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Abstract We consider single channel wireless networks

with interference constraint among the links that can be

activated simultaneously. The traffic flows are assumed to

be single hop. Delay performance of the well known

throughput optimal maximum weight link scheduling

algorithm has been studied recently. In this paper, we study

the relation between network topology and delay of max-

imum weight link scheduling algorithm. First, we consider

1-hop interference model. Under this interference model,

an upper bound for the average delay of packets is derived

analytically in terms of edge chromatic number of the

network graph. Then the results have been extended to the

case of general interference model. Under this model of

interference, an upper bound for delay as a function of

chromatic number of conflict graph is derived. Since

chromatic number and edge chromatic number are network

topology parameters, the results show that how the upper

bound of delay is affected by network topology. Simulation

results confirm our analytical relations.

Keywords Wireless network � Link scheduling �
Network topology � Delay � Chromatic number �
Edge-chromatic number � Graph coloring � Conflict graph �
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1 Introduction

In single channel wireless networks, links need to be

scheduled for data transmission due to the presence of

interference among them. Link scheduling has been known

to be a challenging problem when the design objective is to

optimize achievable throughput (capacity). Let us assume

that associated to each link is a queue and packets are

queued before they are transmitted over the link. A

throughput optimal maximum weight (also known as Max-

Weight) scheduling algorithm has been devised in [1]. The

optimization problem is to choose a set of non-interfering

links with the maximum sum of weights, where the link

weights are the queue sizes on the links. The proposed

solution however, needs that a central and high computa-

tional complexity algorithm to be executed at each time

slot in the network. The complexity of the algorithm is

highly affected by the interference model used to deal with

interference and is a NP-Hard problem in general case [2].

Many research efforts then conducted in this area to

develop scheduling algorithms with lower complexity

which are more applicable in wireless networks without

central coordinator node, like Ad Hoc networks. A class of

randomized algorithms with linear complexity has been

proposed by Tassiulas in [3]. These type of central algo-

rithms achieve the entire throughput region under some

mild assumption. A distributed version of [3] has been

devised by the use of gossiping technique with the

assumption that interference model is node exclusive [4].
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Another distributed implementation of [3] under node

exclusive interference model (also known as 1-hop inter-

ference model) and for the case of single hop traffic flows

has been developed by Bui et al. which is shown to attain a

fraction k
kþ2

of throughput region, where k is a tunable

parameter of the algorithm [5]. This work was extended to

include multi hop traffic as well in [6]. Subsequently, a

similar approach was used to develop a link scheduling

algorithm with O(1) complexity for M-hop interference

model [7].

Another approach to implement distributed link sched-

uling algorithm is to apply random access and backoff time

technique. Q-SHED is an example of a link scheduling

algorithm that uses this approach [8].

Link scheduling algorithm under 1-hop interference

model is equivalent to maximum weight matching in graph

theory which suffers high computational complexity. Then,

a trend of research study in graph theory is to devise

approximation algorithms with low complexity that

achieves a fraction of optimal solution. A simple approx-

imation algorithm for maximum weight matching problem

is greedy algorithm that guarantees to achieve a fraction 1
2

of optimal solution (maximum weight matching) [9]. The

greedy algorithm begins with an empty set and extends it in

each round by adding the heaviest edge currently available.

A distributed version of greedy algorithm has been pro-

posed in [10]. Another algorithm incurring less complexity

and the same fraction of optimal solution has been pro-

posed in [11]. In [12] a linear time approximation algo-

rithm for maximum weight matching problem has been

devised that attains a fraction of 2
3
� � of optimal solution.

Maximal scheduling is another trivial approximation to

Max-Weight scheduling. Maximal scheduling means that if

the queue of a link l is non-empty, then either l is selected

for transmission, or some other links within the interfer-

ence set of l is selected, where the interference set of l is a

set of links that interferes with l in addition to l itself.

Maximal scheduling is of interest due to its localized nat-

ure, low overhead and complexity, and then ease of dis-

tributed implementation. Maximal scheduling is known to

achieve throughput that is within a constant factor of

optimality for general interference model [13, 14].

While most of the previous works focused on the

throughput performance of scheduling algorithms, recently

the delay property of these algorithms has emerged as a new

design parameter when delay sensitive applications are

growing rapidly. These applications require that the network

provides some kind of guarantee for the upper bound of

delay. Link scheduling algorithms (in MAC Layer) in

addition to routing protocols (in Network Layer) affect the

delay of packets in the network [15]. However, for the case

of single hop traffic where packets traverse only one hop and

then leave the network, the delay behavior of the network is

mostly determined by link scheduling algorithms.

Neely has demonstrated that the delay of Max-Weight

link scheduling algorithm in cellular networks with ON/

OFF links is order optimal (i.e. independent of network

size) [16, 17]. Also, the order optimal delay property of

Max-Weight scheduling in wireless Ad Hoc networks with

single hop traffic flows has been derived in [18] provided

that network topology is sparse and uniform. It has been

shown that the average delay of the maximal scheduling

algorithm in wireless networks with single hop traffic is

independent of network size, and hence is order optimal

[19]. A lower bound and upper bound of delay in wireless

networks with single hop traffic and general interference

constraint has been derived in [20]. The derived upper

bound is associated to a generalized version of Max-

Weight schedule termed as GMWM which is a kind of

weighted MWS. The work was extended to consider multi

hop traffic in [21].

In this paper, we aim to generalize some of previous

works by considering the impact of network topology on

the delay.

In a recent paper, a frame-based scheduling algorithm

for mmWave (millimeter wave) WPAN (Wirelee Personal

Area Network) has been proposed which is based on

greedy graph coloring technique [22]. The main objective

of the paper is to leverage collision-free concurrent trans-

missions to fully exploit spatial reuse in such networks

which obtained by using directional antennas. This prop-

erty allows the designers to consider 1-hop interference

model for WPANs such as Bluetooth network. In WPANs,

there is a central node, termed as piconet coordinator,

which is responsible for collecting traffic demands from

other nodes and computes schedules to enable concurrent

directional transmissions in the WPAN. Due to the prop-

erty of directional transmissions, the topology of these kind

of networks is not fixed and can be controlled by the pic-

onet to fulfill different performance goals such as mini-

mizing delay and maximizing network throughput [22].

The relation between the mentioned paper and our work is

as follows. The Piconet can determine the topology of the

WPAN network, while we derive an upper bound of delay

for similar networks which is related to the topology of the

network. Therefore, our derived upper bound of delay can

be used by the piconet to evaluate the delay performance of

the constructed network, provided that topology variation

occurs infrequently.

The main contribution of this paper is to analytically

derive two upper bounds for the network average delay

which is explicitly related to the network topology. One of

the derived upper bounds is associated to networks with

1-hop interference model while the other one is associated
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to networks with general M-hop interference model. Spe-

cifically, we show the relation between edge-chromatic

number of the network graph and the average delay that

packets incur in the network, while the interference con-

straint is applied by 1-hop interference model. As edge-

chromatic number depends on the topology of the network,

we indeed derive the relation between topology and delay

in the order sense. The result is extended to M-hop inter-

ference model by using the chromatic number of network’s

conflict graph.

Simulation results support our analytical findings. To the

best of our knowledge, this is the first time that the con-

cepts of graph coloring in relation with average delay in

wireless networks are studied. The results of this paper

show the impact of network topology on upper bounds of

delay. These bounds can be used to provide some level of

assurance for delay sensitive applications in the network.

The rest of the paper is organized as follows. Sect. 2

introduces the system model and the formal problem def-

inition. In Sect. 3 the upper bound of the delay for node

exclusive interference model is derived analytically. In

Sect. 4 the simulation results are used to validate analytical

relations. The extension of the work to general interference

model is developed in Sect. 5 In Sect. 6 we provide a

discussion on the importance of the results as well as a

comparison to a recently published article. Finally, some

concluding remarks are provided in Sect. 7.

2 System model

A wireless Ad Hoc network can be modeled as a directed

graph GðN ;LÞ; where N and L denote the sets of nodes

and links respectively; N and L are used to denote the

cardinalities of N and L: We assume that the network is

stationary and nodes are globally synchronized. Time is

slotted and all packets have the same normalized size such

that one packet can be transmitted within one time slot. A

time slot consists of a scheduling duration, followed by a

transmission duration. In the same spirit of existing works

[2, 4, 5], we assume that the wireless network is single-

channel and single-radio.

In this paper we adopt both 1-hop and general interfer-

ence models [2]. The 1-hop interference model is also

known as node exclusive model in the literature. Link

scheduling under 1-hop interference model results in

finding a matching in the network graph GðN ;LÞ: A

matching in a graph is a set of edges with no shared end

nodes. This is a commonly used model for Bluetooth and

FH-CDMA systems [7]. To demonstrate general interfer-

ence constraints among links of the network, we use

another well known graph, which is called conflict graph.

Definition 1 (Conflict Graph) Let G0ðL; EÞ denotes the

conflict graph, where L and E are sets of nodes and edges

respectively. Corresponding to each edge in GðN ;LÞ;
there is a node in G0ðL; EÞ: Then, the set of nodes in G0 is

the same as the set of edges (links) in G. Two nodes in G0

are adjacent whenever their corresponding edges in G are

interfering with each other. M-hop interference model [2]

is a special case of general interference model where links

within M-hop distance of each other are considered as

interfering links.

As we focus on link scheduling, we consider only single

hop flows. The results however can be extended to multi-

hop traffic, using the back-pressure approach [1] as the

routing component of the joint scheduling and routing

problem.

Associated with each link l, we assume that the sto-

chastic process Al(t) denotes the number of packets arrived

at time slot t. We assume that the second moment of Al(t) is

finite. Let AðtÞ be the vector of arrivals at time slot t among

all the links. Throughout this paper, we use bold symbols X

to describe a column vector with elements Xl.

We treat Al(.) as an i.i.d process over time and denote

kl ¼ E½AlðtÞ�: Let Ql(t) be the queue length of link l. The

binary vector IðtÞ of length L is used to denote the set of

active links at time slot t, where Il(t) = 1 if link l is

scheduled at time slot t and has a positive queue length.

Then, the queue length dynamics can be represented as

follows.

Qðt þ 1Þ ¼ QðtÞ þ AðtÞ � IðtÞ: ð1Þ

We adopt the definition of Stability in [23]. A system is

strongly stable if

lim sup
t!1

1

t

Xt�1

s¼0

E

X

l2L
QlðsÞ

" #
\1: ð2Þ

Let S be the set of all feasible schedule vectors I in G, i.e.,

S ¼ fI1; I2; . . .; IjSjg: The throughput-region under a given

scheduling algorithm is a set of all offered load vector k
under which the system remains stable. The throughput-

region K�RL
þ of the system is defined as the union of the

throughput-regions under all scheduling algorithms in S: In

other words, K denotes the set of ks for which there exists a

scheduling that can stabilize the system. It is known that K
coincides with the convex hull (convex envelope) of all

possible schedules and the following result was shown in

[1].

If k belongs to the interior of K; then the network is

stable under a scheduling algorithm that selects links for

transmission according to the Max-Weight schedule in Eq.

(3).

I�ðtÞ ¼ arg max
I2S

I:QðtÞ: ð3Þ
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where I�ðtÞ is denoted by optimal schedule at time slot t.

As a matter of notational simplicity, we omit the transpose

symbol in inner product of two vectors, I and QðtÞ above,

and the rest of this paper. According to Eq. (3), Max-

Weight algorithm indicates that at each time slot t, a set of

non-interfering links should be chosen that has the maxi-

mum sum of queue sizes (maximum sum of weights) on the

links.

In the following sections, we derive two upper bounds

for the average delay of the system which reflect the impact

of network topology, provided that arrival traffic is strictly

inside the throughput region and optimal scheduling algo-

rithm is deployed. To this end, we use two topological

parameter, edge-chromatic number of the network graph

denoted by v0(G) and chromatic number of conflict graph

denoted by v(G0). The definitions of these terms are as

follows.

Definition 2 (k-edge-colorable) [24] A proper k-edge-

coloring of G is a labeling (coloring) f : L ! x; where

|x| = k and incident edges have different labels (colors).

The edges of one color form a matching in the graph. The

graph is k-edge-colorable if it has a proper k-edge-

coloring.

Definition 3 (edge-chromatic number) [24] The edge-

chromatic number v0(G) of a graph G is the least k such

that G is k-edge-colorable.

Definition 4 (k-colorable) [24] A proper k-coloring of G

is a labeling (coloring) f : N ! C; where |C| = k and

adjacent nodes have different labels (colors). The nodes of

one color form an independent set in the graph. An inde-

pendent set in a graph is a set of nodes that no two of which

are adjacent. The graph is k-colorable if it has a proper k-

coloring.

Definition 5 (chromatic number) [24] The chromatic

number v(G) of a graph G is the least k such that G is k-

colorable.

We mean by the word ‘‘delay’’ throughout the paper, the

average delay of the packets in the network.

3 Delay analysis

In this section, we use the Lyapunov drift technique to obtain

an upper delay bound for Max-Weight scheduling algorithm.

To this end, we need to introduce the following theorem

which will be the cornerstone for the rest of analysis.

Theorem 1 [23] Let QðtÞ be a vector process of queue

backlogs that evolves according to some probability law,

and let VðQðtÞÞ be a non-negative function of QðtÞ: If there

exists processes f(t) and g(t) such that the following

inequality is satisfied for all time slots t,

E½VðQðt þ 1ÞÞ � VðQðtÞÞjQðtÞÞ�
�E½gðtÞjQðtÞ� � E½f ðtÞjQðtÞ�;

ð4Þ

then

lim sup
t!1

1

t

Xt�1

s¼0

Eff ðsÞg� lim sup
t!1

1

t

Xt�1

s¼0

EfgðsÞg:

Note that the relation between throughput region, K; and

the set of all possible schedules, S; is that K is the convex

hull (convex envelope) of all feasible schedules Ik [1]. The

convexity of K implies that for any vector h 2 K; it can be

written as h ¼
P

Ik2S /kIk; where
P

/k B 1. It has been

shown that the necessary and sufficient condition for the

stability of Max-Weight scheduling algorithm is that the

arrival rate vector, k, belongs to the interior (or strictly

inside) the throughput region [1]. The interior of

throughput region can be shown by qK; where 0 \q\ 1.

Therefore, if the arrival rate vector k belongs to the

interior of the throughput region, then there exists a loading

factor q\ 1 such that k 2 qK: On the other hand, since

throughput region is a convex hull, we can write

k ¼ q
X

Ik2S
/kIk; and

XjSj

k¼1

/k � 1; ð5Þ

where /1;/2; . . .;/jSj are non-negative real numbers.

The parameter q shows how far the input rate vector is away

from the throughput region boundary. We will see in Theorem 2

and Theorem 3 that as q approaches the value 1, which means

that the arrival rate vector approaches the boundary of

throughput region, the delay bound will be increased.

In this section, we adopt 1-hop interference model. Let

us assume that the edges of the graph has been labeled by

v0(G) colors. Each color corresponds to a feasible schedule

in the graph. Therefore, we have a set of feasible schedules

C which consists of v0(G) schedules. The union of active

links in C equals L and any link belongs to only one

schedule in the set. Note that C � S; where S is the set of

all feasible schedules. Let C ¼ fc1; c2; . . .; cv0ðGÞg; where ci

is a schedule corresponds to color i, 1 B i B v0(G). Thanks

to the convexity of K;

1

v0ðGÞ
Xv0ðGÞ

i¼1

ci 2 K ð6Þ

Let explain the intuition behind the above equation.

Assume that a scheduling policy is defined such that it

serves cis in a round robin fashion. Since the total number

of cis is v0(G), the average time between two consecutive

service of a link is v0(G). Then if all the arrival rates are
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1
v0ðGÞ ; there exists a schedule to keep the system stable

which means that the vector of arrivals belongs to the

throughput region. Considering relation (6), convexity of K
and the fact that

P
Ik2S /kIk 2 K; we have

q
X

Ik2S
/kIk þ 1� q

v0ðGÞ
Xv0ðGÞ

i¼1

ci 2 K ð7Þ

Note that
Pv0ðGÞ

i¼1 ci ¼ 1L; where 1L is a vector with all

elements equal to 1. Then by using (5), relation (7) can be

rewritten as follows,

kþ 1� q
v0ðGÞ 1L 2 K ð8Þ

The derived relation indicates that the amount of value

which can be added to the arrival rate vector while keeping

the resulting vector inside the throughput region depends

on two parameters : 1) the topology of the network which is

denoted by edge chromatic number in the relation (8) and

2) the distance the arrival rate vector, k, is away from the

boundary of region which is shown by the parameter q.

The following lemma will be used for the next step of

analysis.

Lemma 1 For any rate vector r strictly inside the

throughput region, the following relation holds:

QðtÞ:r\QðtÞ:I�ðtÞ ð9Þ

Proof Since r is strictly inside throughput region we infer

r ¼
P

Ik2S akIk where
PjSj

k¼1 ak\1: Then,

QðtÞ:r ¼
X

Ik2S

akQðtÞ:Ik�
X

Ik2S

akQðtÞ:I�ðtÞ\QðtÞ:I�ðtÞ

A useful candidate for r is what we have derived in

relation (8). By applying (8) in Lemma 1, we get the

following result:

Q:ðkþ 1� q
v0ðGÞ 1LÞ\Q:I�

Q:ðk� I�Þ\� ð1� q
v0ðGÞÞ1L:Q

ð10Þ

Now we are ready to provide the main result of this section.

Theorem 2 Under 1-hop interference mode, if k is strictly

inside the throughput region, then the average delay of the

network is upper bounded by
v0ðGÞð

PL

i¼1
½VarðAiÞþki�k2

i �Þ

2ð1�qÞ
PL

i¼1
ki

; where

q is the loading factor and v0(G) is the edge-chromatic

number of the network graph.

Proof To prove this theorem, we apply the following

Lyapunov function in Theorem 1.

VðQÞ,Q:Q ¼
XL

i¼1

Q2
i ð11Þ

E½VðQðt þ 1ÞÞ � VðQðtÞÞjQðtÞÞ� ¼
E½ðQðt þ 1Þ � QðtÞÞ:ðQðt þ 1Þ þ QðtÞÞjQðtÞ�
¼ E½ðAðtÞ � IðtÞÞ:ð2QðtÞ þ AðtÞ � IðtÞÞjQðtÞ�
¼ 2E½QðtÞ:ðAðtÞ � IðtÞÞjQðtÞ�þ
E½ðAðtÞ � IðtÞÞ:ðAðtÞ � IðtÞÞjQðtÞ�
¼ 2QðtÞ:E½ðAðtÞ � IðtÞÞjQðtÞ�þ
E½ðAðtÞ � IðtÞÞ:ðAðtÞ � IðtÞÞjQðtÞ�
¼ 2QðtÞ:fE½AðtÞjQðtÞ� � E½IðtÞjQðtÞ�gþ
E½ðAðtÞ � IðtÞÞ:ðAðtÞ � IðtÞÞjQðtÞ� ð12Þ

We know that Q(t) depends on arrivals and departures till

time slot t (before time slot t). Therefore, it is independent

of arrivals at time slot t. Thus, E½AðtÞjQðtÞ� ¼ E½AðtÞ� ¼ k:
Since we apply Max-Weight schedule at each time slot for

the given Q(t), and if there are more than one optimal

I(t), for all of them the value of Q(t).I(t) is constant, then

Equation (12) can be rewritten as follows.

E½VðQðt þ 1ÞÞ � VðQðtÞÞjQðtÞÞ�
¼ 2½QðtÞ:ðk� IðtÞÞ� þ E½gðtÞjQðtÞ�

ð13Þ

where gðtÞ,ðAðtÞ � IðtÞÞ:ðAðtÞ � IðtÞÞ: Using relation (10)

in the first term of (13) we infer,

E½VðQðt þ 1ÞÞ � VðQðtÞÞjQðtÞÞ�

� � 2ð1� q
v0ðGÞÞ1L:QðtÞ þ E½gðtÞjQðtÞ�

ð14Þ

Now, by plugging the above inequality into Theorem 1

we have,

lim sup
t!1

1

t

Xt�1

s¼0

XL

i¼1

E½QiðsÞ� �
v0ðGÞ

2ð1� qÞ g ð15Þ

where �g, lim sup
t!1

1
t

Pt�1
s¼0 E½gðsÞ�:

Note that if the arrival process have bounded second

moment, then g\1 and the system is strongly stable.

Therefore, for each link l, the long term average of service

rate equals its arrival rate, i.e., lim sup
t!1

1
t

Pt�1
s¼0 IiðsÞ ¼ ki:

Also, Ii
2(t) = Ii(t) because IiðtÞ 2 f0; 1g: Then,

g ¼ lim sup
t!1

1

t

Xt�1

s¼0

E½AðsÞ:AðsÞ þ IðsÞ:IðsÞ � 2AðsÞ:IðsÞ�

¼ lim sup
t!1

1

t

Xt�1

s¼0

E½
XL

i¼1

A2
i ðsÞ þ

XL

i¼1

I2
i ðsÞ� � 2

XL

i¼1

k2
i

¼
XL

i¼1

VarðAiÞ þ lim sup
t!1

1

t

Xt�1

s¼0

E

XL

i¼1

IiðsÞ �
XL

i¼1

k2
i

¼
XL

i¼1

½VarðAiÞ þ ki � k2
i �

ð16Þ
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Following the same spirit of works in [19,20], we know

that the queue backlogs evolve according to an ergodic

Markov chain with a countably infinite state space. Thus,

the left hand side of (15) can be replaced by time average

total queue backlog in the network which is denoted by Q:

Then after plugging (16) in (15) we have,

XL

i¼1

Qi�
v0ðGÞð

PL
i¼1½VarðAiÞ þ ki � k2

i �Þ
2ð1� qÞ ð17Þ

The average expected delay in the network, W ; is

derived by Little’s Law as follows,

W � v0ðGÞð
PL

i¼1½VarðAiÞ þ ki � k2
i �Þ

2ð1� qÞ
PL

i¼1 ki

ð18Þ

4 Simulation results

We have simulated the Max-Weight scheduling algorithm,

using the cycle and complete graphs as our network

topologies. In complete graph every pair of distinct nodes

is connected by an edge. We set up three different topol-

ogies. Let Complete 8 denotes a complete graph with 8

nodes, Cycle 8 denotes a cycle with 8 nodes and Cycle 16

denotes a cycle with 16 nodes. In Fig. 1, the average delay

of two cycle topologies in addition to our calculated upper

bound are depicted versus the increasing arrival rate. Note

that the derived upper bound for Cycle 8 and Cycle 16 are

almost the same. In order to understand the accuracy of

obtained delay and its upper bound better, a lower bound is

computed using the results of a recent paper [20] in which

authors have considered a fictitious scheduling algorithm to

derive this bound. In the same paper, an upper bound for

delay has been derived for a generalized version of Max-

Weight schedule, termed as GMWM. The bound is not

applicable for Max-Wight schedule and also its calculation

requires to solve a convex optimization problem using

complicated methods such as Lagrange multipliers and

iterative subgradients. But our proposed method uses the

graph edge-chromatic number to calculate the upper bound

which simplifies the computation. (refer to Sect. 6 for

details of discussion).

It can be observed that the delay of the two cycle

topologies are almost the same and are independent of the

number of nodes or links. Note that the edge-chromatic

number of these two cycles are the same and are equal to 2

(We can label all the edges by 2 colors such that adjacent

edges get different colors).

Fig. 2 shows the increase in delay of Complete 8

topology as the load is increased. In Fig. 3, the average

delay of Cycle 16 is compared to the average delay of

Complete 8. It is obvious that the delay of the complete

graph is larger than the delay of cycle topology, due to its

larger edge-chromatic number which is 7 here. Note that

the increment in delay is not necessarily proportional to

v0(G). In the special case of a symmetric system with

identical input rates, Max-Weight scheduling minimizes

the average delay of the network [16]. This property has

been shown by simulation in [20], where Max-Weight

policy performs close to the derived lower bound of delay.

It is necessary to mention that neither measuring the

capacity region of an arbitrary network, nor running Max-

Weight scheduling algorithm for it is a straightforward

task. This is why, we use simple symmetric graphs in our

simulation.

Fig. 1 Delay of cycle topology

Fig. 2 Delay of complete topology

Fig. 3 Delay comparison of cycle and complete topologies
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5 Extension to general interference model

Theorem 2 in Sect. 3 is applied to the 1-hop interference

model. In this section we aim to extend the result of

Theorem 2 to the case of general interference model. To

consider general interference model, we use the notion of

conflict graph, G0 (refer to Section 2 for definition). Note

that there is a one to one relation between feasible sched-

ules in graph G and independent sets in graph G0.
Now, assume that the nodes of G0 has been labeled by

v(G0) colors, where v(G0) is the chromatic number of G0

(refer to Sect. 2 for definition). Each color corresponds to a

feasible schedule in the graph. Therefore, we have a set of

feasible schedules C which consists of v(G0) schedules. The

union of active links in C equals L and any link belongs to

only one schedule in the set. Note that C � S; where S is

the set of all feasible schedules. Let C ¼ fc1; c2; . . .;
cvðG0Þg; where ci is a schedule corresponds to color i,

1 B i B v(G0). Note that 1
vðG0Þ

PvðG0Þ
i¼1 ci 2 K due to the

convex property of K: Now, similar to the approach of

Sect. 3 and by replacing v0(G) by v(G0), we can derive the

following theorem.

Theorem 3 Under general interference model, if k
is strictly inside the throughput region, then the aver-

age delay of the network is upper bounded by

vðG0Þð
PL

i¼1
½VarðAiÞþki�k2

i �

2ð1�qÞ
PL

i¼1
ki

:

Proof The proof parallels the development in Theorem 1,

in which v(G0) is used instead of v0(G) and then is omitted

due to similarity.

6 Discussion

We have shown that the average delay of packets in

wireless network with single hop traffic flows under 1-hop

interference model is upper bounded by edge-chromatic

number. The significance of this result becomes more

prominent if it is pointed out that there are precisely two

classes of graphs, those with v0ðGÞ ¼ D and those with

v0ðGÞ ¼ Dþ 1 [24] where D is the largest vertex degree of

the graph. In other words, we need at least D and at most

Dþ 1 colors to color (edge coloring) the graph.

Although calculating the precise value of v0(G) for an

arbitrary graph is an NP hard problem itself, but for our

purpose we might use Dþ 1 to simply compute the delay

upper bound without any complex calculations.

We notice that D can be any integer value in the interval

[1, N - 1], where N is the number of nodes in the graph.

In special case of large and sparse graphs where nodes are

distributed uniformly, D is typically small compared to

N. Then we can infer that delay bound is order optimal as it

is developed in [18]. Indeed, our new scheme elegantly

generalizes the result of [18] in the sense that we have

derived an upper bound which explicitly reflects the impact

of network topology on delay.

7 Conclusions

In this paper, we have studied the effect of network topology

on delay of throughput optimal Max-Weight link scheduling

algorithm in wireless networks with single hop traffic flows.

Based on the interference model we have used, two different

bounds are obtained. We have first derived an upper bound

for the delay under 1-hop interference model in terms of

edge-chromatic number of network graph and loading factor.

The result is of interest due to an interesting property of

graphs that the Edge-chromatic number is either D or Dþ 1;

where D is the largest vertex degree of the graph and can be

obtained easily from network topology. Then, another upper

bound for delay under general interference model has been

established in terms of chromatic number of network conflict

graph and loading factor. We believe that the results of this

paper reveals the relation between average delay and net-

work topology in the order sense and add to the under-

standing of the impact of topology on delay.
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