
Unique basis graphs

Behrooz Bagheri Gh., Mohsen Jannesari,
Behnaz Omoomi

Department of Mathematical Sciences

Isfahan University of Technology

84156-83111, Isfahan, Iran

Abstract

A set W ⊆ V (G) is called a resolving set, if for each two distinct
vertices u, v ∈ V (G) there exists w ∈ W such that d(u, w) 6= d(v, w),
where d(x, y) is the distance between the vertices x and y. A resolv-
ing set for G with minimum cardinality is called a metric basis. A
graph with a unique metric basis is called a unique basis graph. In
this paper, we study some properties of unique basis graphs.
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1 Introduction

Throughout the paper, G = (V, E) is a finite, simple, and connected graph of

order n. The distance between two vertices u and v, denoted by d(u, v), is the

length of a shortest path between u and v in G. For a vertex v ∈ V (G), Γi(v) =

{u | d(u, v) = i}. The diameter of G is diam(G) = max{d(u, v) | u, v ∈ V (G)}.
The girth of G is the length of a shortest cycle in G. The set of all vertices

adjacent to a vertex v is denoted by N(v) and |N(v)| is the degree of a vertex

v, and is denoted by deg(v). The maximum degree and the minimum degree of

a graph G, are denoted by ∆(G) and δ(G), respectively. The notations u ∼ v

and u � v denote the adjacency and non-adjacency relations between u and v,

respectively.
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For an ordered set W = {w1, w2, . . . , wk} ⊆ V (G) and a vertex v of G, the

k-vector

r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wk))

is called the metric representation of v with respect to W . The set W is called

a resolving set for G if distinct vertices have different metric representations. A

resolving set for G with minimum cardinality is called a metric basis, and its

cardinality is the metric dimension of G, denoted by β(G). If β(G) = k, then G

is said to be k-dimensional.

In [14], Slater introduced the idea of a resolving set and used a locating set

and the location number for what we call a resolving set and the metric dimen-

sion, respectively. He described the usefulness of these concepts when working

with U.S. Sonar and Coast Guard Loran stations. Independently, Harary and

Melter [7] discovered the concept of the location number as well and called it the

metric dimension. For more results related to these concepts see [3, 4, 6, 11].

The concept of a resolving set has various applications in diverse areas including

coin weighing problems [13], network discovery and verification [1], robot nav-

igation [11], mastermind game [3], problems of pattern recognition and image

processing [12], and combinatorial search and optimization [13].

To determine whether a given set W is a resolving set, it is sufficient to

consider the vertices in V (G)\W , because w ∈ W is the unique vertex in G for

which d(w, w) = 0. When W is a resolving set for G, we say that W resolves

G. In general, we say an ordered set W resolves a set T ⊆ V (G), if for each two

distinct vertices u, v ∈ T , r(u|W ) 6= r(v|W ).

The following bound is a known upper bound for the metric dimension.

Theorem A. [5] If G is a connected graph of order n and diameter d, then

β(G) ≤ n− d.

In [9, 10], the properties of k-dimensional graphs in which every k subset

of vertices is a metric basis are studied. Such graphs are called randomly k-

dimensional graphs. In the opposite point there are graphs which have a unique

metric basis.
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Definition. A graph is called a unique basis graph if it has a unique metric basis.

A unique basis graph G with β(G) = k is called a unique k-basis graph.

In this paper, we first obtain some upper bounds for the metric dimension of

unique basis graphs. Then, we give some construction for unique k-basis graphs

of the given order. Finally, we obtain a lower bound and an upper bound for the

minimum order of unique k-basis graphs in terms of k.

2 Some upper bounds

In this section we obtain some upper bounds for the metric dimension of unique

basis graphs.

Two vertices u, v ∈ V (G) are called twin vertices if N(u) \ {v} = N(v) \ {u}.
It is known that, if u and v are twin vertices, then every resolving set W for G

contains at least one of the vertices u and v. Moreover, if u /∈ W then (W \v)∪{u}
is also a resolving set for G. [8]

For a unique basis graph we have the following fact.

Lemma 1. If G is a unique basis graph, then G contains no twin vertices.

Proof. Let B be the unique metric basis of G. If u, v ∈ V (G) are twin vertices,

then u, v ∈ B; otherwise we can replace the one in B with the other one. Now,

since B \ {u} is not a basis of G, there is exactly one vertex w ∈ V (G) \ B such

that r(u|B \{u}) = r(w|B \{u}). Consequently, (B \{u})∪{w} is a metric basis

of G different from B, which is a contradiction.

Theorem 1. If G is a unique basis graph of order n and diameter d, then

β(G) ≤ n− d− 2.

Proof. Let (v0, v1, . . . , vd) be a path of length d in G. Both sets V (G) \
{v1, v2, . . . , vd} and V (G) \ {v0, v1, . . . , vd−1} are two resolving sets of G of size

n − d. Hence, if G is a unique basis graph, then β(G) ≤ n − d − 1. To complete

the proof we show that β(G) 6= n− d− 1.
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Let β(G) = n − d − 1 and for each i, 1 ≤ i ≤ d, Γi = Γi(v0). We claim

that for each i, 1 ≤ i ≤ d, Γi is an independent set or a clique; otherwise there

exists an i for which Γi contains vertices x, y, z such that x ∼ y and x � z.

Therefore, V (G)\{y, z, v1, v2, . . . , vi−1, vi+1, . . . , vd} is a metric basis of G. Now,

if y � z, then V (G) \ {x, z, v1, v2, . . . , vi−1, vi+1, . . . , vd} is another metric basis

and if y ∼ z, then V (G) \ {x, y, v1, v2, . . . , vi−1, vi+1, . . . , vd} is another metric

basis of G, contrary to the hypothesis. Consequently, for each i, 1 ≤ i ≤ d, Γi is

an independent set or a clique.

Now let for some i, 1 ≤ i ≤ d, |Γi| ≥ 2. Then, all vertices in Γi are adjacent

to all vertices in Γi−1; otherwise there exist a ∈ Γi−1 and x ∈ Γi such that a � x.

Therefore, x has a neighbor in Γi−1, say b. Assume that y ∈ Γi and y 6= x.

Clearly i ≥ 2. Thus, V (G)\{a, b, y, v1, v2, . . . , vi−2, vi+1, . . . , vd} is a metric basis

of G. Now, if y ∼ a, then V (G) \ {b, x, y, v1, v2, . . . , vi−2, vi+1, . . . , vd} is another

metric basis and if y � b, then V (G) \ {a, x, y, v1, v2, . . . , vi−2, vi+1, . . . , vd} is

another metric basis of G. These contradictions imply that y � a and y ∼ b.

Hence, V (G) \ {a, b, x, v1, v2, . . . , vi−2, vi+1, . . . , vd} is a metric basis of G, which

is also a contradiction. Consequently, all vertices in Γi are adjacent to all vertices

in Γi−1.

The above two facts imply that, if |Γi| ≥ 2 and |Γi+1| ≥ 2, then all vertices in

Γi have the same neighbors in Γi−1 ∪ Γi ∪ Γi+1. Therefore, all vertices u, v ∈ Γi

are twin vertices, which by Lemma 1 this is impossible. Thus, |Γi| ≥ 2 implies

that |Γi+1| = 1 and |Γi−1| = 1. Hence, if |Γi| > 2, then since Γi+1 = {vi+1}, by

the Pigenhole principle there are two vertices u, v ∈ Γi with the same adjacency

relation with vi+1 . Therefore, u and v are twin vertices, which is impossible.

That is, for each i, 1 ≤ i ≤ d, |Γi| ≤ 2. Now let j be the largest integer in

{1, 2, . . . , d} with |Γj | = 2 and Γj = {vj , yj}, where yj is the vertex with no

neighbor in Γj+1. Therefore, the sets {v0, vd} and {v0, yj} are two metric bases

of G. This contradiction implies that β(G) 6= n− d− 1.

Theorem 2. If G is a unique basis graph of order n and girth g, then β(G) ≤
n− g + 1.

Proof. Suppose that Cg = (v1, v2, . . . , vg, v1) be a shortest cycle in G. Then

V (G) \ {v3, v4, . . . , vg} and V (G) \ {v2, v3, . . . , vg−1} are two resolving sets for G
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of size n− g + 2. Since G has a unique basis, neither of these two sets is a metric

basis of G. Therefore, β(G) ≤ n− g + 1.

Theorem 3. If G is a unique basis graph of order n, then β(G) < n
2
.

Proof. Assume, to the contrary, that G has a unique metric basis B = {v1, v2, . . .

, vk} and n ≤ 2k. Since k ≤ n − 1, W = (V (G) \ B) ∪ {v1, v2, . . . , v2k−n} 6= B

with |W | = k. Therefore, W is not a basis of G and there exist vertices

x, y ∈ V (G) \ W ⊆ B such that r(x|W ) = r(y|W ). Say x = vi and y = vj .

Hence, for each v ∈ V (G) \ B, d(v, vi) = d(v, vj). For this reason, B \ {vi} re-

solves V (G) \ B. Therefore, there is exactly one vertex u ∈ V (G) \ B such that

r(u|B \ {vi}) = r(vi|B \ {vi}). Consequently, (B \ {vi})∪{u} is a metric basis of

G, which is a contradiction. Thus, 2β(G) < n.

3 Construction of unique k-basis graphs

In this section, we provide some construction for unique k-basis graphs of given

order. Then we end by giving a lower bound and an upper bound for the minimum

number of vertices in such graphs in terms of k.

Remark 1. Note that, if G is a graph of diameter d, then every W ⊆ V (G) can

resolve at most d|W | vertices of V (G) \W . Hence, every k-dimensional graph of

diameter d has at most k + dk vertices.

In [2], Buczkowski et al. constructed a unique k-basis graph with diameter 2

and order k + 2k.

Theorem B. [2] For k ≥ 2, there exists a unique k-basis graph of order n =

k + 2k, diameter 2, and maximum degree n− 1.

In the following theorem pertaining to construction of unique k-basis graphs

with diameter d, we obtain two necessary conditions for the existence of k-

dimensional graphs with diameter d and order k + dk.
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Theorem 4. If G is a k-dimensional graph with diameter d and order k + dk,

then

(i) d ≤ 3.

(ii) For a basis B and every v ∈ B, |Γd(v)| ≥ dk−1.

Proof. (i) Let G be a k-dimensional graph of diameter d ≥ 4 and order k + dk.

Thus, V (G) = U ∪ B, where U = {u1, u2, . . . , udk} and the ordered set B =

{v1, v2, . . . , vk} is a basis of G. Clearly, {r(ui|B) | 1 ≤ i ≤ dk} = [d]k, where

[d]k denotes the set of all k-tuples with entries in {1, 2, . . . , d}. Without loss

of generality, suppose that r(u1|B) = (1, 1, . . . , 1) and r(u2|B) = (4, 1, . . . , 1).

Therefore, d(v1, v2) ≤ 2 and d(u2, v1) ≤ d(u2, v2)+d(v2, v1) ≤ 3, a contradiction.

Thus, d ≤ 3.

(ii) Let B = {v1, v2, . . . , vk}. By the order and diameter of G, each k-vector with

coordinates in {1, 2, . . . , d} is the metric representation of a vertex u ∈ V (G) \B

with respect to B. Therefore, for each v ∈ B, there are dk−1 vertices of G for

which the i-th coordinate of their metric representations is d. Thus, |Γd(v)| ≥
dk−1.

In the following, we give a construction for unique k-basis graphs of diameter

3 and order k + 3k.

Theorem 5. For every integer k ≥ 2, there exists a unique k-basis graph of

diameter 3 and order k + 3k.

Proof. Let G be a graph with vertex set U ∪W , where U = {u1, u2, . . . , uk} is

an independent set and W is the set of all k-tuples with entries in {1, 2, 3} and two

vertices x, y ∈ W are adjacent if they are different in exactly one coordinate and

this difference is 1. Moreover, the vertex (2, 2, . . . , 2) is adjacent to all vertices in

W . Also, w ∈ W is adjacent to ui ∈ U if the i-th coordinate of w is 1.

The vertex (2, 2, . . . , 2) is adjacent to all vertices in W and (1, 1, . . . , 1) is adja-

cent to all vertices in U , thus diam(G) ≤ 3. On the other hand, d((3, 3, . . . , 3), u1)

= 3. Therefore, diam(G) = 3. Since diam(G) = 3 and the order of G is k + 3k,

by Remark 1, β(G) ≥ k. For each w ∈ W , r(w|U) = w, thus, U is a resolving set

for G of size k. Hence, U is a metric basis of G.
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Now since diam(〈W 〉) = 2, for each w ∈ W , |Γ1(w) ∪ Γ2(w)| ≥ 3k − 1 and

hence |Γ3(w)| ≤ k < 3k−1. Therefore, by Theorem 4(ii), no vertex of W is in a

metric basis of G. Consequently, U is the unique metric basis of G.

By Theorems 1 and 3, if G is a unique k-basis graph of order n, then n ≥
k + d + 2 and n ≥ 2k + 1. Let

n0(k) = min{n | there exists a unique k-basis graph of order n}.

Hence, we have max{2k + 1, k + d + 2} ≤ n0(k).

The following theorem shows that if a unique k-basis graph of order n0 exists,

then for every n ≥ n0, a unique k-basis graph of order n exists.

Theorem 6. If G is a unique k-basis graph of order n0, then for every n ≥ n0,

there exists a unique k-basis graph of order n.

Proof. Let G be a given unique k-basis graph of order n0 and let u be a vertex

in the basis B. Assume that v0 ∈ V (G) \ B is a vertex such that d(v0, u) =

max{d(v, u) | v ∈ V (G) \ B}. We construct a graph G′ by identifying an end

vertex of a path P of length n − n0 by v0. By the property of v0, B is also a

resolving set for G′. Thus, β(G′) ≤ k. On the other hand, since every basis of

G′ contains at most one vertex of the path P , by replacing that vertex by v0, we

obtain a basis for G. Thus, G′ is also a unique k-basis graph.

In the following theorem we give a recursive construction for unique basis

graphs to obtain an upper bound for n0(G).

Theorem 7. If Gi, i = 1, 2, is a unique ki-basis graph of order ni with ∆(Gi) =

ni − 1, then there exists a unique (k1 + k2)-basis graph G of order n1 + n2 − 1

with ∆(G) = n1 + n2 − 2.

Proof. Let Gi be a unique ki-basis graph of order ni with the basis Bi and

vi ∈ V (Gi) such that deg(vi) = ni − 1, for i = 1, 2. Let G be the graph obtained

from joining G1 and G2, and then identifying v1 and v2 in a vertex v0. Thus,
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deg(v0) = n1 + n2 − 2. Since for every u ∈ V (G1) \ {v1} and v ∈ V (G2) \ {v2},
d(u, v) = 1, if B is a basis of G, then B ∩ V (Gi) is a basis of Gi, for i = 1, 2.

Therefore, B is the unique basis of G.

Proposition 1. There exists a unique 3-basis graph of order 9 and maximum

degree 8.

Proof. Let U = {u1, u2, u3} and W = {w1, w2, . . . , w6}. Also let G be graph

with V (G) = U ∪W and E(G) = {wiwj | 1 ≤ i 6= j ≤ 6}∪ {uiwj | 1 ≤ i ≤ 3, j =

i, i + 1, 6}. We show that U is the unique basis of G.

Clearly, diam(G) = 2. Since |V (G)| = 9, by Remark 1, β(G) ≥ 3. It is easy to

see that U is resolving set and consequently is a basis of G. Now let B be another

basis of G. Since 〈W 〉 is a complete graph, B * W . Therefore, |B ∩ W | = 1

or 2. If |B ∩ W | = 1, then five vertices of W have the same representation with

respect to B ∩W and since diam(G) = 2, B \W can not resolve five vertices. If

|B ∩ W | = 2, then four vertices of W have the same representation with respect

to B ∩W and B \W can not resolve 4 vertices. These contradictions imply that

U is the unique basis of G.

In the following theorem, based on the recursive construction in Theorem 7,

we obtain an upper bound for n0(k).

Theorem 8. For every k, k ≥ 2, there exists a unique k-basis graph of order

d 5k
2

+ 1e.

Proof. Let k be a positive integer. If k = 2k′, then the graph G obtained by

the recursive construction given in Theorm 7 using k′ copies of the unique 2-basis

graph of order 6, constructed in Theorem B is a unique k-basis graph of order

6k′ − (k′ − 1) = 5k′ + 1 = 5k
2

+ 1.

If k = 2k′ + 1, then the graph G obtained by the recursive construction

given in Theorem 7 from k′ − 1 copies of the unique 2-basis graph of order 6,

constructed in Theorem B and one copy of the unique 3-basis graph of order 9

given in Proposition 1, is a unique k-basis graph of order 6(k′−1)− (k′−2)+8 =

5k′ + 4 = d 5k
2

+ 1e.
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Although the above theorem provides the recursive construction for unique

k-dimentional graphs of order d 5k
2

+ 1e, to get the more explicit construction, we

construct unique k-basis graphs of order 3k, in the following theorem.

Theorem 9. For each k ≥ 2, there exists a unique k-basis graph of order 3k.

Proof. Let U = {u1, u2, . . . , uk} and W = {w1, w2, . . . , w2k}. Also, let G be a

graph with vertex set V (G) = U ∪ W such that (i) the subgraph of G induced

by W is a complete graph; (ii) U is an independent set; (iii) uk is adjacent to

w2i for each i, 1 ≤ i ≤ k; and (iv) ui is adjacent to w2i−1 and w2i for each i,

1 ≤ i ≤ k − 1. We prove that G is the desired graph.

Let wi and wj be two arbitrary vertices of V (G) \ U = W . If i and j have

different parity, then d(wi, uk) 6= d(wj , uk). If i and j have the same parity, then

b i
2
c 6= b j

2
c and hence d(wi, ui) 6= d(wj , ui). Therefore, U is a resolving set for G

of size k and β(G) ≤ k.

Now let B be a metric basis of G. If uk /∈ B, then to resolve the set

{u1, w1, w2, w2k−1, w2k}, B should contain at least three vertices from this set,

since 〈W 〉 is a complete graph. Now if we replace these three vertices by u1

and uk we obtain a resolving set with smaller size. This contradiction im-

plies that uk ∈ B. If for some i, 1 ≤ i ≤ k − 1, ui /∈ B, then to resolve

the set {ui, w2i−1, w2i, w2k−1, w2k}, B should contain at least two vertices from

{w2i−1, w2i, w2k−1, w2k}, because 〈W 〉 is a complete graph. But replacing these

two vertices by ui provides a resolving set with smaller size. This contradiction

implies that U ⊆ B. Since U is a resolving set, U = B is the unique metric basis

of G.

By Theorems 3 and 8, we have the following corollary.

Corollary 1. Let k ≥ 2 be an integer. Then 2k + 1 ≤ n0(k) ≤ d 5k
2

+ 1e.

For k = 2, n ≥ 4 + d implies n ≥ 6. Hence, n0(2) = 6. It can be shown

that, there is no unique 3-basis graph of order 7. Thus, 8 ≤ n0(3) ≤ 9. The

determination of n0(k), for every integer k could be an nontrivial interesting

problem.
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