On the locating chromatic number of Kneser graphs

Ali Behtoei, Behnaz Omoomi *
Department of Mathematical Sciences, Isfahan University of Technology, 84156-83111, Isfahan, Iran

A R TICLE INFO

Article history:

Received 8 August 2010
Received in revised form 8 June 2011
Accepted 13 July 2011
Available online xxxx

Keywords:

Kneser graph
Locating coloring
Locating chromatic number
Metric dimension

Abstract

Let c be a proper k-coloring of a connected graph G and $\Pi=\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex v of G, the color code of v with respect to Π is defined to be the ordered k-tuple $c_{\Pi}(v):=\left(d\left(v, C_{1}\right), d\left(v, C_{2}\right)\right.$, $\left.\ldots, d\left(v, C_{k}\right)\right)$, where $d\left(v, C_{i}\right)=\min \left\{d(v, x) \mid x \in C_{i}\right\}, 1 \leq i \leq k$. If distinct vertices have distinct color codes, then c is called a locating coloring. The minimum number of colors needed in a locating coloring of G is the locating chromatic number of G, denoted by $\chi_{L}(G)$. In this paper, we study the locating chromatic number of Kneser graphs. First, among some other results, we show that $\chi_{L}(\operatorname{KG}(n, 2))=n-1$ for all $n \geq 5$. Then, we prove that χ_{L} $(K G(n, k)) \leq n-1$, when $n \geq k^{2}$. Moreover, we present some bounds for the locating chromatic number of odd graphs.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph without loops and multiple edges with vertex set $V(G)$ and edge set $E(G)$. A proper k-coloring of G is a function c defined from $V(G)$ onto a set of colors $C=\{1,2, \ldots, k\}$ such that every two adjacent vertices have different colors. In fact, for every $i, 1 \leq i \leq k$, the set $c^{-1}(i)$ is a nonempty independent set of vertices which is called the color class i. The minimum cardinality k for which G has a proper k-coloring is the chromatic number of G, denoted by $\chi(G)$.

For a connected graph G, the distance $d(u, v)$ between two vertices u and v in G is the length of a shortest path between them, and for a subset S of $V(G)$, the distance between u and S is given by $d(u, S):=\min \{d(u, x) \mid x \in S\}$. A set $W \subseteq V(G)$ is called a resolving set, if for each two distinct vertices $u, v \in V(G)$ there exists $w \in W$ such that $d(u, w) \neq d(v, w)$, see $[9,16]$. A resolving set with the minimum cardinality is called a metric basis and its cardinality is called the metric dimension of G, denoted by $\operatorname{dim}_{M}(G)$.

Definition 1 ([2]). Let c be a proper k-coloring of a connected graph G and $\Pi=\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex v of G, the color code of v with respect to Π is defined to be the ordered k-tuple

$$
c_{\Pi}(v):=\left(d\left(v, C_{1}\right), d\left(v, C_{2}\right), \ldots, d\left(v, C_{k}\right)\right)
$$

If distinct vertices of G have distinct color codes, then c is called a locating coloring of G. The locating chromatic number, $\chi_{L}(G)$, is the minimum number of colors in a locating coloring of G.

The concept of locating coloring was first introduced by Chartrand et al. in [2] and studied further in [1,3]. This concept has been called with the other names such as resolving coloring and independent resolving partition, see [13]. Note that, since every locating coloring is a proper coloring, $\chi(G) \leq \chi_{L}(G)$. For more results on the subject and related subjects, one can see [1-6,13,14].

[^0]We have the following two theorems for the relation between the locating chromatic number of a graph with its diameter, metric dimension and chromatic number.

Theorem A ([2]). If G is a connected graph with diameter d and locating chromatic number l, then $|V(G)| \leq l d^{l-1}$.
Theorem B ([2]). For each connected graph G with at least three vertices, $\chi_{L}(G) \leq \chi(G)+\operatorname{dim}_{M}(G)$.
Hereafter, we denote the set $\{1,2, \ldots, n\}$ by [n] and the collection of all k-subsets of the set $[n]$ by $\binom{[n]}{k}$. Let n and k be two positive integers. The Kneser graph with parameters n and $k, n \geq 2 k$, denoted by $K G(n, k)$, is the graph with vertex set $\binom{[n]}{k}$ such that two vertices are adjacent if and only if the corresponding subsets are disjoint. Let $k \geq 3$. Kneser graph $K G(2 k, k)$ is a matching and the smallest positive integer n for which $K G(n, k)$ is connected, is $n=2 k+1$. Kneser graphs $K G(2 k+1, k), k \geq 3$, are known as the odd graphs. The distance between two vertices in Kneser graph and the diameter of this graph are investigated in [18]. We summarize these results in the following theorem.

Theorem C ([18]). Let $A, B \in\binom{[n]}{k}$ be two different vertices of Kneser graph $K G(n, k)$, where $n \geq 2 k+1$. If $|A \cap B|=s$, then the distance $d(A, B)$ in $K G(n, k)$ is given by

$$
d(A, B)=\min \left\{2\left\lceil\frac{k-s}{n-2 k}\right\rceil, 2\left\lceil\frac{s}{n-2 k}\right\rceil+1\right\}
$$

Moreover, the diameter of $K G(n, k)$ is $\left\lceil\frac{k-1}{n-2 k}\right\rceil+1$.
Kneser graphs have many interesting properties and have been the subject of many researches. It was conjectured by Kneser in 1955 [11] and proved by Lovász in 1978 [12] that $\chi(K G(n, k))=n-2 k+2$. Since then, several types of colorings of Kneser graphs have been considered. For example, the circular chromatic number, the b-chromatic number and the multichromatic number of Kneser graphs were investigated in [8,10,17], respectively.

In this paper, we study the locating chromatic number of Kneser graphs. In the next section, among some other results, we show that $\chi_{L}(K G(n, 2))=n-1$ for $n \geq 5$. Then, we prove that $\chi_{L}(K G(n, k)) \leq n-1$ when $n \geq k^{2}$. For the case $k=3$, we show that this inequality holds for every positive integer $n \geq 7$. In the last section, we provide a lower bound for the locating chromatic number, an upper bound for the metric dimension and accordingly for the locating chromatic number of odd graphs. Through the paper, for convenience, we denote the vertex $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ in $K G(n, k)$ by $i_{1} i_{2} \ldots i_{k}$.

2. The locating chromatic number of $\operatorname{KG}(\mathrm{n}, 2)$

If A is an independent set in $K G(n, 2)$, then either all vertices in A have a common element of $[n]$, say a, or $A=\{a b, a c, b c\}$ for some $a, b, c \in[n]$. Since each vertex $i j$ in $K G(n, 2)$ corresponds to the edge $i j$ in K_{n}, an independent set in $K G(n, 2)$ corresponds to a star subgraph or a triangle subgraph in the complete graph K_{n}. From now on, we call an independent set in $K G(n, 2)$ of the first form starlike with center a, and of the second form triangular. Since every proper coloring is a partition of vertices into independent sets, it is easy to see that every proper coloring of the Kneser graph $K G(n, 2)$ is equivalent to an edge decomposition of the complete graph K_{n} into star and triangle subgraphs.

In order to study the locating chromatic number of $K G(n, 2)$, we need the following theorem. A biclique partition of a graph G is a partition of the edge set of G into complete bipartite graphs. Since a single edge can form a biclique, every graph has a biclique partition. The biclique partition number $\operatorname{bp}(G)$ of G is the smallest number of bicliques that partition G. Since the complete graph K_{n} can be partitioned into $n-1$ stars, $\operatorname{bp}\left(K_{n}\right) \leq n-1$. In fact, we have the following famous theorem.

Theorem D ([7]). The biclique partition number of the complete graph K_{n} is $n-1$.
Consider the Kneser graph $K G(n, k), n>2 k$. Let $n=2 k+d, d \geq 1$. There is a proper coloring of $K G(n, k)$ with $\chi(K G(n, k))=d+2$ colors as follows. For $i=1,2, \ldots, d+1$, let C_{i} consist of all k-subsets of [n] which contain i as the smallest element. The remaining k-subsets are contained in the set $\{d+2, d+3, \ldots, d+2 k\}$, which has only $2 k-1$ elements. Hence, they all intersect (are non adjacent). Thus, we can use color $d+2$ for all of them.

For the case $k=2, \chi(\operatorname{KG}(n, 2))=n-2$ and the latter color class in the above proper coloring is of triangular form. In this section, we first show that all proper $(n-2)$-colorings of $\operatorname{KG}(n, 2)$ are similar to the proper coloring given above. Next, we determine the exact value of the locating chromatic number of $K G(n, 2)$.

Theorem 1. In every proper $(n-2)$-coloring of the Kneser graph $K G(n, 2), n \geq 5$, there exists a unique triangular color class. Furthermore, if c is a proper $(n-2)$-coloring of $\operatorname{KG}(n, 2)$, then by renaming the symbols $1,2, \ldots, n$, if it is necessary, we have the color classes $F_{1}, F_{2}, \ldots, F_{n-2}$ with the following properties.
(a) $F_{n-2}=\{n(n-1), n(n-2),(n-1)(n-2)\}$, i.e. F_{n-2} is triangular;
(b) for each $i, 1 \leq i \leq n-3, F_{i}$ is starlike with center i, and $\{i n, i(n-1), i(n-2)\} \subseteq F_{i}$;
(c) each vertex $i j$ with $\{i, j\} \bigcap\{n, n-1, n-2\}=\emptyset$, is either in F_{i} or F_{j}.

Proof. We will prove the theorem by induction on n. Let $n=5$ and consider a proper 3-coloring of $K G(n, 2)$ with color classes F_{1}, F_{2} and F_{3}. Equivalently, we have an edge decomposition of the complete graph K_{5} into stars and triangles. By Theorem D, there exists no edge decomposition of K_{5} into three star subgraphs. Thus, at least one of the color classes is triangular, say $F_{3}=\{34,35,45\}$. Now, six vertices $13,14,15 ; 23,24,25$ should be distributed between two color classes F_{1} and F_{2}. Since F_{1} and F_{2} are independent sets, the only possibility is, say $\{13,14,15\} \subseteq F_{1}$ and $\{23,24,25\} \subseteq F_{2}$, which means F_{1} and F_{2} are starlike with centers 1 and 2 , respectively. The remaining vertex 12 can be either in F_{1} or F_{2}. Hence, the theorem holds for the induction basis.

Now, let $n \geq 6$ and suppose that c is a proper $(n-2)$-coloring of $K G(n, 2)$. Equivalently, we have an edge decomposition of the complete graph K_{n} into stars and triangles. Similar to the one above, by Theorem D, we have at least one triangular color class, say $F_{n-2}=\{n(n-1), n(n-2),(n-1)(n-2)\}$. Let

$$
X_{n}:=\bigcup_{i=1}^{n-3}\{i n\}, \quad X_{n-1}:=\bigcup_{i=1}^{n-3}\{i(n-1)\}, \quad X_{n-2}:=\bigcup_{i=1}^{n-3}\{i(n-2)\}
$$

and $X:=X_{n} \cup X_{n-1} \cup X_{n-2}$.
Note that, each X_{i} is starlike, $|X|=3(n-3)$, and for each $i, j, n-2 \leq i<j \leq n$, the induced subgraph of $K G(n, 2)$ on $X_{i} \cup X_{j}$ is a complete bipartite graph with a perfect matching deleted. The vertices in X should be distributed in $n-3$ color classes $F_{1}, F_{2}, \ldots, F_{n-3}$. Thus, there exists a color class, say F_{1}, which contains at least three vertices of X.

Claim. There exists no $k, n-2 \leq k \leq n$, such that $F_{1} \cap X \subseteq X_{k}$.
Proof of claim. Assume to the contrary, and without loss of generality, that $F_{1} \cap X \subseteq X_{n}$. Since F_{1} is an independent set and $\left|F_{1} \cap X\right| \geq 3, F_{1}$ is starlike with center n. Now, the $2(n-3)=2 n-6$ vertices of $X_{n-1} \cup X_{n-2}$ should be distributed in the $n-4$ color classes $F_{2}, F_{3}, \ldots, F_{n-3}$. Hence, there exists a color class, say F_{2}, which contains at least three vertices of $X_{n-1} \cup X_{n-2}$. Since each vertex $i(n-1)$ in X_{n-1} is adjacent to all of the vertices in X_{n-2} except the vertex $i(n-2)$, the only possibility is $F_{2} \cap\left(X_{n-1} \cup X_{n-2}\right) \subseteq X_{n-1}$ or $F_{2} \cap\left(X_{n-1} \cup X_{n-2}\right) \subseteq X_{n-2}$.

Without loss of generality, we can assume that $F_{2} \cap\left(X_{n-1} \cup X_{n-2}\right) \subseteq X_{n-1}$. Similarly, this implies that F_{2} is starlike with center $n-1$. Now, for each $i, 3 \leq i \leq n-3$, let $\bar{F}_{i}:=F_{i}$ and also let

$$
\bar{F}_{1}:=F_{1} \cup\{(n-1) n,(n-2) n\}, \quad \bar{F}_{2}:=F_{2} \cup\{(n-1)(n-2)\} .
$$

Thus, each \bar{F}_{i} is an independent set in the Kneser graph $\operatorname{KG}(n, 2)$. This means that we have a proper ($n-3$)-coloring of $K G(n, 2)$, which is a contradiction. Thus, the claim is proved.

If $\left|F_{1} \cap X_{k}\right| \geq 3$ for some $k, n-2 \leq k \leq n$, then F_{1} is starlike with center k. Thus, $F_{1} \cap X \subseteq X_{k}$, which is impossible by the above claim. If for some $k, n-2 \leq k \leq n,\left|F_{1} \cap X_{k}\right|=2$, then there exist i and $j, 1 \leq i<j \leq n-3$, such that $F_{1} \cap X_{k}=\{i k, j k\}$. Since F_{1} contains at least three vertices from X, F_{1} is an independent set and every vertex in $X \backslash X_{k}$ is adjacent to at least one of the vertices $i k$ or $j k$, we should have $F_{1} \cap X \subseteq X_{k}$, which by claim is impossible. Therefore, $\left|F_{1} \cap X_{k}\right|=1$ for each $k, n-2 \leq k \leq n$.

By renaming the symbols $1,2, \ldots, n-3$, if it is necessary, assume that $F_{1} \cap X_{n}=\{1 n\}$. Since F_{1} is an independent set and the vertex $1 n$ is adjacent to all of the vertices in $X_{n-1} \cup X_{n-2}$ except $1(n-1)$ and $1(n-2)$, we have

$$
F_{1} \cap X=\{1 n, 1(n-1), 1(n-2)\}
$$

This implies that F_{1} is starlike with center 1. Let

$$
\bar{F}_{1}:=\{12,13, \ldots, 1 n\}
$$

and for each $2 \leq j \leq n-2$, let $\bar{F}_{j}:=F_{j} \backslash \bar{F}_{1}$. Note that, \bar{F}_{1} is starlike with center 1 and $\left|\bar{F}_{1}\right|=n-1, \bar{F}_{j} \subseteq F_{j}$ for each $2 \leq j \leq n-3$, and $\bar{F}_{n-2}=F_{n-2}$. Since $\bar{F}_{1}, \bar{F}_{2}, \ldots, \bar{F}_{n-2}$ is a partition of the vertices of $K G(n, 2)$ into independent sets and $\chi(\bar{K} G(n, 2))=n-2$, none of the \bar{F}_{j} 's is an empty set. Now, we can consider $\bar{F}_{2}, \bar{F}_{3}, \ldots, \bar{F}_{n-2}$ as a proper $(n-3)$ coloring of the Kneser graph $K G(n-1,2)$ with vertex set $\binom{[n] \backslash\{1\}}{2}$. By the induction hypothesis, exactly one of these color classes is triangular, which is \bar{F}_{n-2}, and by renaming \bar{F}_{j} 's, if it is necessary, each \bar{F}_{j} is a starlike independent set with center $j, 2 \leq j \leq n-3$. Moreover, by the induction hypothesis, we have

$$
\{j n, j(n-1), j(n-2)\} \subseteq \bar{F}_{j} \subseteq F_{j}, \quad 2 \leq j \leq n-3
$$

Thus, each F_{j} is a starlike independent set with center j. Using the induction hypothesis, it is easy to see that the condition (c) also holds.

By Theorem 1, every optimal proper coloring of $K G(n, 2)$ has a unique triangular color class. This set uses exactly three symbols from the set [n] which can be chosen in $\binom{n}{3}$ different ways. If we choose this triangular set, then the colors of $3(n-3)$ vertices will be determined. Now, the remaining $\binom{n}{2}-3-3(n-3)$ vertices should be distributed among $n-3$ starlike color classes and each of them has two choices for their color. Accordingly, we have the following corollary.

Corollary 1. The number of different optimal proper colorings of the Kneser graph $\operatorname{KG}(n, 2)$ is $\binom{n}{3} 2\binom{n}{2}-3(n-2)$.
Now, we are ready to determine the exact value of the locating chromatic number of $K G(n, 2)$.
Theorem 2. For all positive integers $n \geq 5$, we have $\chi_{L}(K G(n, 2))=n-1$.
Proof. By Theorem C, the diameter of $K G(n, 2)$ is two. First, we show that $\chi_{L}(K G(n, 2)) \geq n-1$. Since

$$
n-2=\chi(K G(n, 2)) \leq \chi_{L}(K G(n, 2))
$$

it is sufficient to show that no proper $(n-2)$-coloring of $K G(n, 2)$ is a locating coloring. Let c be a proper $(n-2)$ coloring of $K G(n, 2)$. By the same notations and assumptions as in Theorem 1, assume that $F_{1}, F_{2}, \ldots, F_{n-2}$ are its color classes and let $\Pi=\left(F_{1}, \ldots, F_{n-2}\right)$ be an ordered partition of the vertex set into the resulting color classes. Now, since $d(1 n,(n-1)(n-2))=d(1(n-1),(n-2) n)=1$, and for each $j, 2 \leq j \leq n-3, d(1 n, j(n-1))=d(1(n-1), j(n-2))=1$, we have $c_{\Pi}(1 n)=c_{\Pi}(1(n-1))=(0,1,1, \ldots, 1)$. Thus, c is not a locating coloring.

Now, to complete the proof, we provide a locating $(n-1)$-coloring of $\operatorname{KG}(n, 2)$. Let

$$
C_{1}:=\{1 j \mid 2 \leq j \leq n-2\} \cup\{1 n\}, \quad C_{n-1}:=\{1(n-1),(n-1) n\},
$$

and for each $i, 2 \leq i \leq n-2$, let $C_{i}:=\{i j \mid i<j \leq n\}$. Note that, each $C_{i}, 1 \leq i \leq n-1$, is starlike with center i and $C_{1}, C_{2}, \ldots, C_{n-1}$ is a partition of the vertex set. Therefore, by assigning color i to the vertices in C_{i}, we get a proper $(n-1)$ coloring of $K G(n, 2)$. Let us show that this is a locating coloring. Let $\prod=\left(C_{1}, \ldots, C_{n-1}\right)$ be an ordered partition of the vertex set into the resulting color classes. It is sufficient to show that distinct vertices of each color class have distinct color codes. Since $d\left(1(n-1), C_{1}\right)=2$ and $d\left((n-1) n, C_{1}\right)=1$, this holds for the color class C_{n-1}. This also holds for the color class C_{n-2}, since

$$
d\left((n-2)(n-1), C_{n-1}\right)=2, \quad d\left((n-2) n, C_{n-1}\right)=1
$$

Now, consider color class $C_{i}, 1 \leq i \leq n-3$, and let $i j$ and $i k$ be two distinct vertices in C_{i} with $j<k$. We know that $d\left(i j, C_{j}\right)=2$. If $k=n$ and $j<n-1$, then $d(i k, j(j+1))=1$, where $j(j+1) \in C_{j}$. If $k=n$ and $j=n-1$, then $i \neq 1$, and $d(i k, 1(n-1))=1$, where $1(n-1) \in C_{j}$. If $k \neq n$, then $d(i k, j n)=1$, where $j n \in C_{j}$. Therefore, in all cases we have $d\left(i k, C_{j}\right)=1$, which implies $c_{\Pi}(i j) \neq c_{\Pi}(i k)$.

3. The locating chromatic number of $\operatorname{KG}(n, k)$

In this section, we give an upper bound for the locating chromatic number of some class of Kneser graphs. Note that, an independent set in $K G(n, k)$ is called starlike with center j, whenever j is the unique common symbol of every two vertices in it.

Theorem 3. Let n, k be two positive integers, where $k \geq 3$. If $n \geq k^{2}$, then

$$
\chi_{L}(K G(n, k)) \leq n-1 .
$$

Proof. Since $n \geq k^{2}$ and $k \geq 3$, by Theorem C, the diameter of $K G(n, k)$ is two. To prove the theorem, it is enough to provide a locating $(n-1)$-coloring for $K G(n, k)$. For this purpose, we first construct a family $\left\{F_{2}, F_{3}, \ldots, F_{n}\right\}$ of the subsets of the vertex set $\binom{[n]}{k}$ with the following properties.
(a) Each F_{j} is starlike with center j which contains exactly $k+1$ vertices, and for each two distinct vertices $X, Y \in F_{j}, X \cap Y=$ $\{j\}$.
(b) Each F_{j} uses exactly $1+(k-1)(k+1)=k^{2}$ symbols of the set [n], i.e. there exists a k^{2}-element subset B of [n] such that each vertex in F_{j} is a subset of B.
(c) For each $2 \leq r<s \leq n, F_{r} \cap F_{s}=\emptyset$.
(d) If $2 \leq j \leq n$, then each vertex $A \in\binom{[n]}{k} \backslash F_{j}$ with $j \notin A$, is adjacent to at least one vertex in F_{j} and $d\left(A, F_{j}\right)=1$.

If $k=3$, then we define the family $\left\{F_{2}, F_{3}, \ldots, F_{n}\right\}$ as follows.
$F_{2}:=\{259,268,247,213\}, F_{3}:=\{324,319,358,367\}, F_{4}:=\{413,456,479,428\}, F_{5}:=\{512,534,567,589\}, F_{6}:=$ $\{612,634,658,679\}, F_{7}:=\{712,734,759,768\}, F_{8}:=\{812,834,857,869\}$, and for each $l, 9 \leq l \leq n$, let $F_{l}:=$
$\{l 12, l 34, l 56, l 78\}$. It is easy to check that the properties (a) to (d) hold for this family.
If $k \geq 4$, then we construct the family $\left\{F_{2}, F_{3}, \ldots, F_{n}\right\}$ as follows.
Let $A_{2,1}, A_{2,2}, \ldots, A_{2, k+1}$ be a partition of the set $\left[k^{2}\right] \backslash\{2\}$ into $k+1$ subsets, each of size $k-1$. Note that this can be done in $\frac{\left(k^{2}-1\right)!}{((k-1)!)^{k+1}(k+1)!}$ different ways which is strictly greater than one, since $k>2$. Now, let

$$
F_{2}:=\bigcup_{j=1}^{k+1}\left\{A_{2, j} \cup\{2\}\right\}
$$

In fact, F_{2} is an independent subset of the vertex set $\binom{[n]}{k}$ of size $k+1$ which is starlike with center 2 . Each vertex in F_{2} is a subset of $\left[k^{2}\right]$ and $X \cap Y=\{2\}$ for each two distinct vertices $X, Y \in F_{2}$. If $A \in\binom{[n]}{k} \backslash F_{2}$ is a vertex with $2 \notin A$, then it is adjacent to at least one vertex in F_{2}, thus $d\left(A, F_{2}\right)=1$. In an inductive way, suppose that $F_{2}, F_{3}, \ldots, F_{i}, i<k^{2}$, are constructed in such a way that each $F_{j} \subseteq\binom{\left[k^{2}\right]}{k}, 2 \leq j \leq i$, is starlike of size $k+1$ with center $j, X \cap Y=\{j\}$ for each two distinct vertices $X, Y \in F_{j}$, and $F_{r} \bigcap F_{s}=\emptyset$ whenever $r \neq s$. Then, we construct F_{i+1} as follows.

For each $j, 2 \leq j \leq i$, let V_{j} be the unique vertex in F_{j} which contains the element $i+1$, and let $U_{j}:=V_{j} \backslash\{i+1\}$. The number of different partitions of the set $\left[k^{2}\right] \backslash\{i+1\}$ into $k+1$ subsets of size $k-1$ in which U_{j} appears as a partition part of them, is equal to the number of different partitions of the set $\left[k^{2}\right] \backslash\left(U_{j} \cup\{i+1\}\right)$ into k subsets of size $k-1$, which is $\frac{\left(k^{2}-k\right)!}{((k-1)!)^{k} k!}$. This implies that, at most

$$
(i-1) \frac{\left(k^{2}-k\right)!}{((k-1)!)^{k} k!}
$$

different partitions of the set $\left[k^{2}\right] \backslash\{i+1\}$ into $k+1$ subsets of size $k-1$, have some U_{j} as a partition part. Now we consider the ratio between the number of all possible partitions and the number of partitions containing some U_{j} as a partition part. Since $k \geq 4$,

$$
\begin{aligned}
\frac{\frac{\left(k^{2}-1\right)!}{((k-1)!)^{k+1}(k+1)!}}{\frac{\left(k^{2}-2\right)\left(k^{2}-k\right)!}{((k-1)!)^{k} k!}} & =\frac{\left(k^{2}-3\right)\left(k^{2}-4\right) \cdots\left(k^{2}-k+1\right)}{(k-2)!} \\
& =\frac{1}{(k-2)} \times \frac{\left(k^{2}-3\right)}{(k-3)} \times \frac{\left(k^{2}-4\right)}{(k-4)} \times \cdots \times \frac{\left(k^{2}-(k-1)\right)}{(k-(k-1))}>1,
\end{aligned}
$$

and this inequality using the inequality $i-1 \leq k^{2}-2$, implies that

$$
\frac{\left(k^{2}-1\right)!}{((k-1)!)^{k+1}(k+1)!}-(i-1) \frac{\left(k^{2}-k\right)!}{((k-1)!)^{k} k!}>1
$$

Therefore, there exists a partition $A_{i+1,1}, A_{i+1,2}, \ldots, A_{i+1, k+1}$ of the $(k-1)$-subsets of $\left[k^{2}\right] \backslash\{i+1\}$ such that none of them is equal to some $U_{j}, 1 \leq j \leq i$. Now, let

$$
F_{i+1}:=\bigcup_{j=1}^{k+1}\left\{A_{i+1, j} \cup\{i+1\}\right\}
$$

Note that, F_{i+1} is starlike of size $k+1$ with center $i+1$, and $F_{i+1} \cap F_{j}=\emptyset$ for each $j, 2 \leq j \leq i$. In a similar way, we can construct $F_{i+2}, \ldots, F_{k^{2}}$. If $n>k^{2}$, then for each $l, k^{2}+1 \leq l \leq n$, we define

$$
F_{l}:=\bigcup_{j=1}^{k+1}\left\{A_{2, j} \cup\{l\}\right\}
$$

From the above construction, it can be seen that, each F_{j} is starlike of size $k+1$ with center j. Also, every two vertices in F_{j} have j as their unique common symbol and hence, F_{j} uses exactly $1+(k+1)(k-1)$ symbols of the set [n]. Now, if $A \in\binom{[n]}{k} \backslash F_{j}$ is a vertex which $j \notin A$, then A has non-empty intersection with at most k elements of F_{j} for, A is a k-subset of [n]. Thus, there exists vertex $A^{\prime} \in F_{j}$ such that $A \cap A^{\prime}=\emptyset$ and hence, $d\left(A, F_{j}\right)=1$. Therefore, properties (a) to (d) hold for this family.

Now, for each $l, 2 \leq l \leq n$, we define the set \bar{F}_{l} as

$$
\bar{F}_{l}:=\left\{i_{1} i_{2} \ldots i_{k-1} l \left\lvert\, i_{1} i_{2} \ldots i_{k-1} \in\binom{[l-1]}{k-1}\right., i_{1} i_{2} \ldots i_{k-1} l \notin \bigcup_{j=2}^{n} F_{j}\right\}
$$

Thus, each non-empty \bar{F}_{l} is starlike with center l. By letting $C_{l}:=F_{l} \cup \bar{F}_{l}, 2 \leq l \leq n$, it can be seen that $C_{2}, C_{3}, \ldots, C_{n}$ is a partition of the vertex set $\binom{[n]}{k}$ into starlike sets and hence we have a proper $(n-1)$-coloring of $K G(n, k)$.

Let $\prod=\left(C_{2}, \ldots, C_{n}\right)$ be an ordered partition of the vertex set into the above resulting color classes. Let $i_{1} i_{2} \ldots i_{k-1} l$ and $i_{1}^{\prime} i_{2}^{\prime} \ldots i_{k-1}^{\prime} l$ be two distinct vertices in C_{l}. Since these two vertices are distinct, we can assume that

$$
i_{1} \notin\left\{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{k-1}^{\prime}\right\}, \quad i_{1}^{\prime} \notin\left\{i_{1}, i_{2}, \ldots, i_{k-1}\right\}
$$

Table 1
A locating 6-coloring of $K G(7,3)$.

C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}
$123(0,2,3,1,1,1)$	$234(1,0,2,2,2,1)$	$345(1,1,0,2,1,3)$	$456(1,1,2,0,2,2)$	$467(1,2,2,1,0,2)$	$567(1,1,2,2,2,0)$
$124(0,2,1,2,2,1)$	$237(1,0,2,1,1,3)$	$346(1,1,0,1,2,3)$	$457(1,2,2,0,1,2)$	$126(2,2,1,1,0,3)$	
$127(0,2,1,1,2,3)$	$247(1,0,1,1,1,3)$	$347(1,1,0,1,1,3)$	$125(2,2,1,0,1,3)$	$136(2,1,2,1,0,3)$	
$134(0,1,2,2,2,1)$	$256(1,0,1,2,2,2)$	$356(1,1,0,2,2,2)$	$135(2,1,2,0,1,3)$	$146(2,1,1,1,0,3)$	
$137(0,1,2,1,1,3)$	$257(1,0,1,2,1,2)$	$357(1,2,0,2,1,2)$	$145(2,1,1,0,1,3)$	$236(1,2,2,1,0,3)$	
$147(0,1,1,1,1,3)$	$267(1,0,1,1,2,2)$	$367(1,2,0,1,2,2)$	$235(1,2,2,0,1,3)$	$246(1,2,1,1,0,3)$	
$156(0,1,1,2,2,2)$			$245(1,2,1,0,1,3)$		
$157(0,1,1,2,1,2)$					
$167(0,1,1,1,2,2)$					

Without loss of generality, assume that $i_{1}^{\prime}<i_{1}$. By the properties of the family $\left\{F_{2}, F_{3}, \ldots, F_{n}\right\}$, it can be seen that

$$
d\left(i_{1} i_{2} \ldots i_{k-1} l, C_{i_{1}}\right)=2, \quad d\left(i_{1}^{\prime} i_{2}^{\prime} \ldots i_{k-1}^{\prime} l, c_{i_{1}}\right)=1
$$

Hence, $c_{\Pi}\left(i_{1} i_{2} \ldots i_{k-1} l\right) \neq c_{\Pi}\left(i_{1}^{\prime} i_{2}^{\prime} \ldots i_{k-1}^{\prime} l\right)$; accordingly, this coloring is a locating $(n-1)$-coloring.
The following result gives almost tight and good upper and lower bounds for the locating chromatic number of $K G(n, 3), n \geq 7$.

Theorem 4. For all positive integers $n \geq 7$, we have

$$
n-4 \leq \chi_{L}(K G(n, 3)) \leq n-1 .
$$

Proof. Since the chromatic number of the Kneser graph $K G(n, 3)$ is $n-4$, the lower bound follows. By Theorem 3 , for $n \geq 9$, we have $\chi_{L}(K G(n, 3)) \leq n-1$. For the cases $n=7$ and $n=8$, we have explicit locating ($n-1$)-colorings. The color classes and the color codes of the vertices are illustrated in Tables 1 and 2.

Theorems 2-4 motivate us to propose the following question.
Question. Is it true that for all positive integers $n, k, n>2 k, \chi_{L}(K G(n, k))=n-1$?

4. The locating chromatic number of $K G(2 k+1, k)$

Let $k \geq 3$. Note that, $\chi(K G(2 k+1, k))=3$ and by Theorem C, the diameter of $K G(2 k+1, k)$ is k.
In what follows, we present a lower bound for the locating chromatic number of odd graphs, which shows that the chromatic number and the locating chromatic number of odd graphs are far apart. Moreover, we give an upper bound for the metric dimension and accordingly for the locating chromatic number of odd graphs.
Lemma 1. If $k \geq 4$, then $\binom{2 k+1}{k} \leq k^{k}$.
Proof. By a simple calculation, it can be seen that the lemma holds for $k \in\{4,5,6\}$. Obviously, for all $k \geq 7$, we have $k^{2}+5 k+6<2 k^{2}$. Thus, $\frac{k+3}{2 k} \times \frac{k+2}{k}<1$.

Moreover, for each $j, 4 \leq j \leq k+1$, we have $\frac{k+j}{k(j-1)}<1$. Therefore,

$$
\begin{aligned}
\frac{\binom{2 k+1}{k}}{k^{k}} & =\frac{2 k+1}{k^{2}} \times \frac{2 k}{k^{2}-k} \times \cdots \times \frac{k+3}{2 k} \times \frac{k+2}{k} \\
& =\left(\prod_{j=4}^{k+1} \frac{k+j}{k(j-1)}\right) \times \frac{k+3}{2 k} \times \frac{k+2}{k}<1 .
\end{aligned}
$$

Theorem 5. For all positive integers $k, k \geq 3$, we have $\operatorname{dim}_{M}(K G(2 k+1, k)) \leq 2 k+1$, and

$$
\left\lceil\frac{2 k \ln 2-\frac{1}{8 k}-\frac{1}{2} \ln (k \pi)}{\ln k}\right\rceil \leq \chi_{L}(K G(2 k+1, k)) \leq 2 k+4 .
$$

Particularly, $\chi(K G(2 k+1, k))<\chi_{L}(K G(2 k+1, k))$.
Table 2

C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}
$128(0,2,1,1,1,1,1)$	$234(1,0,2,2,1,1,1)$	$123(2,2,0,1,1,1,1)$	$124(2,2,1,0,1,1,1)$	$125(2,2,1,1,0,1,1)$	$126(2,2,1,1,1,0,1)$	$127(2,2,1,1,1,1,0)$
$138(0,1,2,1,1,2,2)$	$235(1,0,2,1,2,1,1)$	$236(1,2,0,1,1,2,1)$	$134(2,1,2,0,1,1,1)$	$135(2,1,2,1,0,1,1)$	$136(2,1,2,1,1,0,1)$	$137(2,1,2,1,1,1,0)$
145 (0, 1, 1, 2, 2, 1, 1)	$238(1,0,2,1,1,1,1)$	$237(1,2,0,1,1,1,2)$	$148(2,1,1,0,1,2,2)$	$157(2,1,1,1,0,1,2)$	$146(2,1,1,2,1,0,1)$	$147(2,1,1,2,2,1,0)$
$156(0,1,1,1,2,2,1)$	245 (1, 0, 1, 2, 2, 1, 1)	345 (1, 1, 0, 2, 2, 1, 1)	$246(1,2,1,0,1,2,1)$	$158(2,1,1,1,0,1,1)$	$167(2,1,1,1,1,0,2)$	$278(1,2,1,1,1,1,0)$
168 (0, 1, 1, 1, 1, 2, 1)	$247(1,0,1,2,1,1,2)$	348 (1, 1, 0, 2, 1, 1, 1)	248 (1, 2, 1, 0, 1, 1, 1)	$257(1,2,1,1,0,1,2)$	268 (1, 2, 1, 1, 1, 0, 1)	$347(1,1,2,2,1,1,0)$
$178(0,1,1,1,2,1,2)$	$256(1,0,1,1,2,2,1)$	$356(1,1,0,1,2,2,1)$	$456(1,1,1,0,2,2,1)$	$357(1,2,2,1,0,1,2)$	346 (1, 1, 2, 2, 1, 0, 1)	$378(1,1,2,1,1,1,0)$
	$258(2,0,1,1,2,1,1)$	$358(2,1,0,1,2,1,1)$	$457(1,1,1,0,2,1,2)$	$458(2,1,1,2,0,1,1)$	568 (2, 1, 1, 1, 2, 0, 1)	$478(1,1,1,2,1,1,0)$
	$267(1,0,1,1,1,2,2)$	367 (1, 1, 0, 1, 1, 2, 2)	$467(1,1,1,0,1,2,2)$	$567(1,1,1,1,0,2,2)$	$678(1,1,1,1,1,0,2)$	$578(2,1,1,1,2,1,0)$
		368 (1, 1, 0, 1, 1, 2, 1)	$468(2,1,1,0,1,2,1)$			

Proof. By Theorem C, if A, B are two distinct vertices in $K G(2 k+1, k)$, then

$$
d(A, B)=\min \{2(k-|A \cap B|), 2|A \cap B|+1\}
$$

This implies that the possible values of $d(A, B)$ are in one-to-one correspondence with the possible values $\{0,1,2, \ldots, k-1\}$ of $|A \cap B|$. Thus, we have $d(A, B)=d\left(A_{1}, B_{1}\right)$ if and only if $|A \cap B|=\left|A_{1} \cap B_{1}\right|$, where $A_{1}, B_{1} \in V(K G(2 k+1, k))$. For each $i, 1 \leq i \leq 2 k+1$, let $w_{i}:=\{i, i+1, \ldots, i+(k-1)\}$, where the elements are considered modulo $2 k+1$. For example, $w_{1}=\{1,2, \ldots, k\}$ and $w_{2 k+1}=\{2 k+1,1,2, \ldots, k-1\}$. We want to show that for each two distinct vertices A, B, there exists a vertex $w_{i}, 1 \leq i \leq 2 k+1$, such that $d\left(A, w_{i}\right) \neq d\left(B, w_{i}\right)$, equivalently $\left|A \cap w_{i}\right| \neq\left|B \cap w_{i}\right|$. Suppose that, on the contrary, there exist vertices A and B such that $\left|A \cap w_{i}\right|=\left|B \cap w_{i}\right|$ for all $i \in\{1,2, \ldots, 2 k+1\}$. Let $A^{\prime}:=A \backslash B$ and $B^{\prime}:=B \backslash A$. Thus, we have

$$
1 \leq\left|A^{\prime}\right|=\left|B^{\prime}\right|=k-|A \cap B| \leq k,
$$

and $\left|A^{\prime} \cap w_{i}\right|=\left|B^{\prime} \cap w_{i}\right|$ for each $i \in\{1,2, \ldots, 2 k+1\}$. Let $a \in A^{\prime}$. Since $A^{\prime} \cap B^{\prime}=\emptyset, a \notin B^{\prime}$ and

$$
\left|A^{\prime} \cap w_{a}\right|=\left|B^{\prime} \cap w_{a}\right| \leq\left|B^{\prime} \cap w_{a+1}\right|=\left|A^{\prime} \cap w_{a+1}\right| .
$$

Moreover, $a \in A^{\prime} \cap w_{a}, a \notin A^{\prime} \cap w_{a+1}$ and $w_{a+1} \backslash w_{a}=\{a+k\}$. Therefore, $a+k \in A^{\prime}$. Similarly, $a+j k \in A^{\prime}(\bmod 2 k+1)$, for each $j \in \mathbb{N}$. If $a+j k \equiv a+j^{\prime} k(\bmod 2 k+1)$, then $j \equiv j^{\prime}(\bmod 2 k+1)$. This implies that $\left|A^{\prime}\right|=2 k+1$, which is a contradiction. Hence, the set $\left\{w_{1}, \ldots, w_{2 k+1}\right\}$ is a resolving set, and $\operatorname{dim}_{M}(K G(2 k+1, k)) \leq 2 k+1$. By Theorem B, we have

$$
\chi_{L}(K G(2 k+1, k)) \leq \operatorname{dim}_{M}(K G(2 k+1, k))+\chi(K G(2 k+1, k)) \leq 2 k+4 .
$$

Finally, we show that the lower bound holds. Using Theorem 1, it is easy to see that the inequality holds for $k=3$. Suppose that $k \geq 4$, and let

$$
l_{0}:=\min \left\{l| | V(K G(2 k+1, k)) \mid \leq l k^{l-1}\right\} .
$$

By Theorem 1 and Lemma 1, we have $l_{0} \leq \min \left\{\chi_{L}(K G(2 k+1, k)), k\right\}$. Now, since

$$
\frac{4^{k} \mathrm{e}^{\frac{-1}{8 k}}}{\sqrt{k \pi}} \leq\binom{ 2 k}{k}<\binom{2 k+1}{k} \leq l_{0} k^{l_{0}-1} \leq k^{l_{0}},
$$

where the first inequality is taken from [15], the lower bound follows. Note that, the lower bound is a non-decreasing function and for $k \geq 4$ is greater than three. Also, by Theorem $1, \chi_{L}(K G(7,3)) \geq 4$. Therefore, $\chi(K G(n, k))<$ $\chi_{L}(K G(n, k))$.

References

[1] Asmiati, H. Assiyatun, E.T. Baskoro, Locating-chromatic number of amalgamation of stars, ITB J. Sci. A 43 (2011) 1-8.
[2] G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater, P. Zhang, The locating-chromatic number of a graph, Bull. Inst. Combin. Appl. 36 (2002) $89-101$.
[3] G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater, P. Zhang, Graphs of order n with locating-chromatic number $n-1$, Discrete Math. 269 (1-3) (2003) 65-79.
[4] G. Chartrand, F. Okamoto, P. Zhang, The metric chromatic number of a graph, Australas. J. Combin. 44 (2009) 273-286.
[5] G. Chartrand, V. Saenpholphat, P. Zhang, Resolving edge colorings in graphs, Ars Combin. 74 (2005) 33-47.
[6] G. Chartrand, E. Salehi, P. Zhang, The partition dimension of a graph, Aequationes Math. 59 (1-2) (2000) 45-54.
[7] R.L. Graham, H.O. Pollak, On the addressing problem for loop switching, Bell Syst. Tech. J 50 (1971) 2495-2519.
[8] H. Hajiabolhassan, X. Zhu, Circular chromatic number of Kneser graphs, J. Combin. Theory Ser. B 88 (2003) 299-303.
[9] F. Harary, R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191-195.
[10] R. Javadi, B. Omoomi, On b-coloring of the Kneser graphs, Discrete Math. 309 (2009) 4399-4408.
[11] M. Kneser, Aufgabe 360, Jahresber. Deutsch. Math.-Verein. 58 (1955) 27.
[12] L. Lovász, Kneser's conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A 25 (3) (1978) 319-324.
[13] V. Saenpholphat, P. Zhang, Conditional resolvability in graphs: a survey, Int. J. Math. Math. Sci. (37-40) (2004) 1997-2017.
[14] V. Saenpholphat, P. Zhang, On connected resolving decompositions in graphs, Czechoslovak Math. J. 54 (2004) 681-696.
[15] Z. Sasvári, Inequalities for binomial coefficients, J. Math. Anal. Appl. 236 (1) (1999) 223-226.
[16] P.J. Slater, Leaves of trees, Congress. Numer. 14 (1975) 549-559.
[17] S. Stahl, The multichromatic numbers of some Kneser graphs, Discrete Math. 185 (1998) 287-291.
[18] M. Valencia-Pabon, J.-C. Vera, On the diameter of Kneser graphs, Discrete Math. 305 (2005) 383-385.

[^0]: * Corresponding author.

 E-mail addresses: alibehtoei@math.iut.ac.ir (A. Behtoei), bomoomi@cc.iut.ac.ir (B. Omoomi).
 0166-218X/\$ - see front matter © 2011 Elsevier B.V. All rights reserved.
 doi:10.1016/j.dam.2011.07.015

