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Abstract

A local coloring of a graph G is a function c : V (G) −→ N

having the property that for each set S ⊆ V (G) with 2 ≤ |S| ≤ 3,
there exist vertices u, v ∈ S such that |c(u) − c(v)| ≥ mS , where
mS is the size of the induced subgraph 〈S〉. The maximum color
assigned by a local coloring c to a vertex of G is called the value
of c and is denoted by χ�(c). The local chromatic number of G is
χ�(G) = min{χ�(c)}, where the minimum is taken over all local
colorings c of G. If χ�(c) = χ�(G), then c is called a minimum local
coloring of G. The local coloring of graphs introduced by Chartrand
et. al. in 2003. In this paper, following the study of this concept,
first an upper bound for χ�(G) where G is not complete graphs K4

and K5, is provided in terms of maximum degree Δ(G). Then the
exact value of χ�(G) for some special graphs G such as the cartesian
product of cycles, paths and complete graphs is determined.

Key Words: local coloring, local chromatic number.

1 Introduction

A standard coloring or simply a (vertex) coloring of a graph G is a function
c : V (G) −→ N, where N denotes the set of positive integers, having the
property that c(u) �= c(v) for every pairs u, v of adjacent vertices of G.
The chromatic number χ(G) is defined as the minimum number of colors
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used in any coloring of G. A k-coloring of G uses k colors. Define the
value of a coloring c of G by χ(c) = max{c(v) : v ∈ V (G)}. Then
χ(G) = min{χ(c) : c is a coloring of G}. In each k-coloring of G, the
vertex set V (G) is partitioned into subsets V1, V2, . . . , Vk, where each set
Vi, 1 ≤ i ≤ k, is referred to as a color class with each vertex in Vi being
assigned the color i, in fact each set Vi, 1 ≤ i ≤ k, is an independent set.

Variations and generalizations of graph coloring have been studied by
many authors and in many ways. The idea of defining the coloring of graphs
by means of conditions placed on color classes was discussed in [4] and [5].

The standard definition of coloring can also be modified so that the
local requirement that adjacent vertices must be assigned distinct colors is
replaced by a more global requirement.

For a graph G and a nonempty subset S ⊆ V (G), let mS denote the
size of the induced subgraph 〈S〉. A standard coloring of a graph G can be
considered as a function c : V (G) −→ N with the property that for every
2-element set S = {u, v} of vertices of G, |c(u) − c(v)| ≥ mS .

Defining the standard coloring of a graph in this way suggested the
extension of this concept introduced in [2] and [3].

Let G be a graph of order n ≥ 2, and let k be a fixed integer with
2 ≤ k ≤ n. A k-local coloring of a graph G is a function c : V (G) −→ N

having the property that for each set S ⊆ V (G) with 2 ≤ |S| ≤ k, there
exist vertices u, v ∈ S such that |c(u) − c(v)| ≥ mS , where mS is the
size of the induced subgraph 〈S〉. The maximum color assigned by a k-
local coloring c to a vertex of G is called the value of c and is denoted by
lck(c). The k-local chromatic number of G is lck(G) = min{lck(c)}, where
the minimum is taken over all k-local coloring c of G. For every integer
2 ≤ k ≤ n, it follows that χ(G) = lc2(G) ≤ lc3(G) ≤ . . . ≤ lck(G).

The k-local coloring of graphs for k = 3 was discussed in [2] and [3].
A 3-local coloring c of a graph G is referred to as a local coloring of G
and lc3(G) is denoted by χ�(G) which is also referred to as local chromatic
number of G. If χ�(c) = χ�(G), then c is called a minimum local coloring
of G.

Therefore, the local chromatic number of G is slightly more global than
the chromatic number of G since the conditions on colors that can be
assigned to the vertices of G depend on subgraphs of order 2 and 3 in G
rather than only on subgraphs of order 2.

Just as with standard coloring, where χ(H) ≤ χ(G) for any subgraph
H of a graph G, it follows that χ�(H) ≤ χ�(G) as well.
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It is often useful to observe that if c is a local coloring of a graph
G whose value is s, then the complementary coloring c̄ of c defined by
c̄(v) = s + 1 − c(v) for all v ∈ V (G) is a local coloring of G as well.

In [2] and [3] among other facts the following results are established.

Theorem A. For every graph G of order at least 3,

χ(G) ≤ χ�(G) ≤ 2χ(G) − 1.

Theorem B. If G is a connected graph with maximum degree Δ(G) that
is not a triangle, then

χ�(G) ≤ 2Δ(G) − 1.

Theorem C. If G is a connected bipartite graph of order at least 3, then
χ�(G) = 3.

Theorem D. Let G = Kn1,n2,...,nr+s
be a complete multipartite graph,

where r of the integers ni are at least 2, the remaining s integers ni are 1,
and r + s ≥ 2. Then

χ�(G) = 2r +
⌊

3s − 1
2

⌋
.

In particular,

χ�(Kn) =
⌊

3n − 1
2

⌋

for every positive integer n.

The local chromatic number of all paths and cycles are also known.

Theorem E. For n ≥ 4 and m ≥ 3, χ�(Cn) = χ�(Pm) = 3.

By Theorem C, if G is a 3-regular bipartite graph, then χ�(G) = 3.
Furthermore, χ�(K4) = 5. The following conjecture is stated in [3].

Conjecture 1. If G is a connected 3-regular graph that is neither bipartite
nor complete, then χ�(G) = 4.

In the next section we prove that the above conjecture is true.
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2 Upper Bound for Local Chromatic Number

In this section first we provide an upper bound for the local chromatic
number of a connected graph G except K4 and K5 in terms of maximum
degree Δ(G). Then we conclude that if G is a connected 3-regular graph
that is neither bipartite nor complete, then χ�(G) = 4, which proves that
Conjecture 1 is true.

The following theorem is due to Brooks [1].

Theorem F. If G is a connected graph that is neither an odd cycle nor a
complete graph, then χ(G) ≤ Δ(G).

Theorem 1. For every connected graph G with maximum degree Δ(G)
greater than 2, except K4 and K5; we have

χ�(G) ≤ 2Δ(G) − 2.

Proof. For G = Kn, n ≥ 6, by Theorem D,

χ�(Kn) =
⌊

3n − 1
2

⌋
≤ 2Δ(G) − 2 = 2n − 4.

If G is not a complete graph, since Δ(G) ≥ 3, G is not a cycle, there-
fore by Theorem F, we have χ(G) ≤ Δ(G). If χ(G) ≤ Δ(G) − 1 then
by Theorem A, χ�(G) ≤ 2χ(G) − 1 ≤ 2Δ(G) − 2 and we are done.
Now let χ(G) = Δ(G) = Δ. For every Δ-coloring c of graph G, let
{Ac

1, A
c
2, . . . , A

c
Δ} be a partition of V (G) to Δ color classes. Define the

family F as follows

F = {P = {|Ac
1|, |Ac

2|, ..., |Ac
Δ|} | c is a Δ-coloring of G}.

Let α := min{min P | P ∈ F}; in fact α is the size of smallest color
calss among all of the Δ-coloring of graph G. Consider the partition Pα =
{A1, ..., AΔ} where |AΔ| = α and Ai = {ai

1, . . . , a
i
ni
}, 1 ≤ i ≤ Δ, is a

color class of color i in a Δ-coloring of graph G. We define a local coloring
c : V (G) −→ N by

c(v) =

⎧⎪⎪⎨
⎪⎪⎩

2i − 1 If v ∈ Ai, 1 ≤ i ≤ Δ − 2,
2Δ − 2 If v ∈ AΔ−1,
2Δ − 4 If v ∈ AΔ, and |N(v) ∩ AΔ−1| = 2,
2Δ − 3 If v ∈ AΔ, and |N(v) ∩ AΔ−1| = 1,

where N(v) is the set of vertices adjacent to v.
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Since AΔ is the smallest color class among all partitions of V (G) to Δ
color classes, each vertex v ∈ AΔ has at least one neighbor in each Ai,
i = 1, . . . ,Δ − 1. Hence each vertex v ∈ AΔ has at most two neighbors
in AΔ−1, so |N(v) ∩ AΔ−1| = 1 or 2. Therefore the assignment c is well
defined.

To see that c is a local coloring of G, let S be a subset of V (G) with
2 ≤ |S| ≤ 3, we show that there exist vertices u and v in S such that
|c(u) − c(v)| ≥ mS , where mS is the size of the induced subgraph 〈S〉.

Clearly c is a vertex coloring of G, so when |S| = 2 or mS = 1 we are
done. Now assume |S| = 3 and mS ≥ 2. Let A :=

⋃Δ−2
i=1 Ai, we consider

the following cases.

(a) S = {ai
r, a

j
s, a

k
t } where 1 ≤ i < j < k ≤ Δ.

In this case |c(ai
t)− c(ak

r )| ≥ mS for i < Δ−2, and |c(ai
r)− c(aj

s)| ≥ mS

for i = Δ − 2.

Not that mS = 3 is possible only in case (a), so in the following cases
we have mS = 2.

(b) S = {ai
r, a

j
s, a

k
t } where 1 ≤ i ≤ j ≤ k ≤ Δ − 1.

It is obvious that there exist vertices u and v in S where |c(u)−c(v)| ≥ 2.

(c) S = {u, v, aΔ
t } where u, v ∈ A, aΔ

t ∈ AΔ.

If c(aΔ
t ) = 2Δ − 3 then |c(aΔ

t ) − c(v)| ≥ 2, because 1 ≤ c(v) ≤ 2Δ − 5.
If c(aΔ

t ) = 2Δ − 4, then aΔ
t has one neighbor in each Ai, 1 ≤ i ≤ Δ − 2.

Since mS = 2, we must have u ∈ Ai, v ∈ Aj and 1 ≤ i �= j ≤ Δ − 2, hence
|c(u) − c(v)| ≥ 2.

(d) S = {u, v, aΔ
t } where u, v ∈ AΔ−1.

Since mS = 2, we must have u, v ∈ N(aΔ
t ). Hence c(aΔ

t ) = 2Δ − 4 and
|c(at

Δ) − c(v)| ≥ 2.

(e) S = {u, v, aΔ−1
t } where u, v ∈ AΔ.

In this case if c(u) or c(v) is 2Δ − 4, we are done. Otherwise c(u) =
c(v) = 2Δ − 3. Since mS = 2, aΔ−1

t is the only neighbor of u and v in
AΔ−1. If aΔ−1

t has no any other neighbor in AΔ, we can put vertices u and
v in AΔ−1 and put vertex aΔ−1

t in AΔ. Therefore we obtain a color class
of size smaller than α, which is contradiction.

If aΔ−1
t has neighbors in AΔ except u and v, since deg(aΔ−1

t ) ≤ Δ,
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there exists Ai, 1 ≤ i ≤ Δ − 2, which aΔ−1
t has no neighbor in Ai. In this

case we can put aΔ−1
t in Ai and put vertices u and v in AΔ−1. Therefore

we obtain a color class of size smaller than α, which is contradiction.

(f) S = {u, v, w} where u, v ∈ AΔ and w ∈ A.

If one of the vertices u and v has color 2Δ − 3, since c(w) ≤ 2Δ − 5,
then we are done. Otherwise c(u) = c(v) = 2Δ − 4, hence each vertex u
and v has two neighbors in AΔ−1. Since mS = 2, w is the only neighbor of
vertices u and v in some Aj , 1 ≤ j ≤ Δ− 2. Now if w has neighbors in AΔ

except u and v, since deg(w) ≤ Δ, there exists Ai, 1 ≤ i ≤ Δ − 1, which
w has no neighbor in Ai. In this case we can put vertex w in Ai and put
vertices u and v in Aj . Therefore we obtain a color class of size smaller
than α, which is contradiction. If w has no any other neighbor in AΔ, we
can put vertex w in AΔ and put vertices u and v in Aj . Hence we obtain
a color class of size smaller than α, which is contradiction. �

Proposition 1. If G is not a bipartite graph and δ(G) ≥ 3, then χ�(G) ≥ 4.

Proof. Since G is not bipartite graph, G contains an odd cycle C2k+1.
Hence χ�(G) ≥ χ(C2k+1) ≥ 3. If the local chromatic number of G is 3, then
for any local coloring c of G of value 3, there exists a vertex v ∈ V (C2k+1)
such that c(v) = 2. The vertex v has at least three neighbors, at least two
of them have colors either 1 or 3. Each case contradicts that c is a local
coloring. Hence χ�(G) ≥ 4. �

The following corollary proves that Conjecture 1 is true.

Corollary 1. If G is a connected 3-regular graph that is neither bipartite
nor complete, then χ�(G) = 4.

Proof. By Theorem 1, χ�(G) ≤ 2Δ(G) − 2 = 4. Also by Proposition 1,
χ�(G) ≥ 4. Hence χ�(G) = 4. �

3 Local Chromatic Number of Some Graphs

In this section we study the local chromatic number of the graphs Wn,
Cm × Cn, Cm × Pn, Pm × Pn and Km × Kn.

Given two graphs G and H, the join of G and H, denoted by G ∨H is
a graph with V (G ∨ H) = V (G) ∪ V (H) and E(G ∨ H) = E(G) ∪ E(H) ∪
{uv | u ∈ V (G), v ∈ V (H)}.
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Theorem 2. For every two graphs G and H, we have

χ�(G ∨ H) ≤ χ�(G) + χ�(H) + 1.

Proof. Let c1 and c2 be local colorings of graphs G and H of values s1

and s2 , respectively. We define a local coloring c : V (G) −→ N by

c(v) =
{

c1(v) If v ∈ V (G),
c2(v) + s1 + 1 If v ∈ V (H).

It is easy to see that c is a local coloring of graph G ∨ H of value
s1 + s2 + 1. Therefore χ�(G ∨ H) ≤ χ�(G) + χ�(H) + 1. �

Theorem 3. Let n ≥ 3 and Wn = K1 ∨ Cn. Then χ�(Wn) = 5.

Proof. We know that Wn = K1∨Cn. Therefore by Theorem 2, χ�(Wn) ≤
χ�(Cn) + 2 = 5. For n = 3, Wn = K4 and by Theorem D, χ�(K4) = 5.
Since for n ≥ 4, C3 is a subgraph of Wn, we have χ�(Wn) ≥ 4. Now let c
be a local coloring of Wn of value 4 and V (K1) = {v}, there are two cases
to be considered.

Case 1. c(v) ∈ {1, 4}.
If c(v) = 1 then the vertices of cycle Cn are colored 2, 3, and 4. Since v

and every two adjacent vertices in Cn induced a cycle C3, then the vertices
of Cn must have color 4 alternatively. Therefore there is a vertex with
color 3 in Cn, with two neighbors colored either 2 or 4, which both cases
contradict that c is local coloring. The case c(v) = 4 is also failed by
considering the complementary coloring c.

Case 2. c(v) ∈ {2, 3}.
If c(v) = 2 then the vertices of Cn must have colors 1 and 4, alterna-

tively, because v and every two adjacent vertices in Cn induced a cycle C3,
. But two vertices of color 1 in Cn and v of color 2 induced a path P3 which
contradicts that c is a local coloring. The case c(v) = 3 is also failed by
considering the complementary coloring c.

Therefore χ�(Wn) = 5. �

By Theorem C, χ�(C2k × C2p) = 3, χ�(Pm × Pn) = 3, m + n ≥ 4 and
χ�(C2k ×Pn) = 3. Hence we consider graphs Cm ×Cn and Cm ×Pn, when
m is odd.
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Theorem 4. For positive integer n ≥ 3, we have

χ�(C3 × Cn) =
{

4 If n is even,
5 If n is odd.

Proof. Since C3×Cn contains C3 as a subgraph, χ�(C3×Cn) ≥ χ�(C3) =
4. For n even, graph C3 × Cn contains three copies of a bipartite graph
Cn. We denote the vertices of C3×Cn by (X1, Y1), (X2, Y2), (X3, Y3) which
(Xi, Yi) is a bipartition of Cn, such that there is no edge between vertices
in Xi and Yj , i �= j. We define a local coloring c : V (C3 × Cn) −→ N by

c(v) =

⎧⎪⎪⎨
⎪⎪⎩

1 If v ∈ X1 ∪ Y3,
4 If v ∈ X3 ∪ Y2,
2 If v ∈ X2,
3 If v ∈ Y1.

It can easily be checked that the above assignment is a local coloring .

For n = 2k+1 odd, in each local coloring of graph C3×C2k+1 of value 4,
every copy of C3 has two vertices with colors 1 and 4 and a vertex with color
2 or 3. If the third vertex in different consecutive copies of C3 have the same
color, say 3, then one of the vertices with color 3 has two neighbors with
color 4 which is contradiction. So the third vertex in different consecutive
copies of C3 have different colors. Graph C3×C2k+1 has 2k+1 copies of C3

and if χ�(C3×C2k+1) = 4 then the colors of vertices in the first and the last
copies of C3 must have different coloring, which is impossible. Therefore
by Theorem A, we have 5 ≤ χ�(C3 × C2k+1) ≤ 2χ(C3 × C2k+1) − 1 = 5.
Hence χ�(C3 × C2k+1) = 5. �

Theorem 5. For every positive integers k ≥ 2 and n, χ�(C2k+1×Cn) = 4.

Proof. By Proposition 1, χ�(C2k+1 × Cn) ≥ 4. If n is even, then graph
C2k+1 × Cn contains 2k + 1 copies of bipartite graph Cn = (X,Y ). We
denote the vertices of each copy by (Xi, Yi), i = 1, . . . , 2k + 1, and define
the following local coloring c of C2k+1 ×Cn (n is even) of value 4. For each
vertex v ∈ V (C2k+1 × Cn), define

c(v) =

⎧⎪⎪⎨
⎪⎪⎩

2 If v ∈ X2k+1,
4 If v ∈ Y2k+1,
1 If v ∈ Xi ∪ Yi+1, i ≡ 1 (mod 2), 1 ≤ i ≤ 2k − 1,
3 If v ∈ Xi+1 ∪ Yi, i ≡ 1 (mod 2), 1 ≤ i ≤ 2k − 1.
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It is easy to see that c is local coloring of C2k+1 × Cn of value 4, when
n is even.

If n is odd, then graph C2k+1 × Cn contains 2k + 1 copies of three
partied graph Cn = (X,Y, {v}). We denote the vertices in each copy by
(Xi, Yi, {vi}), i = 1, . . . , 2k + 1, and define the following local coloring c
of C2k+1 × Cn (n is odd) of value 4. For each vertex v ∈ V (C2k+1 × Cn),
define.

c(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 If v ∈ X2k+1,
4 If v ∈ Y2k+1,
1 If v = v2k+1,
2 If v = vi, i ≡ 1 (mod 2), 1 ≤ i ≤ 2k,
4 If v = vi, i ≡ 0 (mod 2), 1 ≤ i ≤ 2k,
1 If v ∈ Xi ∪ Yi+1, i ≡ 1 (mod 2), 1 ≤ i ≤ 2k − 1,
3 If v ∈ Xi+1 ∪ Yi, i ≡ 1 (mod 2), 1 ≤ i ≤ 2k − 1.

It is easy to see that c is a local coloring of C2k+1×Cn of value 4, when
n is odd. �

Theorem 6. For every positive integers k ≥ 2 and n, χ�(C2k+1×Pn) = 4.

Proof. By Proposition 1, χ�(C2k+1 × Pn) ≥ 4. On the other hand graph
C2k+1 × Pn is a subgraph of C2k+1 × C2n. Therefore by Theorem 5,
χ�(C2k+1 × Pn) ≤ χ�(C2k+1 × C2n) = 4. Hence χ�(C2k+1 × Pn) = 4.
�

Let S1, . . . , Sn be sets. A system of distinct representative (SDR) for
these sets is an n-tuple (x1, . . . , xn) of elements with the properties that
xi ∈ Si for i = 1, . . . , n and xi �= xj for i �= j. It is well known theorem
that if |Si| = r and each element in ∪n

i=1Si is contained in exactly r of the
sets S1, . . . , Sn, then the family (S1, . . . , Sn) has an SDR [6].

Theorem 7. For any two positive integers with r ≤ 2s, we have

χ�(Kr × K2s) = χ�(K2s) r ≤ s;

χ�(Kr × K2s) > χ�(K2s) r > s.

Proof. Since Kr × K2s contains K2s as a subgraph, we have χ�(K2s) ≤
χ�(Kr × K2s). To prove the statement it is enough to show that for r ≤ s
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there is a local coloring of Kr ×K2s of value χ�(K2s), while for r > s there
is not such a coloring of Kr ×K2s. To see this, first we show a fact for each
local coloring c of K2s of value χ�(K2s) = 3s − 1.

Claim. In each local coloring c of K2s of value 3s − 1, the set of colors to
be used is A = {1, 2, 4, 5, . . . , 3s − 2, 3s − 1}.
Proof of claim. We prove the claim in following two parts:

(1) In a local coloring c of K2s of value χ�(K2s) = 3s−1, if A = {a1, a2, . . . ,
a2s} is an increasing ordered set of colors to be used of color set {1, 2, . . . , 3s−
1}, then for each i, 1 ≤ i ≤ 2s − 1, we have ai+1 − ai ≤ 2.

Assume for some j, aj+1 − aj ≥ 3. Now we define a new local coloring
c′ of K2s as follows. For some j, define

c′(v) =
{

c(v) If c(v) ≤ aj ,
c(v) − 1 If c(v) ≥ aj+1.

It is obvious that c′ is a local coloring of K2s of value less than the value
of c, which is a contradiction. Hence the fact (1) is true.

(2) If color a ∈ A, then one of the colors a − 1 or a + 1 is also in A, while
both are not in A.

Assume a − 1, a + 1 /∈ A. Therefore all colors in A are less than a − 2
or greater than a + 2. If u be a vertex of color a in coloring c, then the
assignment c on V (K2s)−{u} is also a local coloring of value at most 3s−1
for K2s − {u} which is a complete graph K2s−1. Now for K2s−1 we define
a new local coloring c′ as follows. For each vertex v ∈ V (K2s−1), define

c′(v) =
{

c(v) If c(v) ≤ a − 2,
c(v) − 2 If c(v) ≥ a + 2.

Note that if a = 3s−1 then c′ = c on V (K2s)−{u}. It is easy to see that
c′ is a local coloring of K2s−1 of value 3s− 3, whence χ�(K2s−1) = 3s− 2,
so it is a contradiction. Moreover if both of colors a− 1 and a+1 are in A,
then the vertices of colors a − 1, a and a + 1 induced subgraph K3, which
contradicts that c is a local coloring. Hence the fact (2) is true.

Now since the value of c is 3s−1, 1 ∈ A. So by fact (2), we have 2 ∈ A.
Since 2 ∈ A and 1 ∈ A, 3 /∈ A. Now by fact (1) we have 4 ∈ A. Continuing
this process by similar reason we conclude that A = {1, 2, 4, 5, 7, 8, . . . , 3s−
2, 3s − 1}. Hence the claim is proved.
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We consider graph Kr × K2s as a r × 2s array such that each entry
represent a vertex of the graph, each row is a representative of a copy of
K2s and each column is a representative of a copy of Kr. For simply we
denote the vertex vij as a vertex represented by entry ij in the array. By
the above claim in each local coloring of Kr×K2s of value χ�(K2s) = 3s−1,
in each row i, 1 ≤ i ≤ r, we have the set A of colors to be used for local
coloring K2s; which A = {1, 2, 4, 5, 7, 8, . . . , 3s − 2, 3s − 1}. We denote the
set of colors that can be used to color vertex vij by Sij .

Now we prove that if r > s then χ�(Kr ×K2s) > χ�(K2s). By contrary
assume that r > s and χ�(Kr × K2s) = χ�(K2s). By the above notation
the set of colors can be used to color vertex vi1 in column 1 is Si1, and
S11 = A, so |S11| = 2s. By the fact (2), there is a vertex v1j , 1 ≤ j ≤ 2s,
such that c(v1j) = c(v11) + 1 or c(v1j) = c(v11) − 1. Since the vertices
v11, v1j and v21 induced a path P3, the vertex v21 can not be colored with
the same color used for the vertices v11 and v1j . Therefore |S21| = 2s − 2.
By the same argument we have |Si1| = 2s − 2(i − 1). To have a coloring
of value 3s − 1, we must have |Sr1| = 2s − 2(r − 1) ≥ 1, which gives the
condition r ≤ s. This contradicts the assumption r > s. Therefore for
r > s, χ�(Kr × K2s) > χ�(K2s).

Now for r ≤ s, we provide a local coloring of Kr × K2s of value
χ�(K2s) = 3s − 1. For the first row of the array we have 2s sets S11 =
S12 = · · · = S1,2s which |S1j | = 2s, 1 ≤ j ≤ 2s. Therefore an SDR of the
family (S1j , . . . S1,2s) is a local coloring for the first row of the array. For
the second row, we have sets S21, S22, . . . , S2,2s such that |S2j | = 2s − 2,
1 ≤ j ≤ 2s. The set S2j , 1 ≤ j ≤ 2s, is the set of colors that can be used
to color the vertices v2j in the second row of the array. Each color of A is
contained in exactly 2s − 2 of the sets S2j , 1 ≤ j ≤ 2s. Therefore an SDR
of the family (S2j , . . . , S2,2s) exists and is local coloring for the vertices in
the second row of the array. By continuing this process we conclude that
an SDR for the family (Sij , . . . , Si,2s) exists, because |Sij | = 2s − 2(i − 1)
and each elements is contained in exactly 2s− 2(i− 1) of the sets Sij . This
SDR gives us a local coloring for the ith row of the array. Therefore for
r ≤ s, we have a local coloring of Kr × K2s of value χ�(K2s). �

Theorem 8. For any two positive integers with r ≤ s + 1, we have

χ�(Kr × K2s+1) = χ�(K2s+1).

Proof. Since K2s+1 is a subgraph of Kr × K2s+1, we have χ�(Kr ×
K2s+1) ≥ χ�(K2s+1). On the other way, χ�(Kr × K2s+1) ≤ χ�(Ks+1 ×
K2s+1). In Figure 1 we arise a local coloring of Ks+1 × K2s+1 of value
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χ�(K2s+1). Hence χ�(Kr × K2s+1) = χ�(K2s+1) = 3s + 1. Each entry
represents a vertex of the graph and the symbols represent the color of
corresponding vertex of the entry in the given local coloring.

The symbols ai are the same as explained in the proof of Theorem 7,
where a2s = χ�(K2s) = 3s − 1. �

a1 a2 ... a4 a5 ... a2s−1 a2s a2s + 2
a2s−1+2 a2s + 2 ... a2 a3 ... a2s−3 a2s−2 a2s−2+2
a2s−3+2 a2s−2+2 ... a2s+2 a1 ... a2s−5 a2s−4 a2s−4+2
...

...
...

...
...

... ...
...

...
a3 + 2 a4 + 2 ... a6 + 2 ... ... a1 a2 a2 + 2
a1 + 2 a2 + 2 ... a4 + 2 ... ... a2s−1+2 a2s+2 a1

Figure 1: A local coloring of Ks+1 × K2s+1 of value χ�(K2s+1).

It is known that the upper bound for χ�(G) in Theorem A is attainable
for infinitely many values of χ(G) and that the lower bound is attainable
for χ(G) ≤ 4. The more general question in [3] is:

Problem. For which pairs a, b of integers with a ≤ b ≤ 2a − 1, does there
exist a graph G with χ(G) = a and χ�(G) = b?

In the following theorem we provide a partial answer to this question.

Theorem 9. For any two positive integers with
⌊

3n−1
2

⌋ ≤ m ≤ 2n − 1,
there exists a graph G with χ(G) = n and χ�(G) = m.

Proof. Let n = r + s and G = K2, . . . , 2︸ ︷︷ ︸
r

,1, . . . , 1︸ ︷︷ ︸
s

. Graph G is a complete

n partite graph with r parts of size 2 and s parts of size 1. By Theorem D,
χ�(G) = 2r+

⌊
3s−1

2

⌋
. Now for each

⌊
3n−1

2

⌋ ≤ m ≤ 2n−1, let s = 4n−2m−1
and r = 2m − 3n + 1. Therefore we have χ�(G) = m. �
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