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Abstract

For an ordered set W = {w1, w2, . . . , wk} of vertices and a vertex
v in a connected graph G, the ordered k-vector r(v|W ) := (d(v, w1),
d(v, w2), . . . , d(v, wk)) is called the (metric) representation of v with
respect to W , where d(x, y) is the distance between the vertices x
and y. The set W is called a resolving set for G if distinct vertices
of G have distinct representations with respect to W . A minimum
resolving set for G is a basis of G and its cardinality is the metric
dimension of G. The resolving number of a connected graph G is the
minimum k, such that every k-set of vertices of G is a resolving set.
A connected graph G is called randomly k-dimensional if each k-set
of vertices of G is a basis. In this paper, along with some properties
of randomly k-dimensional graphs, we prove that a connected graph
G with at least two vertices is randomly k-dimensional if and only if
G is complete graph Kk+1 or an odd cycle.

Keywords: Resolving set; Metric dimension; Basis; Resolving number; Basis

number; Randomly k-dimensional graph.

1 Preliminaries

In this section, we present some definitions and known results which are necessary

to prove our main theorems. Throughout this paper, G = (V,E) is a finite,

simple, and connected graph with e(G) edges. The distance between two vertices

u and v, denoted by d(u, v), is the length of a shortest path between u and v
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in G. The eccentricity of a vertex v ∈ V (G) is e(v) = maxu∈V (G) d(u, v) and

the diameter of G is maxv∈V (G) e(v). We use Γi(v) for the set of all vertices

u ∈ V (G) with d(u, v) = i. Also, NG(v) is the set of all neighbors of vertex

v in G and deg
G
(v) = |NG(v)| is the degree of vertex v. For a set S ⊆ V (G),

NG(S) =
∪

v∈S
NG(v). If G is clear from the context, it is customary to write

N(v) and deg(v) rather than NG(v) and deg
G
(v), respectively. The maximum

degree and minimum degree of G, are denoted by ∆(G) and δ(G), respectively.

For a subset S of V (G), G \ S is the induced subgraph ⟨V (G) \ S⟩ of G. A set

S ⊆ V (G) is a separating set in G if G \ S has at least two components. Also,

a set T ⊆ E(G) is an edge cut in G if G \ T has at least two components. A

graph G is k-(edge-)connected if the minimum size of a separating set (edge cut)

in G is at least k. We mean by ω(G), the number of vertices in a maximum

clique in G. The notations u ∼ v and u ≁ v denote the adjacency and non-

adjacency relations between u and v, respectively. The symbols (v1, v2, . . . , vn)

and (v1, v2, . . . , vn, v1) represent a path of order n, Pn, and a cycle of order n,

Cn, respectively.

For an ordered set W = {w1, w2, . . . , wk} ⊆ V (G) and a vertex v of G, the

k-vector

r(v|W ) := (d(v, w1), d(v, w2), . . . , d(v, wk))

is called the (metric) representation of v with respect to W . The set W is called

a resolving set for G if distinct vertices have different representations. In this

case, we say set W resolves G. To see whether a given set W is a resolving set for

G, it is sufficient to look at the representations of vertices in V (G)\W , because

w ∈ W is the unique vertex of G for which d(w,w) = 0. A resolving set W for G

with minimum cardinality is called a basis of G, and its cardinality is the metric

dimension of G, denoted by β(G). The concepts of resolving sets and metric

dimension of a graph are introduced independently by Slater [15] and Harary and

Melter [10]. For more results related to these concepts see [1, 2, 3, 5, 9, 13, 14].

We say an ordered setW resolves a set T of vertices inG, if the representations

of vertices in T are distinct with respect to W . When W = {x}, we say that

vertex x resolves T . The following simple result is very useful.

Observation 1. [11] Suppose that u, v are vertices in G such that N(v)\{u} =
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N(u)\{v} and W resolves G. Then u or v is in W . Moreover, if u ∈ W and

v /∈ W , then (W \ {u}) ∪ {v} also resolves G.

Let G be a graph of order n. It is obvious that 1 ≤ β(G) ≤ n− 1. The following

theorem characterize all graphs G with β(G) = 1 and β(G) = n− 1.

Theorem A. [4] Let G be a graph of order n. Then,

(i) β(G) = 1 if and only if G = Pn,

(ii) β(G) = n− 1 if and only if G = Kn.

The basis number of G, bas(G), is the largest integer r such that every r-set

of vertices of G is a subset of some basis of G. Also, the resolving number of G,

res(G), is the minimum k such that every k-set of vertices of G is a resolving set

for G. These parameters are introduced in [6] and [7], respectively. Clearly, if

G is a graph of order n, then 0 ≤ bas(G) ≤ β(G) and β(G) ≤ res(G) ≤ n − 1.

Chartrand et al. [6] considered graphs G with bas(G) = β(G). They called these

graphs randomly k-dimensional, where k = β(G). Obviously, bas(G) = β(G) if

and only if res(G) = β(G). In other words, a graph G is randomly k-dimensional

if each k-set of vertices of G is a basis of G.

The following properties of randomly k-dimensional graphs are proved in [12].

Proposition A. [12] If G ̸= Kn is a randomly k-dimensional graph, then for

each pair of vertices u, v ∈ V (G), N(v)\{u} ̸= N(u)\{v}.

Theorem B. [12] If k ≥ 2, then every randomly k-dimensional graph is 2-

connected.

Theorem C. [12] If G is a randomly k-dimensional graph and T is a separating

set of G with |T | = k − 1, then G \ T has exactly two components. Moreover,

for each pair of vertices u, v ∈ V (G) \ T with r(u|T ) = r(v|T ), u and v belong to

different components.

Theorem D. [12] If res(G) = k, then each two vertices of G have at most k− 1

common neighbors.
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Chartrand et al. in [6] characterized the randomly 2-dimensional graphs and

proved that a graph G is randomly 2-dimensional if and only if G is an odd cycle.

Furthermore, they provided the following question.

Question A. [6] Are there randomly k-dimensional graphs other than complete

graph and odd cycles?

In this paper we answer Question A in the negative and prove that G is randomly

k-dimensional, k ≥ 3 if and only if G = Kk+1.

2 Some Properties of Randomly k-Dimensional
Graphs

Let Vp denote the collection of all
(
n
2

)
pairs of vertices of G. Currie and Oeller-

mann [8] defined the resolving graph R(G) of G as a bipartite graph with bipar-

tition (V (G), Vp), where a vertex v ∈ V (G) is adjacent to a pair {x, y} ∈ Vp if

and only if v resolves {x, y} in G. Thus, the minimum cardinality of a subset S

of V (G), where N
R(G)

(S) = Vp is the metric dimension of G.

In the following through some propositions and lemmas, we prove that if G

is a randomly k-dimensional graph of order n and diameter d, then k ≥ n−1
d

.

Proposition 1. If G is a randomly k-dimensional graph of order n, then(
n

2

)
(n− k + 1) ≤ e(R(G)) ≤ n(

(
n

2

)
− k + 1).

Proof. Let z ∈ Vp and S = {v ∈ V (G) | v ≁ z}. Thus, NR(G)(S) ̸= Vp and

hence, S is not a resolving set for G. If deg
R(G)

(z) ≤ n− k, then |S| ≥ k, which

contradicts res(G) = k. Therefore, deg
R(G)

(z) ≥ n − k + 1 and consequently,

e(R(G)) ≥
(
n
2

)
(n− k + 1).

Now, let v ∈ V (G). If deg
R(G)

(v) ≥
(
n
2

)
−k+2, then there are at most k−2 ver-

tices in Vp which are not adjacent to v. Let Vp\NR(G)(v) = {{u1, v1}, {u2, v2}, . . . ,
{ut, vt}}, where t ≤ k− 2. Note that, ui ∼ {ui, vi} in R(G) for each i, 1 ≤ i ≤ t.

Therefore, NR(G)({v, u1, u2, . . . , ut}) = Vp. Hence, β(G) ≤ t + 1 ≤ k − 1,
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which is a contradiction. Thus, deg
R(G)

(v) ≤
(
n
2

)
− k + 1 and consequently,

e(R(G)) ≤ n(
(
n
2

)
− k + 1).

Proposition 2. If G is a randomly k-dimensional graph of order n, then for

each v ∈ V (G),

deg
R(G)

(v) =

(
n

2

)
−

e(v)∑
i=1

(
|Γi(v)|

2

)
.

Proof. Note that, a vertex v ∈ V (G) resolves a pair {x, y} if and only if there

exist 0 ≤ i ̸= j ≤ e(v) such that x ∈ Γi(v) and y ∈ Γj(v). Therefore, a

vertex {u,w} ∈ Vp is not adjacent to v in R(G) if and only if there exists an

i, 1 ≤ i ≤ e(v), such that u,w ∈ Γi(v). The number of such vertices in Vp is∑e(v)

i=1

(|Γi(v)|
2

)
. Therefore, deg

R(G)
(v) =

(
n
2

)
−
∑e(v)

i=1

(|Γi(v)|
2

)
.

Since R(G) is bipartite, by Proposition 2,

e(R(G)) =
∑

v∈V (G)

[

(
n

2

)
−

e(v)∑
i=1

(
|Γi(v)|

2

)
] = n

(
n

2

)
−

∑
v∈V (G)

e(v)∑
i=1

(
|Γi(v)|

2

)
.

Thus, by Proposition 1,

n(k − 1) ≤
∑

v∈V (G)

e(v)∑
i=1

(
|Γi(v)|

2

)
≤
(
n

2

)
(k − 1). (1)

Observation 2. Let n1, ..., nr and n be positive integers, with
∑r

i=1
ni = n.

Then,
∑r

i=1

(
ni
2

)
is minimum if and only if |ni − nj | ≤ 1, for each 1 ≤ i, j ≤ r.

Lemma 1. Let n, p1, p2, q1, q2, r1 and r2 be positive integers, such that n =

piqi + ri and ri < pi, for 1 ≤ i ≤ 2. If p1 < p2, then

(p1 − r1)

(
q1
2

)
+ r1

(
q1 + 1

2

)
≥ (p2 − r2)

(
q2
2

)
+ r2

(
q2 + 1

2

)
.

Proof. Let f(pi) = (pi − ri)
(
qi
2

)
+ ri

(
qi+1

2

)
, 1 ≤ i ≤ 2. We just need to prove

that f(p1) ≥ f(p2).

f(p1)− f(p2) =
1

2
[(p1 − r1)q1(q1 − 1) + r1q1(q1 + 1)−
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(p2 − r2)q2(q2 − 1)− r2q2(q2 + 1)]

=
1

2
q1[p1q1 − p1 + 2r1]−

1

2
q2[p2q2 − p2 + 2r2]

=
1

2
q1[n− p1 + r1]−

1

2
q2[n− p2 + r2]

=
1

2
[n(q1 − q2)− p1q1 + r1q1 + p2q2 − r2q2].

Since p1 < p2, we have q2 ≤ q1. If q1 = q2, then r2 < r1. Therefore,

f(p1)− f(p2) =
1

2
q1[(p2 − p1) + (r1 − r2)] ≥ 0.

If q2 < q1, then q1 − q2 ≥ 1. Thus,

f(p1)− f(p2) ≥
1

2
[n− p1q1 + r1q1 + q2(p2 − r2)] =

1

2
[r1 + r1q1 + q2(p2 − r2)] ≥ 0.

Theorem 1. If G is a randomly k-dimensional graph of order n and diameter

d, then k ≥ n− 1

d
.

Proof. Note that, for each v ∈ V (G), |
∪e(v)

i=1
Γi(v)| = n− 1. For v ∈ V (G), let

n− 1 = q(v)e(v) + r(v), where 0 ≤ r(v) < e(v). Then, by Observation 2,

(e(v)− r(v))

(
q(v)

2

)
+ r(v)

(
q(v) + 1

2

)
≤

e(v)∑
i=1

(
|Γi(v)|

2

)
. (2)

Let w ∈ V (G) with e(w) = d, r(w) = r, and q(w) = q, then n−1 = qd+r. Since

for each v ∈ V (G), e(v) ≤ e(w), by Lemma 1,

(d− r)

(
q

2

)
+ r

(
q + 1

2

)
≤ (e(v)− r(v))

(
q(v)

2

)
+ r(v)

(
q(v) + 1

2

)
.

Therefore,

n[(d− r)

(
q

2

)
+ r

(
q + 1

2

)
] ≤

∑
v∈V (G)

[(e(v)− r(v))

(
q(v)

2

)
+ r(v)

(
q(v) + 1

2

)
].

Thus, by Relations (2) and (1),

n[(d− r)

(
q

2

)
+ r

(
q + 1

2

)
] ≤

∑
v∈V (G)

e(v)∑
i=1

(
|Γi(v)|

2

)
≤
(
n

2

)
(k − 1).
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Hence, q[(d− r)(q−1)+ r(q+1)] ≤ (n−1)(k−1), which implies, q[(r−d)+ (d−
r)q + r(q + 1)] ≤ (n− 1)(k − 1). Therefore, q(r − d) + q(n− 1) ≤ (n− 1)(k − 1).

Since q = ⌊n−1
d

⌋, we have

k − 1 ≥ q + q
r − d

n− 1
= q +

qr

n− 1
− qd

n− 1

= q +
qr

n− 1
−

⌊n−1
d

⌋d
n− 1

≥ q +
qr

n− 1
− 1.

Thus, k ≥ ⌊n−1
d

⌋+ qr
n−1

. Note that, qr
n−1

≥ 0. If qr
n−1

> 0, then k ≥ ⌈n−1
d

⌉, since
k is an integer. If qr

n−1
= 0, then r = 0 and consequently, d divides n− 1. Thus,

⌊n−1
d

⌋ = ⌈n−1
d

⌉. Therefore, k ≥ ⌈n−1
d

⌉ ≥ n−1
d

·

The following theorem shows that there is no randomly k-dimensional graph of

order n, where 4 ≤ k ≤ n− 2.

Theorem 2. If G is a randomly k-dimensional graph of order n, then k ≤ 3 or

k ≥ n− 1.

Proof. For each W ⊆ V (G), let N(W ) = Vp \ N(W ) in R(G). We claim

that, if S, T ⊆ V (G) with |S| = |T | = k − 1 and T ̸= S, then N(S) ∩N(T ) = ∅.
Otherwise, there exists a pair {x, y} ∈ N(S)∩N(T ). Therefore, {x, y} /∈ N(S∪T )
and hence, S ∪T is not a resolving set for G. Since S ̸= T , |S ∪T | > |S| = k− 1,

which contradicts res(G) = k. Thus, N(S) ∩N(T ) = ∅.

Since β(G) = k, for each S ⊆ V (G) with |S| = k − 1, N(S) ̸= ∅. Now, let

Ω = {S ⊆ V (G) | |S| = k − 1}. Therefore,

|
∪
S∈Ω

N(S)| =
∑
S∈Ω

|N(S)| ≥
∑
S∈Ω

1 =

(
n

k − 1

)
.

On the other hand,
∪

S∈Ω
N(S) ⊆ Vp. Hence, |

∪
S∈Ω

N(S)| ≤
(
n
2

)
. Conse-

quently,
(

n
k−1

)
≤

(
n
2

)
. If n ≤ 4, then k ≤ 3. Now, let n ≥ 5. Thus, 2 ≤ n+1

2
.

We know that for each a, b ≤ n+1
2

,
(
n
a

)
≤

(
n
b

)
if and only if a ≤ b. There-

fore, if k − 1 ≤ n+1
2

, then k − 1 ≤ 2, which implies k ≤ 3. If k − 1 ≥ n+1
2

,

then n − k + 1 ≤ n+1
2

. Since
(

n
n−k+1

)
=

(
n

k−1

)
, we have

(
n

n−k+1

)
≤

(
n
2

)
and

consequently, n− k + 1 ≤ 2, which yields k ≥ n− 1.
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By Theorem 2, to characterize all randomly k-dimensional graphs, we only need

to consider graphs of order k+1 and graphs with metric dimension less than 4. By

Theorem A, if G has k+1 vertices and β(G) = k, then G = Kk+1. Also, if k = 1,

then G = Pn. Clearly, the only paths with resolving number 1 are P1 = K1 and

P2 = K2. Furthermore, randomly 2-dimensional graphs are determined in [6] and

it has been proved that these graphs are odd cycles. Therefore, to complete the

characterization, we only need to determine all randomly 3-dimensional graphs.

3 Randomly 3-Dimensional Graphs

In this section, through several lemmas and theorems, we prove that the complete

graph K4 is the unique randomly 3-dimensional graph.

Proposition 3. If res(G) = k, then ∆(G) ≤ 2k−1 + k − 1.

Proof. Let v ∈ V (G) be a vertex with deg(v) = ∆(G) and T = {v, v1, v2, . . . ,
vk−1}, where v1, v2, . . . , vk−1 are neighbors of v. Since res(G) = k, T is a resolving

set for G. Note that, d(u, v) = 1 and d(u, vi) ∈ {1, 2} for each u ∈ N(v) \ T and

each i, 1 ≤ i ≤ k−1. Therefore, the maximum number of distinct representations

for vertices of N(v)\T is 2k−1. Since T is a resolving set for G, the representations

of vertices of N(v) \ T are distinct. Thus, |N(v) \ T | ≤ 2k−1 and hence, ∆(G) =

|N(v)| ≤ 2k−1 + k − 1.

Lemma 2. If res(G) = 3, then ∆(G) ≤ 5.

Proof. By Proposition 3, ∆(G) ≤ 6. Suppose, on the contrary that, there

exists a vertex v ∈ V (G) with deg(v) = 6 and N(v) = {x, y, v1, . . . , v4}. Since

res(G) = 3, set {v, x, y} is a resolving set for G. Therefore, the representations

of vertices v1, . . . , v4 with respect to this set are r1 = (1, 1, 1), r2 = (1, 1, 2),

r3 = (1, 2, 1), and r4 = (1, 2, 2). Without loss of generality, we can assume

r(vi|{v, x, y}) = ri, for each i, 1 ≤ i ≤ 4. Thus, y ≁ v2, y ≁ v4, and y ∼ v3.

On the other hand, set {v, y, v3} is a resolving set for G, too. Hence, the

representations of vertices x, v1, v2, v4 with respect to this set are r1, r2, r3, r4 in
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some order. Therefore, the vertex y has two neighbors and two non-neighbors

in {x, v1, v2, v4}. Since y ≁ v2 and y ≁ v4, the vertices x, v1 are adjacent to y.

Thus, r(y|{x, v1, v3}) = (1, 1, 1) = r(v|{x, v1, v3}), which contradicts res(G) = 3.

Hence, ∆(G) ≤ 5.

Lemma 3. If res(G) = 3 and v ∈ V (G) is a vertex with deg(v) = 5, then the

induced subgraph ⟨N(v)⟩ is a cycle C5.

Proof. Let H = ⟨N(v)⟩. By Theorem D, for each x ∈ N(v) we have, |N(x) ∩
N(v)| ≤ 2. Therefore, ∆(H) ≤ 2, thus, each component of H is a path or a cycle.

If the largest component of H has at most three vertices, then there are two ver-

tices x, y ∈ N(v) which are not adjacent to any vertex in N(v) \{x, y}. Thus, for
each u ∈ N(v) \ {x, y}, r(u|{v, x, y}) = (1, 2, 2), which contradicts the fact that

res(G) = 3. Therefore, the largest component of H, say H1, has at least four ver-

tices and the other component has at most one vertex, say {x}. Let (y1, y2, y3) be
a path in H1. Hence r(y1|{v, x, y2}) = (1, 2, 1) = r(y3|{v, x, y2}), which is a con-

tradiction. Therefore, H = C5 or H = P5. If H = P5 = (y1, y2, y3, y4, y5), then

r(y4|{v, y1, y2}) = (1, 2, 2) = r(y5|{v, y1, y2}), which is impossible. Therefore,

H = C5.

Lemma 4. If res(G) = 3 and v ∈ V (G) is a vertex with deg(v) = 4, then the

induced subgraph ⟨N(v)⟩ is a path P4.

Proof. Let H = ⟨N(v)⟩. By Theorem D, for each x ∈ N(v), we have |N(x) ∩
N(v)| ≤ 2. Hence, ∆(H) ≤ 2 thus, each component of H is a path or a cycle. If

H has more than two components, then it has at least two components with one

vertex say {x} and {y}. Thus, r(u|{v, x, y}) = (1, 2, 2), for each u ∈ N(v)\{x, y},
which contradicts res(G) = 3. If H has exactly two components H1 = {x, y}
and H2 = {u,w}, then r(u|{v, x, y}) = (1, 2, 2) = r(w|{v, x, y}), which is a

contradiction. Now, let H has a component with one vertex, say {x}, and a

component contains a path (y1, y2, y3). Consequently, r(u|{v, x, y2}) = (1, 2, 1),

for each u ∈ N(v) \ {x, y}, which is a contradiction. Therefore, H = C4 or

H = P4. If H = C4 = (y1, y2, y3, y4, y1), then r(y1|{v, y2, y4}) = (1, 1, 1) =

r(y3|{v, y2, y4}), which is impossible. Therefore, H = P4.
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Proposition 4. If G is a randomly 3-dimensional graph, then ∆(G) ≤ 3.

Proof. By Lemma 2, ∆(G) ≤ 5. If there exists a vertex v ∈ V (G) with deg(v) =

5, then, by Lemma 3, ⟨N(v)⟩ = C5. If Γ2(v) = ∅, then G = C5 ∨ K1 (the join

of graphs C5 and K1) and hence, β(G) = 2, which is a contradiction. Thus,

Γ2(v) ̸= ∅. Let u ∈ Γ2(v). Then u has a neighbor in N(v), say x. Since ⟨N(v)⟩ =
C5, x has exactly two neighbors in N(v), say x1, x2. Therefore, deg(x) ≥ 4.

By Lemmas 3 and 4, ⟨{u, v, x1, x2}⟩ = P4. Note that, by Theorem D, u has

at most two neighbors in N(v). Thus, u is adjacent to exactly one of x1 and

x2, say x1. As in Figure 1(a), the set {u, v, s} is not a resolving set for G,

because r(x|{u, v, s}) = (1, 1, 2) = r(x1|{u, v, s}). This contradiction implies

that ∆(G) ≤ 4.

If v is a vertex of degree 4 in G, then by Lemma 4, ⟨N(v)⟩ = P4. Let ⟨N(v)⟩ =
(x1, x2, x3, x4). If Γ2(v) = ∅, thenG = P4∨K1 and consequently, β(G) = 2, which

is a contradiction. Thus, Γ2(v) ̸= ∅. Let u ∈ Γ2(v). Then, u has a neighbor in

N(v) and by Theorem D, u has at most two neighbors in N(v). If u has only one

neighbor in N(v), then by symmetry, we can assume u ∼ x1 or u ∼ x2. If u ∼ x2

and u ≁ x1, then deg(x2) = 4 and by Lemma 4, ⟨{u, x1, x3, v}⟩ = P4. Therefore,

u has two neighbors in N(v), which is a contradiction. If u ∼ x1 and u ≁ x2,

then r(v|{x1, x3, u}) = (1, 1, 2) = r(x2|{x1, x3, u}), which contradicts res(G) = 3.

Hence, u has exactly two neighbors in N(v). Let T = N(u) ∩ N(v). By sym-

metry, we can assume that T is one of the sets {x1, x2}, {x1, x3}, {x1, x4}, and
{x2, x3}. If T = {x1, x2}, then r(x1|{v, x4, u}) = (1, 2, 1) = r(x2|{v, x4, u}). If

T = {x1, x3}, then r(x1|{v, x2, u}) = (1, 1, 1) = r(x3|{v, x2, u}). If T = {x1, x4},
then r(v|{x1, x3, u}) = (1, 1, 2) = r(x2|{x1, x3, u}). These contradictions, imply

that T = {x2, x3}. Thus, |Γ2(v)| = 1, because each vertex of Γ2(v) is adja-

cent to both vertices x2 and x3 and if Γ2(v) has more than one vertex, then

deg(x2) = deg(x3) ≥ 5, which is impossible. Now, if Γ3(v) = ∅, then {x1, x4} is

a resolving set for G, which is a contradiction. Therefore, Γ3(v) ̸= ∅ and hence,

u is a cut vertex in G, which contradicts the 2-connectivity of G (Theorem B).

Consequently, ∆(G) ≤ 3.

Theorem 3. If G is a randomly 3-dimensional graph, then G is 3-regular.

10
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Figure 1: (a) ∆(G) = 5, (b) Neighbors of a vertex of degree 2.

Proof. By Proposition 4, ∆(G) ≤ 3 and by Theorem B, δ(G) ≥ 2. Suppose

that, v is a vertex of degree 2 in G. Let N(v) = {x, y}. Since N(v) is a separating

set of size 2 in G, Theorem C implies that G \ {v, x, y} is a connected graph and

there exists a vertex u ∈ V (G) \ {v, x, y} such that u ∼ x and u ∼ y. Note

that G ̸= Kn, because G has a vertex of degree 2 and β(G) = 3. Thus, by

Proposition A, there exists a vertex w ∈ V (G) such that w ∼ u and w ≁ v.

If w is neither adjacent to x nor y, then r(x|{v, u, w}) = (1, 1, 2) = r(y|{v, u, w}),
which contradicts the fact that res(G) = 3. Also, if w is adjacent to both x and y,

then r(x|{v, u, w}) = (1, 1, 1) = r(y|{v, u, w}), which is a contradiction. Hence,

w is adjacent to exactly one of the vertices x and y, say x. Since ∆(G) ≤ 3, the

graph in Figure 1(b) is an induced subgraph of G. Clearly, the metric dimension

of this subgraph is 2. Therefore, G has at least six vertices.

If |Γ2(v)| = 2, then w is a cut vertex in G, because ∆(G) ≤ 3. This contradic-

tion implies that there exists a vertex z in Γ2(v)\{u,w}. Since ∆(G) ≤ 3, z ∼ y.

If z ∼ w, then the graph in Figure 2(a) is an induced subgraph of G with metric

dimension 2. In this case, G must have at least seven vertices and consequently, z

is a cut vertex in G, which contradicts Theorem B. Hence, z ≁ w. By Theorem B,

deg(z) ≥ 2. Therefore, z has a neighbor in Γ3(v). If there exists a vertex s ∈ Γ3(v)

such that s ∼ z and s ≁ w, then r(v|{y, z, s}) = (1, 2, 3) = r(u|{y, z, s}), which
contradicts res(G) = 3. Thus, w is adjacent to all neighbors of z in Γ3(v). Since

∆(G) ≤ 3, z has exactly one neighbor in Γ3(v), say t. Hence Γ3(v) = {t}.
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If G has more vertices, then t is a cut vertex in G, which contradicts the 2-

connectivity of G. Therefore, G is as in Figure 2(b) and consequently, β(G) = 2,

which is a contradiction. Thus, G does not have any vertex of degree 2.

u

w

z

x

y

v

(a)

N(v) Γ2(v)

u

v

x

y

w

z

t

(b)

N(v) Γ2(v) Γ3(v)

Figure 2: The minimum degree of G is more than 2.

Theorem 4. If G is a randomly 3-dimensional graph, then G is 3-connected.

Proof. Suppose, on the contrary, that G is not 3-connected. Therefore, by

Theorem B, the connectivity of G is 2. Since G is 3-regular, (by Theorem 4.1.11

in [16],) the edge-connectivity of G is also 2. Thus, there exists a minimum edge

cut in G of size 2, say {xu, yv}. Let H and H1 be components of G \ {xu, yv}
such that x, y ∈ V (H) and u, v ∈ V (H1). Note that, x ̸= y and u ̸= v, because G

is 2-connected. Since G is 3-regular, |H| ≥ 3 and |H1| ≥ 3. Therefore, {x, y} is

a separating set in G and components of G \ {x, y} are H1 and H2 = H \ {x, y}.
Hence, each of the vertices x and y has exactly one neighbor in H1, u and v,

respectively. Since G is 3-regular, x has at most two neighbors in H2 and u has

exactly two neighbors s, t in H1. Thus, u has a neighbor in H1 other than v, say

s. Therefore, s ≁ x and s ≁ y.

If x has two neighbors p, q inH2, then r(p|{x, u, s}) = (1, 2, 3) = r(q|{x, u, s}),
which contradicts res(G) = 3. Consequently, x has exactly one neighbor in H2,

say p. Since G is 3-regular, x ∼ y and hence, y has exactly one neighbor in H2.

Note that p is not the unique neighbor of y in H2, because G is 2-connected.

Thus, d(t, p) = 3 and hence, r(s|{u, x, p}) = (1, 2, 3) = r(t|{u, x, p}), which is

impossible. Therefore, G is 3-connected.
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Proposition 5. If G ̸= K4 is a randomly 3-dimensional graph, then for each

v ∈ V (G), N(v) is an independent set in G.

Proof. Suppose on the contrary that there exists a vertex v ∈ V (G), such

that N(v) is not an independent set in G. By Theorem 3, deg(v) = 3. Let

N(v) = {u1, u2, u3}. Since G ̸= K4, the induced subgraph ⟨N(v)⟩ of G has one

or two edges. If ⟨N(v)⟩ has two edges, then by symmetry, let u1 ∼ u2, u2 ∼ u3

and u1 ≁ u3. Since G is 3-regular, the set {u1, u3} is a separating set in G,

which contradicts Theorem 4. This argument implies that for each s ∈ V (G),

⟨N(s)⟩ does not have two edges. Hence, ⟨N(v)⟩ has one edge, say u1u2. Since

G is 3-regular, there are exactly four edges between N(v) and Γ2(v). Therefore,

Γ2(v) has at most four vertices, because each vertex of Γ2(v) has a neighbor in

N(v). On the other hand, 3-regularity of G forces Γ2(v) to have at least two

vertices. Thus, one of the following cases can happen.

1. |Γ2(v)| = 2. In this case Γ3(v) = ∅, otherwise Γ2(v) is a separating set of size

2, which is impossible. Consequently, G is as in Figure 3(a). Hence, β(G) = 2.

But, by assumption β(G) = 3, a contradiction.

2. |Γ2(v)| = 3. Let Γ2(v) = {x, y, z} and N(u3) ∩ Γ2(v) = {y, z}. Also, by

symmetry, let u1 ∼ x, because each vertex of Γ2(v) has a neighbor in N(v).

Then the last edge between N(v) and Γ2(v) is one of u2x, u2y, and u2z. But,

u2x /∈ E(G), otherwise ⟨N(u2)⟩ has two edges. Thus, by symmetry, we can

assume that u2y ∈ E(G) and u2z /∈ E(G). Since res(G) = 3, we have y ∼ z,

otherwise r(v|{u2, u3, z}) = (1, 1, 2) = r(y|{u2, u3, z}), which is impossible. For

3-regularity of G, Γ3(v) ̸= ∅. Hence, {x, z} is a separating set of size 2 in G,

which contradicts Theorem 4.

3. |Γ2(v)| = 4. Let Γ2(v) = {w, x, y, z} and u1 ∼ w, u2 ∼ x, u3 ∼ y, and u3 ∼ z.

If x ≁ y and x ≁ z, then d(y, u2) = 3 = d(z, u2) and it yields r(y|{v, u2, u3}) =
(2, 3, 1) = r(z|{v, u2, u3}). Therefore, G has at least one of the edges xy and xz. If

G has both xy and xz, then r(y|{v, x, u3}) = r(z|{v, x, u3}). Thus, G has exactly

one of the edges xy and xz, say xy. In the same way, G has exactly one of the edges

wy and wz. If w ∼ y, then r(x|{v, u3, y}) = (2, 2, 1) = r(w|{v, u3, y}). Hence,

w ≁ y and w ∼ z. Note that, x ≁ w, otherwise r(u2|{u1, x, u3}) = (1, 1, 2) =

r(w|{u1, x, u3}). Therefore, N(w)∩[Γ1(v)∪Γ2(v)] = {u1, z}. Since G is 3-regular,
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Γ3(v) ̸= ∅. If z ∼ y, then {w, x} is a separating set inG which is impossible. Thus,

z has a neighbor in Γ3(v), say u. If u ≁ w, then d(w, u) = 2 = d(u3, u) which

implies that r(u3|{u2, z, u}) = (2, 1, 2) = r(w|{u2, z, u}). Hence, u ∼ w and it

yields r(w|{u, v, x}) = r(z|{u, v, x}). Consequently, N(v) is an independent set

in G.

Γ2(v)N(v) N(v) Γ2(v)

v

u1

u2

u3

t

s

v

x

y

z

x1

y1

x2

z1

y2

z2

(b)(a)

Figure 3: Two graphs with metric dimension 2.

Theorem 5. If G is a randomly 3-dimensional graph, then G = K4.

Proof. Suppose on the contrary that G is a randomly 3-dimensional graph and

G ̸= K4. Let v ∈ V (G) be an arbitrary fixed vertex and N(v) = {x, y, z}. By

Proposition 5, N(v) is an independent set in G. Since G is 3-regular, there are six

edges between N(v) and Γ2(v). If a vertex a ∈ Γ2(v) is adjacent to x and y, then

r(x|{v, a, z}) = (1, 1, 2) = r(y|{v, a, z}), which is impossible. Therefore, by sym-

metry, each vertex of Γ2(v) has exactly one neighbor in N(v) and hence Γ2(v) has

exactly six vertices. If there exists a vertex a ∈ Γ2(v) with no neighbor in Γ2(v),

then by symmetry, let a ∼ z. Thus, r(x|{v, z, a}) = (1, 2, 3) = r(y|{v, z, a}).
Also, if there exists a vertex a ∈ Γ2(v) with two neighbors b and c in Γ2(v),

by symmetry, let a ∼ z, b ≁ z and c ≁ z. Then, r(b|{v, z, a}) = (2, 2, 1) =

r(c|{v, z, a}). These contradictions imply that Γ2(v) is a matching in G. Since

all neighbors of each vertex of G constitute an independent set in G, the induced

subgraph ⟨{v} ∪ N(v) ∪ Γ2(v)⟩ of G is as in Figure 3(b). Since G is 3-regular,

Γ3(v) ̸= ∅ and each vertex of Γ2(v) has one neighbor in Γ3(v). Let u ∈ Γ3(v)
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be the neighbor of x1. Thus, y1 ≁ u. If y1 and z2 have no common neighbor

in Γ3(v), then r(x|{x1, u, z2}) = (1, 2, 3) = r(y1|{x1, u, z2}). Therefore, y1 and

z2 have a common neighbor in Γ3(v), say w. Consequently, r(y|{v, x, w}) =

(1, 2, 2) = r(z|{v, x, w}). This contradiction implies that G = K4.

The next corollary characterizes all randomly k-dimensional graphs.

Corollary 1. Let G be a graph with β(G) = k > 1. Then, G is a randomly

k-dimensional graph if and only if G is a complete graph Kk+1 or an odd cycle.
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