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1. Introduction

We refer the reader to [1] for graphical notation and terminology not described in this work. Throughout the work,
G = (V,E) is a finite, simple, and connected graph. The distance between two vertices u and v, denoted by d(u, v), is the
length of a shortest path between u and v in G. Also, N(v) is the set of all neighbors of vertex v and deg(v) = |[N(v)| is
the degree of vertex v. The maximum degree of the graph G, A(G), is max,ev () deg(v). We mean by w(G) the number of
vertices in a maximum clique in G. For a subset S of V(G), G \ S is the subgraph (V(G) \ S) induced by V(G) \ S in G. A set
S C V(G) is a separating set in G if G \ S has at least two connected components. We call a vertex v € V(G) a cut vertex of
G if {v} is a separating set in G. If G # K, has no cut vertex, then G is called a 2-connected graph. u ~ v and u ~ v denote

the adjacency and non-adjacency relations between u and v, respectively. The symbol (vq, vy, ..., v,) represents a path of
order n, P,.
For an ordered set W = {wq, w,, ..., wx} € V(G) and a vertex v of G, the k-vector

r(v|W) = (d(v, wq), d(v, wr), ..., dw, wy))

is called the (metric) representation of v with respect to W. The set W is called a resolving set for G if distinct vertices have
different representations. A resolving set for G with minimum cardinality is called a basis of G, and its cardinality is the metric
dimension of G, denoted by 8(G).

For example, the graphs G and H in Fig. 1 have the basis B = {v1, v} and hence §(G) = B(H) = 2. The representations
of vertices of G with respect to B are

r(vilB) =(0,1),  r(vB)=(1,0), r(vs3|B)=(2,1), r(wlB)=(2,2), r(vs|B)=(1,2).
Also, the representations of vertices of H with respect to B are
r(v1|B) = (0, 1), r(v2|B) = (1, 0), r(vs|B) = (1, 1), r(va|B) = (2, 2), r(vs|B) = (1, 2).
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Fig. 1. bas(G) = B(G) = res(G) and bas(H) # B(H) # res(H).

To see whether a given set W is a resolving set for G, it is sufficient to look at the representations of vertices in V(G) \ W,
because w € W is the unique vertex of G for which d(w, w) = 0. When W is a resolving set for G, we say that W resolves G.
In general, we say that an ordered set W resolves a set T of vertices in G if the representations of vertices in T are distinct
with respect to W. When W = {x}, we say that vertex x resolves T.

In [2], Slater introduced the idea of a resolving set and used a locating set and the location number for what we call a
resolving set and the metric dimension, respectively. He described the usefulness of these concepts when working with US
Sonar and Coast Guard Loran stations. Independently, Harary and Melter [3] discovered the concept of the location number as
well and called it the metric dimension. For more results related to these concepts see [4-8]. The concept of aresolving set has
various applications in diverse areas including coin weighing problems [9], network discovery and verification [10], robot
navigation [7], the mastermind game [4], problems of pattern recognition and image processing [11], and combinatorial
search and optimization [9].

The following simple result is very useful.

Observation 1 ([12]). Let G be a graph and u, v € V(G) such that N(v) \ {u} = N(u) \ {v}. If W resolves G, then u or v is in
W.

It is obvious that for a graph G of ordern, 1 < 8(G) <n— 1.

Theorem A ([13]). Let G be a graph of order n. Then,

(i) B(G) = 1lifandonlyif G = P,
(ii) B(G) =n— lifand only if G = K,.

The basis number, bas(G), of G is the maximum integer r such that every r-set of vertices of G is a subset of some basis of
G. Also, the resolving number, res(G), of G is the minimum integer k such that every k-set of vertices of G is a resolving set for
G. These parameters are introduced in [14,15], respectively. Clearly, if G is a graph of order n, then 0 < bas(G) < B(G) and
B(G) < res(G) < n—1.Chartrand et al. in [ 14] considered graphs G with bas(G) = B(G). They called these graphs randomly
k-dimensional graphs, where k = 8(G). Obviously, bas(G) = B(G) if and only if res(G) = B(G). In other words, a randomly
k-dimensional graph is a graph for which every k-set of its vertices is a basis. For example in graph G of Fig. 1, if W is a set of
two adjacent vertices, then the representations of vertices in V (G) \ W with respect to W are (1, 2), (2, 2),and (2, 1). Also, if
W is a set of two non-adjacent vertices, then the representations of vertices in V(G) \ W with respect to W are (1, 1), (1, 2),
and (2, 1). Therefore, G is a randomly two-dimensional graph. But, in graph H of Fig. 1, {v1, v4} is not a resolving set; hence H
is not a randomly two-dimensional graph. Since {v1, vy}, {v1, v3}, and {vg, vs} are bases of H, bas(H) = 1. Also, res(H) = 3,
because every 3-set of V(H) is a resolving set in H.

Obviously, K; and K, are the only randomly one-dimensional graphs. Chartrand et al. [14] proved that a graph G is
randomly two-dimensional if and only if G is an odd cycle. In this work, we first characterize all graphs of order n and
resolving number 1 and n — 1. Then, we provide some properties of randomly k-dimensional graphs.

2. The main results
We first characterize all graphs G with res(G) = 1 and all graphs G of order n with res(G) = n — 1.

Theorem 1. Let G be a graph of order n. Then,

(i) res(G) = lifandonly if G € {Py, P»},
(ii) res(G) = n — lifand only if N(v) \ {u} = N(u) \ {v}, for some u, v € V(G).

Proof. (i)Itiseasy to see that for G € {P;, P,}, res(G) = 1. Conversely, suppose thatres(G) = 1.Thus, 1 < 8(G) < res(G) =
1 and hence, 8(G) = 1. Therefore, by Theorem A, G = P,. If n > 3, then P, has a vertex of degree 2 and this vertex does not
resolve its neighbors. Thus, res(G) > 2, which is a contradiction. Consequently, n < 2, thatis G € {Py, P»}.

(ii) Let u, v € V(G) be such that N(v) \ {u} = N(u) \ {v}. Ifres(G) < n — 2, then the set V(G) \ {u, v} is a resolving set
for G. But, by Observation 1, every resolving set for G contains at least one of the vertices u and v. This contradiction implies
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that res(G) = n — 1. Conversely, suppose that res(G) = n — 1. Thus, there exXists a subset T of V(G) with cardinality n — 2
such that T is not a resolving set for G. Assume that T = V(G) \ {u, v}.If N(u) \ {v} # N(v) \ {u}, then there exists a vertex
w € T which is adjacent to only one of the vertices u and v and hence, d(u, w) # d(v, w). Since w € T, T resolves G, which
is a contradiction. Therefore, N(u) \ {v} = N(v) \ {u}. O

Corollary 1. If G # K, is a randomly k-dimensional graph, then for each pair of vertices u, v € V(G), N(v) \ {u} # N(u) \ {v}.

Proof. If N(v) \ {u} = N(u) \ {v} for some u, v € V(G), then by Theorem 1, res(G) = n — 1, where n is the order of G. Since
G is a randomly k-dimensional graph, 8(G) = res(G) = n — 1. Therefore, by Theorem A, G = Kj,, which is a contradiction.
Hence, foreachu, v € V(G), Nw) \ {u} ZN@) \ {v}. O

Lemma 1. If Gis a randomly k-dimensional graph with k > 2 and minimum degree &, then § > 2.

Proof. Suppose on the contrary that there exists a vertex u € V(G) with deg(u) = 1. Let v be the unique neighbor of u
and T C V(G) be a subset of V(G) with |[T| = kand u, v € T. Since G is a randomly k-dimensional graph, T \ {v} is not a
resolving set for G. Thus, there exists a pair of vertices x, y € V(G) such that d(x, v) # d(y, v) and d(x, t) = d(y, t) for each
t € T\ {v}. Hence, d(x, u) = d(y, u). Clearly, if u € {x,y}, then d(x, u) # d(y, u), which is a contradiction. Consequently,
u ¢ {x,y}. Therefore, d(x, u) = d(x,v) + 1and d(y, u) = d(y, v) + 1. Thus, d(x, v) = d(y, v). This contradiction implies
thaté > 2. O

Theorem 2. If k > 2, then every randomly k-dimensional graph is 2-connected.

Proof. Suppose on the contrary that uis a cut vertex in G. Let G; be a connected component of G\ {u}. Set H, := G\ V(G;) and
Hi = (V(Gy) U {u}), the induced subgraph by V(G1) U {u} of G. Note that for eachx € V(H;) and eachy € V(H,), d(x,y) =
d(x,u) + d(u, y). By Lemma 1, G does not have any vertex of degree 1. Therefore, |V (H;)| > 3 and |V(H;)| > 3. Suppose
that a, b € V(H,) and V(H;) resolves {a, b}. Then, there exists a vertex w € V(H;) such that d(a, w) # d(b, w). Thus,
d(a, u) +d(u, w) # d(b, u) + d(u, w), thatis d(a, u) # d(b, u). Hence, V(H;) resolves a pair of vertices of V (H,) if and only
if u resolves this pair. If V(H,) is a resolving set for G, then {u} is a resolving set for H,. Therefore, by Theorem A, H, is a path.
Since |V (H3)| > 3, G has a vertex of degree 1, which contradicts Lemma 1. Hence, 8(H;) > 2 and V (H;) does not resolve G.
Now, one of the following two cases can happen.

1. u belongs to a basis of Hs. In this case u along with 8(H,) — 1 vertices of V(H,) \ {u} forms a basis T of H,. Since
B(Hy) > 2, there exists a vertex x € T \ {u}. Note that T U V(H;) \ {x} is not a resolving set for G; otherwise T \ {x} is a
resolving set for H, of size 8(H;) — 1. Thus,

res(G) = [TUV(Hy| = B(Hy) + [V(H)| — 1.

Now, suppose that z € V(G,). Since |V (H;)| > 3 and G, is a connected component of G \ {u}, z has a neighbor in G, say v.
Therefore, d(z, v) = 1 # d(y, v) foreachy € V(H,) \ {u}. Hence, the set T U V(Hy) \ {z} is a resolving set for G. Thus,

B(G) = [TUV(H) \ {z}| = B(H) + [V(H))| — 2.

Consequently, 8(G) < res(G), which is a contradiction.
2. u does not belong to any basis of H,. Let T be a basis of G and x € T. Therefore, T U V(H;) \ {x} is not a resolving set for
G. Hence,

res(G) > [T UV(H1)| = B(Hz) + |[V(H1)|.
Now, suppose that z € V(G,). Like in the previous case, T U V(H;) \ {z} is a resolving set for G. Thus,
BG) = ITUV(H) \ {z}| = B(H2) + [V(H)| — 1.
Therefore, B(G) < res(G), which is impossible.
Consequently, G does not have any cut vertex. O
Theorem 3. If Gis a randomly k-dimensional graph with k > 4, then there are no adjacent vertices of degree 2 in G.

Proof. Suppose on the contrary that G has adjacent vertices of degree 2. Therefore, there is an induced subgraph P, =
(ay,az,...,a;), r > 2,suchthatforeachi, 1 <i <r, deg(a;) = 2inG.Suppose thatx,y € V(G)\V(P;)andx ~ a;,y ~ a,.
Since k > 4, G is not a cycle. Thus, Theorem 2 implies that x # y; otherwise, x = y is a cut vertex in G. By assumption, G has
abasisB = {x,y,a;,aq;} UT,where 1 <i##j<randTisasubsetof V(G) \ {x,y, a;, a;} with |T| = k — 4. Now, one of the
following cases can happen.

1. r is odd. Suppose that By = B U {a% } \ {a;, aj}. We claim that By is a resolving set for G. Otherwise, there exist
vertices u, v € V(G) with r(u|B;) = r(v|By).Ifv € V(P;) and u ¢ V(P,), thend (v, a# < % and d (u, a# > %
Hence, r(u|B1) # r(v|B;), which is a contradiction. Therefore, both of the vertices u and v belong to V(P;) or V(G) \ V(P;).
Ifu,v € V(P;), thend (u, ar#) =d (v, a%> implies u, v € {a%ﬂ., a#ﬂ.} forsomei,1 < i < % On the other
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hand, d (x arys ) = ! —iand d (x argr ) = min {55+ i S — i dGe )| IE S i < B — i+ dx, ), then

d (x, a%ﬂ.) #d (x, a%ﬂ,),whichisacontradiction. Thus, %! —i+d(x,y) < ' +iand hence, 3! —i+d(x,y) = St —i,

because d (x, a#q) =d (x, a#ﬂ.). Therefore, d(x, y) = 0, which contradicts x # y. Thus, u,v € V(G) \ V(P;). Since

r(ulB1) = r(v|By) and B is a resolving set for G, there exists a vertex in B\ By = {a;, a;} \ {a# } which resolves {u, v}. By
symmetry, we can assume that g; resolves {u, v}. Therefore, d(u, a;) # d(v, a;), d(u, x) = d(v, x),and d(u, y) = d(v, y). But,

d(u, ;) = min{d(u, x) + d(x, a;), d(u, y) + d(y, a;)},
and
d(v, a;)) = min{d(v, x) + d(x, a;), d(v,y) + d(y, a))}.

Ifd(u,x) +dx, a;) <d(u,y)+d(y,a)andd(v, x) +d(x, a;)) <d(v,y)+d(, a;), thend(u, x) +d(x, a;) # d(v, x) +d(x, a;),
which implies d(u,x) # d(v,x), a contradiction. Similarly, if d(u,y) + d(y,a) < d(u,x) + d(x,q;) and d(v,y) +
d@y, a) < d(v,x) + d(x, a;), then d(u,y) # d(v,y), which is a contradiction. Therefore, by symmetry, we can assume
that d(u, x) + d(x, a;)) < d(u,y) + d(y, a;) and d(v, y) + d(y, a;) < d(v, x) + d(x, a;). Thus,

d(u, a;)) = d(u,x) +d(x, a;) = d(v, x) +d(x, a;) > d(v, a;),
and
d(,a) =d(v,y) +dy, a) = d(u,y) +d(y, a) = d(u, a;).
These imply that d(u, a;) = d(v, a;), which is a contradiction. Therefore, By is a resolving set for G with cardinality k — 1.
2.1 is even. Suppose that B, = BU {a% } \ {a;, g;}. Like in the previous case, B, is a resolving set for G with cardinality
k—1.

In both cases, we get a contradiction to the assumption that G is a randomly k-dimensional graph. Therefore, there are
no adjacent vertices of degree2in G. O

Theorem 4. If G is a randomly k-dimensional graph and T is a separating set of G with |T| = k — 1, then G \ T has exactly
two connected components and for each pair of vertices u,v € V(G) \ T with r(u|T) = r(v|T), u and v belong to different
components.

Proof. Since 8(G) = k and |T| = k — 1, there exist two vertices u,v € V(G) \ T with r(u|T) = r(v|T). Let H be a
connected component of G \ T for whichu ¢ Hand v ¢ H.If w € H, then there exist two vertices s, t € T such that
d(u,w) = d(u,s) + d(s, w) and d(v, w) = d(v,t) + d(t, w). Since r(u|T) = r(w|T), we have d(u,s) = d(v,s) and
d(u, t) = d(v, t). Therefore,

d(u, w) =d(u,s) +d(s, w) =d(v,s) +d(s, w) > d(v, w).
Also,
dlv,w) =d(v,t) +d(t, w) =d(u,t)+d(t, w) > d(u, w).

Hence, d(u, w) = d(v, w). Thus, r(u|T U {w}) = r(v|T U {w}). Consequently, T U {w} is not a resolving set for G and
|TU{w}| = k. This contradicts the assumption that G is randomly k-dimensional. Therefore, G\ T has exactly two components
and u and v belong to different components. O

Corollary 2. If Gis a randomly k-dimensional graph with k > 2, then A(G) > k.

Proof. If G = K, then A(G) = n — 1 = k. Now suppose that G # K, and suppose on the contrary that A(G) < k — 1.
Suppose that u € V(G), deg(u) = A(G), and let T be a subset of V(G) with [T| = k — 1 and N(u) € T. By Theorem 4,
G \ T has exactly two connected components, of which one is {u}. Since |T| = k — 1 and B(G) = k, there exist two vertices
X,y € V(G) \ T such that r(x|T) = r(y|T). By Theorem 4, x and y belong to different components. Therefore, one of them
is u, say x = u. Since r(u|T) = r(y|T), we have N(u) € N(y). By Corollary 1, G does not have any pair of vertices u, v with
N(u) \ {v} = N(v) \ {u}. Hence, N(u) C N(y); this contradicts deg(u) = A(G). Therefore, A(G) > k. O

Corollary 3. If u and v are two non-adjacent vertices in a randomly k-dimensional graph, then deg(u) + deg(v) > k.

Proof. If [IN(u) UN(v)| < k—1,thenlet T be a subset of V(G) \ {u, v} with |[T| = k— 1and N(u) UN(v) C T.By Theorem 4,
G\ T has exactly two connected components {u} and {v}. Hence, |T| = n — 2. This implies that k = n — 1 and by Theorem 1,
G = K,. Consequently, u ~ v, which is a contradiction. Thus, deg(u) 4+ deg(v) > [INw) UN(@)| > k. O

Theorem 5. If G is a randomly k-dimensional graph of order at least 2, then w(G) < k+ 1. Moreover, w(G) = k+ 1if and only
if G=K,.



M. Jannesari, B. Omoomi / Applied Mathematics Letters 24 (2011) 1625-1629 1629

Proof. Let H be a clique of size w(G) in G and T be a subset of V(H) with |T| = w(G) — 2. If T = V(H) \ {u, v}, then
r(w|T) = (1,1,...,1) = r(v|T). Therefore, T is not a resolving set for G. Since G is a randomly k-dimensional graph,
|T| <k — 1.Thus, w(G) — 2 = |T| < k — 1. Consequently, ®(G) < k+ 1.

Clearly, if G = K, then w(G) = k + 1. Conversely, suppose that w(G) = k + 1. If G # K, then there exists a vertex
x € V(G) \ V(H) such that x is adjacent to some vertices of V(H), because G is connected. Since |V(H)| = w(G), x is not
adjacent to all vertices of V(H). If there exist vertices y,z € V(H) such thaty ~ xand z = x, thend(x,y) = d(x,z) = 2,
because x is adjacent to some vertices of H. Suppose thatS = {x}UV (H)\{y, z}. Therefore,r(y|S) = (2, 1, 1, ..., 1) = r(z]S).
Thus, S is not a resolving set for G and |S| = k, which is a contradiction. Hence, x is adjacent to w(G) — 1 vertices of H.

On the other hand, x is adjacent to at most one vertex of H. Otherwise, there exist vertices s, t € V(H) such thats ~ x
and t ~ x.Suppose thatR = {x} UV (H) \ {s, t}. Therefore, r(s|R) = (1, 1, ..., 1) = r(t|R). Thus, R is not a resolving set for G
and |R| = k, which is a contradiction. Consequently, w(G) = 2 and k = w(G) — 1 = 1. Therefore, G = K;, which contradicts
G # K,.Hence,G =K,. O

Lemma 2. If res(G) = k, then each two vertices of G have at most k — 1 common neighbors.

Proof. Suppose thatu, v € V(G)andT = N(u)NN(v).Thus,r(u|T) = (1, 1, ..., 1) = r(v|T). Therefore, T is not a resolving
set for G. Since G is a randomly k-dimensional graph, [IN(u) "N(v)| = |T| <k—-1. O

Theorem 6. If G # K, is a randomly k-dimensional graph of order n, then A(G) < n — 2.

Proof. Suppose on the contrary that there exists a vertex u € V(G) with deg(u) = n — 1. Foreach T C V(G) \ {u} with
|T| = k—1, the set TU{u} is a resolving set for G while T is not a resolving set for G. Hence, there exist verticesx, y € V(G)\T
such that r(x|T) = r(y|T) and d(x, u) # d(y, u). Since u is adjacent to all vertices of G, we have u € {x, y}, say x = u. Thus,
r(y|T) =r|T) = (1,1,...,1).ByLemma 2, [N(u) NN (y)| < k— 1. Hence, deg(y) < k, because u is adjacent to all vertices
of G. This gives N(y) = T U {u}.

Now, suppose that S = T U {y} \ {v}, for an arbitrary vertex v € T. Since |S| = k — 1, S is not a resolving set for G.
Therefore, there exist vertices a, b € V(G) \ S such that r(a|S) = r(b|S). Since S U {u} is a resolving set for G, we have
d(a,u) # d(b, u). Hence, u € {a, b}, say b = u. Thus, r(a|S) = r(u|S) = (1,1, ..., 1). Consequently, a ~ y. Therefore,
a € T,because N(y) = T U {u} and a # u. Hence,a € (V(G) \ S) N T = {v}, thatis a = v. Thus, v is adjacent to all vertices
of T \ {v}. Since v is an arbitrary vertex of T, T is a clique. Therefore, T U {u, y} is a clique of size k + 1 in G. Consequently,
by Theorem 5, G = K, which is a contradiction. Thus, A(G) <n—2. O
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