(v) \ {u} = N(u) \ {v}, for some u, v ∈ V (G).

Proof. (i) It is easy to see that for G ∈ {P1, P2}, res(G) = 1. Conversely, suppose that res(G) = 1. Thus, 1 ≤ β(G) ≤ res(G) =

1 and hence, β(G) = 1. Therefore, by Theorem A, G = Pn. If n ≥ 3, then Pn has a vertex of degree 2 and this vertex does not
resolve its neighbors. Thus, res(G) ≥ 2, which is a contradiction. Consequently, n ≤ 2, that is G ∈ {P1, P2}.

(ii) Let u, v ∈ V (G) be such that N(v) \ {u} = N(u) \ {v}. If res(G) ≤ n − 2, then the set V (G) \ {u, v} is a resolving set
for G. But, by Observation 1, every resolving set for G contains at least one of the vertices u and v. This contradiction implies
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that res(G) = n − 1. Conversely, suppose that res(G) = n − 1. Thus, there exists a subset T of V (G) with cardinality n − 2
such that T is not a resolving set for G. Assume that T = V (G) \ {u, v}. If N(u) \ {v} ≠ N(v) \ {u}, then there exists a vertex
w ∈ T which is adjacent to only one of the vertices u and v and hence, d(u, w) ≠ d(v, w). Since w ∈ T , T resolves G, which
is a contradiction. Therefore, N(u) \ {v} = N(v) \ {u}. �

Corollary 1. If G ≠ Kn is a randomly k-dimensional graph, then for each pair of vertices u, v ∈ V (G),N(v) \ {u} ≠ N(u) \ {v}.

Proof. If N(v) \ {u} = N(u) \ {v} for some u, v ∈ V (G), then by Theorem 1, res(G) = n− 1, where n is the order of G. Since
G is a randomly k-dimensional graph, β(G) = res(G) = n − 1. Therefore, by Theorem A, G = Kn, which is a contradiction.
Hence, for each u, v ∈ V (G),N(v) \ {u} ≠ N(u) \ {v}. �

Lemma 1. If G is a randomly k-dimensional graph with k ≥ 2 and minimum degree δ, then δ ≥ 2.

Proof. Suppose on the contrary that there exists a vertex u ∈ V (G) with deg(u) = 1. Let v be the unique neighbor of u
and T ⊆ V (G) be a subset of V (G) with |T | = k and u, v ∈ T . Since G is a randomly k-dimensional graph, T \ {v} is not a
resolving set for G. Thus, there exists a pair of vertices x, y ∈ V (G) such that d(x, v) ≠ d(y, v) and d(x, t) = d(y, t) for each
t ∈ T \ {v}. Hence, d(x, u) = d(y, u). Clearly, if u ∈ {x, y}, then d(x, u) ≠ d(y, u), which is a contradiction. Consequently,
u ∉ {x, y}. Therefore, d(x, u) = d(x, v) + 1 and d(y, u) = d(y, v) + 1. Thus, d(x, v) = d(y, v). This contradiction implies
that δ ≥ 2. �

Theorem 2. If k ≥ 2, then every randomly k-dimensional graph is 2-connected.

Proof. Suppose on the contrary that u is a cut vertex inG. LetG1 be a connected component ofG\{u}. SetH2 := G\V (G1) and
H1 := ⟨V (G1) ∪ {u}⟩, the induced subgraph by V (G1) ∪ {u} of G. Note that for each x ∈ V (H1) and each y ∈ V (H2), d(x, y) =

d(x, u) + d(u, y). By Lemma 1, G does not have any vertex of degree 1. Therefore, |V (H1)| ≥ 3 and |V (H2)| ≥ 3. Suppose
that a, b ∈ V (H2) and V (H1) resolves {a, b}. Then, there exists a vertex w ∈ V (H1) such that d(a, w) ≠ d(b, w). Thus,
d(a, u) + d(u, w) ≠ d(b, u) + d(u, w), that is d(a, u) ≠ d(b, u). Hence, V (H1) resolves a pair of vertices of V (H2) if and only
if u resolves this pair. If V (H1) is a resolving set for G, then {u} is a resolving set for H2. Therefore, by Theorem A, H2 is a path.
Since |V (H2)| ≥ 3,G has a vertex of degree 1, which contradicts Lemma 1. Hence, β(H2) ≥ 2 and V (H1) does not resolve G.
Now, one of the following two cases can happen.

1. u belongs to a basis of H2. In this case u along with β(H2) − 1 vertices of V (H2) \ {u} forms a basis T of H2. Since
β(H2) ≥ 2, there exists a vertex x ∈ T \ {u}. Note that T ∪ V (H1) \ {x} is not a resolving set for G; otherwise T \ {x} is a
resolving set for H2 of size β(H2) − 1. Thus,

res(G) ≥ |T ∪ V (H1)| = β(H2) + |V (H1)| − 1.

Now, suppose that z ∈ V (G1). Since |V (H1)| ≥ 3 and G1 is a connected component of G \ {u}, z has a neighbor in G1, say v.
Therefore, d(z, v) = 1 ≠ d(y, v) for each y ∈ V (H2) \ {u}. Hence, the set T ∪ V (H1) \ {z} is a resolving set for G. Thus,

β(G) ≤ |T ∪ V (H1) \ {z}| = β(H2) + |V (H1)| − 2.

Consequently, β(G) < res(G), which is a contradiction.
2. u does not belong to any basis of H2. Let T be a basis of G and x ∈ T . Therefore, T ∪ V (H1) \ {x} is not a resolving set for

G. Hence,

res(G) ≥ |T ∪ V (H1)| = β(H2) + |V (H1)|.

Now, suppose that z ∈ V (G1). Like in the previous case, T ∪ V (H1) \ {z} is a resolving set for G. Thus,

β(G) ≤ |T ∪ V (H1) \ {z}| = β(H2) + |V (H1)| − 1.

Therefore, β(G) < res(G), which is impossible.
Consequently, G does not have any cut vertex. �

Theorem 3. If G is a randomly k-dimensional graph with k ≥ 4, then there are no adjacent vertices of degree 2 in G.

Proof. Suppose on the contrary that G has adjacent vertices of degree 2. Therefore, there is an induced subgraph Pr =

(a1, a2, . . . , ar), r ≥ 2, such that for each i, 1 ≤ i ≤ r, deg(ai) = 2 inG. Suppose that x, y ∈ V (G)\V (Pr) and x ∼ a1, y ∼ ar .
Since k ≥ 4,G is not a cycle. Thus, Theorem 2 implies that x ≠ y; otherwise, x = y is a cut vertex in G. By assumption, G has
a basis B = {x, y, ai, aj} ∪ T , where 1 ≤ i ≠ j ≤ r and T is a subset of V (G) \ {x, y, ai, aj} with |T | = k − 4. Now, one of the
following cases can happen.

1. r is odd. Suppose that B1 = B ∪


a r+1

2


\ {ai, aj}. We claim that B1 is a resolving set for G. Otherwise, there exist

vertices u, v ∈ V (G) with r(u|B1) = r(v|B1). If v ∈ V (Pr) and u ∉ V (Pr), then d

v, a r+1

2


≤

r−1
2 and d


u, a r+1

2


≥

r+1
2 .

Hence, r(u|B1) ≠ r(v|B1), which is a contradiction. Therefore, both of the vertices u and v belong to V (Pr) or V (G) \ V (Pr).
If u, v ∈ V (Pr), then d


u, a r+1

2


= d


v, a r+1

2


implies u, v ∈


a r+1

2 −i, a r+1
2 +i


for some i, 1 ≤ i ≤

r−1
2 . On the other



1628 M. Jannesari, B. Omoomi / Applied Mathematics Letters 24 (2011) 1625–1629

hand, d

x, a r+1

2 −i


=

r+1
2 − i and d


x, a r+1

2 +i


= min

 r+1
2 + i, r+1

2 − i + d(x, y)

. If r+1

2 + i ≤
r+1
2 − i + d(x, y), then

d

x, a r+1

2 −i


≠ d


x, a r+1

2 +i


, which is a contradiction. Thus, r+1

2 −i+d(x, y) < r+1
2 +i and hence, r+1

2 −i+d(x, y) =
r+1
2 −i,

because d

x, a r+1

2 −i


= d


x, a r+1

2 +i


. Therefore, d(x, y) = 0, which contradicts x ≠ y. Thus, u, v ∈ V (G) \ V (Pr). Since

r(u|B1) = r(v|B1) and B is a resolving set for G, there exists a vertex in B \ B1 = {ai, aj} \


a r+1

2


which resolves {u, v}. By

symmetry, we can assume that ai resolves {u, v}. Therefore, d(u, ai) ≠ d(v, ai), d(u, x) = d(v, x), and d(u, y) = d(v, y). But,

d(u, ai) = min{d(u, x) + d(x, ai), d(u, y) + d(y, ai)},

and

d(v, ai) = min{d(v, x) + d(x, ai), d(v, y) + d(y, ai)}.

If d(u, x)+ d(x, ai) ≤ d(u, y)+ d(y, ai) and d(v, x)+ d(x, ai) ≤ d(v, y)+ d(y, ai), then d(u, x)+ d(x, ai) ≠ d(v, x)+ d(x, ai),
which implies d(u, x) ≠ d(v, x), a contradiction. Similarly, if d(u, y) + d(y, ai) ≤ d(u, x) + d(x, ai) and d(v, y) +

d(y, ai) ≤ d(v, x) + d(x, ai), then d(u, y) ≠ d(v, y), which is a contradiction. Therefore, by symmetry, we can assume
that d(u, x) + d(x, ai) ≤ d(u, y) + d(y, ai) and d(v, y) + d(y, ai) ≤ d(v, x) + d(x, ai). Thus,

d(u, ai) = d(u, x) + d(x, ai) = d(v, x) + d(x, ai) ≥ d(v, ai),

and

d(v, ai) = d(v, y) + d(y, ai) = d(u, y) + d(y, ai) ≥ d(u, ai).

These imply that d(u, ai) = d(v, ai), which is a contradiction. Therefore, B1 is a resolving set for Gwith cardinality k − 1.
2. r is even. Suppose that B2 = B ∪


a r

2


\ {ai, aj}. Like in the previous case, B2 is a resolving set for G with cardinality

k − 1.
In both cases, we get a contradiction to the assumption that G is a randomly k-dimensional graph. Therefore, there are

no adjacent vertices of degree 2 in G. �

Theorem 4. If G is a randomly k-dimensional graph and T is a separating set of G with |T | = k − 1, then G \ T has exactly
two connected components and for each pair of vertices u, v ∈ V (G) \ T with r(u|T ) = r(v|T ), u and v belong to different
components.

Proof. Since β(G) = k and |T | = k − 1, there exist two vertices u, v ∈ V (G) \ T with r(u|T ) = r(v|T ). Let H be a
connected component of G \ T for which u ∉ H and v ∉ H . If w ∈ H , then there exist two vertices s, t ∈ T such that
d(u, w) = d(u, s) + d(s, w) and d(v, w) = d(v, t) + d(t, w). Since r(u|T ) = r(v|T ), we have d(u, s) = d(v, s) and
d(u, t) = d(v, t). Therefore,

d(u, w) = d(u, s) + d(s, w) = d(v, s) + d(s, w) ≥ d(v, w).

Also,

d(v, w) = d(v, t) + d(t, w) = d(u, t) + d(t, w) ≥ d(u, w).

Hence, d(u, w) = d(v, w). Thus, r(u|T ∪ {w}) = r(v|T ∪ {w}). Consequently, T ∪ {w} is not a resolving set for G and
|T∪{w}| = k. This contradicts the assumption thatG is randomly k-dimensional. Therefore,G\T has exactly two components
and u and v belong to different components. �

Corollary 2. If G is a randomly k-dimensional graph with k ≥ 2, then ∆(G) ≥ k.

Proof. If G = Kn, then ∆(G) = n − 1 = k. Now suppose that G ≠ Kn, and suppose on the contrary that ∆(G) ≤ k − 1.
Suppose that u ∈ V (G), deg(u) = ∆(G), and let T be a subset of V (G) with |T | = k − 1 and N(u) ⊆ T . By Theorem 4,
G \ T has exactly two connected components, of which one is {u}. Since |T | = k − 1 and β(G) = k, there exist two vertices
x, y ∈ V (G) \ T such that r(x|T ) = r(y|T ). By Theorem 4, x and y belong to different components. Therefore, one of them
is u, say x = u. Since r(u|T ) = r(y|T ), we have N(u) ⊆ N(y). By Corollary 1, G does not have any pair of vertices u, v with
N(u) \ {v} = N(v) \ {u}. Hence, N(u) ⊂ N(y); this contradicts deg(u) = ∆(G). Therefore, ∆(G) ≥ k. �

Corollary 3. If u and v are two non-adjacent vertices in a randomly k-dimensional graph, then deg(u) + deg(v) ≥ k.

Proof. If |N(u)∪N(v)| ≤ k−1, then let T be a subset of V (G)\ {u, v}with |T | = k−1 and N(u)∪N(v) ⊆ T . By Theorem 4,
G \ T has exactly two connected components {u} and {v}. Hence, |T | = n− 2. This implies that k = n− 1 and by Theorem 1,
G = Kn. Consequently, u ∼ v, which is a contradiction. Thus, deg(u) + deg(v) ≥ |N(u) ∪ N(v)| ≥ k. �

Theorem 5. If G is a randomly k-dimensional graph of order at least 2, then ω(G) ≤ k+ 1. Moreover, ω(G) = k+ 1 if and only
if G = Kn.
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Proof. Let H be a clique of size ω(G) in G and T be a subset of V (H) with |T | = ω(G) − 2. If T = V (H) \ {u, v}, then
r(u|T ) = (1, 1, . . . , 1) = r(v|T ). Therefore, T is not a resolving set for G. Since G is a randomly k-dimensional graph,
|T | ≤ k − 1. Thus, ω(G) − 2 = |T | ≤ k − 1. Consequently, ω(G) ≤ k + 1.

Clearly, if G = Kn, then ω(G) = k + 1. Conversely, suppose that ω(G) = k + 1. If G ≠ Kn, then there exists a vertex
x ∈ V (G) \ V (H) such that x is adjacent to some vertices of V (H), because G is connected. Since |V (H)| = ω(G), x is not
adjacent to all vertices of V (H). If there exist vertices y, z ∈ V (H) such that y � x and z � x, then d(x, y) = d(x, z) = 2,
because x is adjacent to somevertices ofH . Suppose that S = {x}∪V (H)\{y, z}. Therefore, r(y|S) = (2, 1, 1, . . . , 1) = r(z|S).
Thus, S is not a resolving set for G and |S| = k, which is a contradiction. Hence, x is adjacent to ω(G) − 1 vertices of H .

On the other hand, x is adjacent to at most one vertex of H . Otherwise, there exist vertices s, t ∈ V (H) such that s ∼ x
and t ∼ x. Suppose that R = {x}∪V (H)\{s, t}. Therefore, r(s|R) = (1, 1, . . . , 1) = r(t|R). Thus, R is not a resolving set for G
and |R| = k, which is a contradiction. Consequently, ω(G) = 2 and k = ω(G) − 1 = 1. Therefore, G = K2, which contradicts
G ≠ Kn. Hence, G = Kn. �

Lemma 2. If res(G) = k, then each two vertices of G have at most k − 1 common neighbors.

Proof. Suppose that u, v ∈ V (G) and T = N(u)∩N(v). Thus, r(u|T ) = (1, 1, . . . , 1) = r(v|T ). Therefore, T is not a resolving
set for G. Since G is a randomly k-dimensional graph, |N(u) ∩ N(v)| = |T | ≤ k − 1. �

Theorem 6. If G ≠ Kn is a randomly k-dimensional graph of order n, then ∆(G) ≤ n − 2.

Proof. Suppose on the contrary that there exists a vertex u ∈ V (G) with deg(u) = n − 1. For each T ⊆ V (G) \ {u} with
|T | = k−1, the set T∪{u} is a resolving set forGwhile T is not a resolving set forG. Hence, there exist vertices x, y ∈ V (G)\T
such that r(x|T ) = r(y|T ) and d(x, u) ≠ d(y, u). Since u is adjacent to all vertices of G, we have u ∈ {x, y}, say x = u. Thus,
r(y|T ) = r(u|T ) = (1, 1, . . . , 1). By Lemma 2, |N(u)∩N(y)| ≤ k−1. Hence, deg(y) ≤ k, because u is adjacent to all vertices
of G. This gives N(y) = T ∪ {u}.

Now, suppose that S = T ∪ {y} \ {v}, for an arbitrary vertex v ∈ T . Since |S| = k − 1, S is not a resolving set for G.
Therefore, there exist vertices a, b ∈ V (G) \ S such that r(a|S) = r(b|S). Since S ∪ {u} is a resolving set for G, we have
d(a, u) ≠ d(b, u). Hence, u ∈ {a, b}, say b = u. Thus, r(a|S) = r(u|S) = (1, 1, . . . , 1). Consequently, a ∼ y. Therefore,
a ∈ T , because N(y) = T ∪ {u} and a ≠ u. Hence, a ∈ (V (G) \ S) ∩ T = {v}, that is a = v. Thus, v is adjacent to all vertices
of T \ {v}. Since v is an arbitrary vertex of T , T is a clique. Therefore, T ∪ {u, y} is a clique of size k + 1 in G. Consequently,
by Theorem 5, G = Kn, which is a contradiction. Thus, ∆(G) ≤ n − 2. �
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