Characterization of Randomly k-Dimensional Graphs

Mohsen Jannesari and Behnaz Omoomi
Department of Mathematical Sciences
Isfahan University of Technology
84156-83111, Isfahan, Iran

Abstract

For an ordered set $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ of vertices and a vertex v in a connected graph G, the ordered k-vector $r(v \mid W):=\left(d\left(v, w_{1}\right)\right.$, $\left.d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)$ is called the (metric) representation of v with respect to W, where $d(x, y)$ is the distance between the vertices x and y. The set W is called a resolving set for G if distinct vertices of G have distinct representations with respect to W. A minimum resolving set for G is a basis of G and its cardinality is the metric dimension of G. The resolving number of a connected graph G is the minimum k, such that every k-set of vertices of G is a resolving set. A connected graph G is called randomly k-dimensional if each k-set of vertices of G is a basis. In this paper, along with some properties of randomly k-dimensional graphs, we prove that a connected graph G with at least two vertices is randomly k-dimensional if and only if G is complete graph K_{k+1} or an odd cycle.

Keywords: Resolving set; Metric dimension; Basis; Resolving number; Basis number; Randomly k-dimensional graph.

1 Preliminaries

In this section, we present some definitions and known results which are necessary to prove our main theorems. Throughout this paper, $G=(V, E)$ is a finite, simple, and connected graph with $e(G)$ edges. The distance between two vertices u and v, denoted by $d(u, v)$, is the length of a shortest path between u and v
in G. The eccentricity of a vertex $v \in V(G)$ is $e(v)=\max _{u \in V(G)} d(u, v)$ and the diameter of G is $\max _{v \in V(G)} e(v)$. We use $\Gamma_{i}(v)$ for the set of all vertices $u \in V(G)$ with $d(u, v)=i$. Also, $N_{G}(v)$ is the set of all neighbors of vertex v in G and $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$ is the degree of vertex v. For a set $S \subseteq V(G)$, $N_{G}(S)=\bigcup_{v \in S} N_{G}(v)$. If G is clear from the context, it is customary to write $N(v)$ and $\operatorname{deg}(v)$ rather than $N_{G}(v)$ and $\operatorname{deg}_{G}(v)$, respectively. The maximum degree and minimum degree of G, are denoted by $\Delta(G)$ and $\delta(G)$, respectively. For a subset S of $V(G), G \backslash S$ is the induced subgraph $\langle V(G) \backslash S\rangle$ of G. A set $S \subseteq V(G)$ is a separating set in G if $G \backslash S$ has at least two components. Also, a set $T \subseteq E(G)$ is an edge cut in G if $G \backslash T$ has at least two components. A graph G is k-(edge-)connected if the minimum size of a separating set (edge cut) in G is at least k. We mean by $\omega(G)$, the number of vertices in a maximum clique in G. The notations $u \sim v$ and $u \nsim v$ denote the adjacency and nonadjacency relations between u and v, respectively. The symbols $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $\left(v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right)$ represent a path of order n, P_{n}, and a cycle of order n, C_{n}, respectively.

For an ordered set $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\} \subseteq V(G)$ and a vertex v of G, the k-vector

$$
r(v \mid W):=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)
$$

is called the (metric) representation of v with respect to W. The set W is called a resolving set for G if distinct vertices have different representations. In this case, we say set W resolves G. To see whether a given set W is a resolving set for G, it is sufficient to look at the representations of vertices in $V(G) \backslash W$, because $w \in W$ is the unique vertex of G for which $d(w, w)=0$. A resolving set W for G with minimum cardinality is called a basis of G, and its cardinality is the metric dimension of G, denoted by $\beta(G)$. The concepts of resolving sets and metric dimension of a graph are introduced independently by Slater [15] and Harary and Melter [10]. For more results related to these concepts see $[1,2,3,5,9,13,14]$.

We say an ordered set W resolves a set T of vertices in G, if the representations of vertices in T are distinct with respect to W. When $W=\{x\}$, we say that vertex x resolves T. The following simple result is very useful.

Observation 1. [11] Suppose that u, v are vertices in G such that $N(v) \backslash\{u\}=$
$N(u) \backslash\{v\}$ and W resolves G. Then u or v is in W. Moreover, if $u \in W$ and $v \notin W$, then $(W \backslash\{u\}) \cup\{v\}$ also resolves G.

Let G be a graph of order n. It is obvious that $1 \leq \beta(G) \leq n-1$. The following theorem characterize all graphs G with $\beta(G)=1$ and $\beta(G)=n-1$.

Theorem A. [4] Let G be a graph of order n. Then,
(i) $\beta(G)=1$ if and only if $G=P_{n}$,
(ii) $\beta(G)=n-1$ if and only if $G=K_{n}$.

The basis number of $G, \operatorname{bas}(G)$, is the largest integer r such that every r-set of vertices of G is a subset of some basis of G. Also, the resolving number of G, $\operatorname{res}(G)$, is the minimum k such that every k-set of vertices of G is a resolving set for G. These parameters are introduced in [6] and [7], respectively. Clearly, if G is a graph of order n, then $0 \leq b a s(G) \leq \beta(G)$ and $\beta(G) \leq \operatorname{res}(G) \leq n-1$. Chartrand et al. [6] considered graphs G with $\operatorname{bas}(G)=\beta(G)$. They called these graphs randomly k-dimensional, where $k=\beta(G)$. Obviously, bas $(G)=\beta(G)$ if and only if $\operatorname{res}(G)=\beta(G)$. In other words, a graph G is randomly k-dimensional if each k-set of vertices of G is a basis of G.

The following properties of randomly k-dimensional graphs are proved in [12].

Proposition A. [12] If $G \neq K_{n}$ is a randomly k-dimensional graph, then for each pair of vertices $u, v \in V(G), N(v) \backslash\{u\} \neq N(u) \backslash\{v\}$.

Theorem B. [12] If $k \geq 2$, then every randomly k-dimensional graph is 2 connected.

Theorem C. [12] If G is a randomly k-dimensional graph and T is a separating set of G with $|T|=k-1$, then $G \backslash T$ has exactly two components. Moreover, for each pair of vertices $u, v \in V(G) \backslash T$ with $r(u \mid T)=r(v \mid T), u$ and v belong to different components.

Theorem D. [12] If $\operatorname{res}(G)=k$, then each two vertices of G have at most $k-1$ common neighbors.

Chartrand et al. in [6] characterized the randomly 2-dimensional graphs and proved that a graph G is randomly 2-dimensional if and only if G is an odd cycle. Furthermore, they provided the following question.

Question A. [6] Are there randomly k-dimensional graphs other than complete graph and odd cycles?

In this paper we answer Question A in the negative and prove that G is randomly k-dimensional, $k \geq 3$ if and only if $G=K_{k+1}$.

2 Some Properties of Randomly k-Dimensional Graphs

Let V_{p} denote the collection of all $\binom{n}{2}$ pairs of vertices of G. Currie and Oellermann [8] defined the resolving graph $R(G)$ of G as a bipartite graph with bipartition $\left(V(G), V_{p}\right)$, where a vertex $v \in V(G)$ is adjacent to a pair $\{x, y\} \in V_{p}$ if and only if v resolves $\{x, y\}$ in G. Thus, the minimum cardinality of a subset S of $V(G)$, where $N_{R(G)}(S)=V_{p}$ is the metric dimension of G.

In the following through some propositions and lemmas, we prove that if G is a randomly k-dimensional graph of order n and diameter d, then $k \geq \frac{n-1}{d}$.

Proposition 1. If G is a randomly k-dimensional graph of order n, then

$$
\binom{n}{2}(n-k+1) \leq e(R(G)) \leq n\left(\binom{n}{2}-k+1\right) .
$$

Proof. Let $z \in V_{p}$ and $S=\{v \in V(G) \mid v \nsim z\}$. Thus, $N_{R(G)}(S) \neq V_{p}$ and hence, S is not a resolving set for G. If $\operatorname{deg}_{R(G)}(z) \leq n-k$, then $|S| \geq k$, which contradicts $\operatorname{res}(G)=k$. Therefore, $\operatorname{deg}_{R(G)}(z) \geq n-k+1$ and consequently, $e(R(G)) \geq\binom{ n}{2}(n-k+1)$.

Now, let $v \in V(G)$. If $\operatorname{deg}_{R(G)}(v) \geq\binom{ n}{2}-k+2$, then there are at most $k-2$ vertices in V_{p} which are not adjacent to v. Let $V_{p} \backslash N_{R(G)}(v)=\left\{\left\{u_{1}, v_{1}\right\},\left\{u_{2}, v_{2}\right\}, \ldots\right.$, $\left.\left\{u_{t}, v_{t}\right\}\right\}$, where $t \leq k-2$. Note that, $u_{i} \sim\left\{u_{i}, v_{i}\right\}$ in $R(G)$ for each $i, 1 \leq i \leq t$. Therefore, $N_{R(G)}\left(\left\{v, u_{1}, u_{2}, \ldots, u_{t}\right\}\right)=V_{p}$. Hence, $\beta(G) \leq t+1 \leq k-1$,
which is a contradiction. Thus, $\operatorname{deg}_{R(G)}(v) \leq\binom{ n}{2}-k+1$ and consequently, $e(R(G)) \leq n\left(\binom{n}{2}-k+1\right)$.

Proposition 2. If G is a randomly k-dimensional graph of order n, then for each $v \in V(G)$,

$$
\operatorname{deg}_{R(G)}(v)=\binom{n}{2}-\sum_{i=1}^{e(v)}\binom{\left|\Gamma_{i}(v)\right|}{2}
$$

Proof. Note that, a vertex $v \in V(G)$ resolves a pair $\{x, y\}$ if and only if there exist $0 \leq i \neq j \leq e(v)$ such that $x \in \Gamma_{i}(v)$ and $y \in \Gamma_{j}(v)$. Therefore, a vertex $\{u, w\} \in V_{p}$ is not adjacent to v in $R(G)$ if and only if there exists an $i, 1 \leq i \leq e(v)$, such that $u, w \in \Gamma_{i}(v)$. The number of such vertices in V_{p} is $\sum_{i=1}^{e(v)}\binom{\left|\Gamma_{i}(v)\right|}{2}$. Therefore, $\operatorname{deg}_{R(G)}(v)=\binom{n}{2}-\sum_{i=1}^{e(v)}\binom{\left|\Gamma_{i}(v)\right|}{2}$.

Since $R(G)$ is bipartite, by Proposition 2,

$$
e(R(G))=\sum_{v \in V(G)}\left[\binom{n}{2}-\sum_{i=1}^{e(v)}\binom{\left|\Gamma_{i}(v)\right|}{2}\right]=n\binom{n}{2}-\sum_{v \in V(G)} \sum_{i=1}^{e(v)}\binom{\left|\Gamma_{i}(v)\right|}{2} .
$$

Thus, by Proposition 1,

$$
\begin{equation*}
n(k-1) \leq \sum_{v \in V(G)} \sum_{i=1}^{e(v)}\binom{\left|\Gamma_{i}(v)\right|}{2} \leq\binom{ n}{2}(k-1) . \tag{1}
\end{equation*}
$$

Observation 2. Let n_{1}, \ldots, n_{r} and n be positive integers, with $\sum_{i=1}^{r} n_{i}=n$. Then, $\sum_{i=1}^{r}\binom{n_{i}}{2}$ is minimum if and only if $\left|n_{i}-n_{j}\right| \leq 1$, for each $1 \leq i, j \leq r$.

Lemma 1. Let $n, p_{1}, p_{2}, q_{1}, q_{2}, r_{1}$ and r_{2} be positive integers, such that $n=$ $p_{i} q_{i}+r_{i}$ and $r_{i}<p_{i}$, for $1 \leq i \leq 2$. If $p_{1}<p_{2}$, then

$$
\left(p_{1}-r_{1}\right)\binom{q_{1}}{2}+r_{1}\binom{q_{1}+1}{2} \geq\left(p_{2}-r_{2}\right)\binom{q_{2}}{2}+r_{2}\binom{q_{2}+1}{2} .
$$

Proof. Let $f\left(p_{i}\right)=\left(p_{i}-r_{i}\right)\binom{q_{i}}{2}+r_{i}\binom{q_{i}+1}{2}, 1 \leq i \leq 2$. We just need to prove that $f\left(p_{1}\right) \geq f\left(p_{2}\right)$.

$$
f\left(p_{1}\right)-f\left(p_{2}\right)=\frac{1}{2}\left[\left(p_{1}-r_{1}\right) q_{1}\left(q_{1}-1\right)+r_{1} q_{1}\left(q_{1}+1\right)-\right.
$$

$$
\begin{aligned}
& \left.\left(p_{2}-r_{2}\right) q_{2}\left(q_{2}-1\right)-r_{2} q_{2}\left(q_{2}+1\right)\right] \\
= & \frac{1}{2} q_{1}\left[p_{1} q_{1}-p_{1}+2 r_{1}\right]-\frac{1}{2} q_{2}\left[p_{2} q_{2}-p_{2}+2 r_{2}\right] \\
= & \frac{1}{2} q_{1}\left[n-p_{1}+r_{1}\right]-\frac{1}{2} q_{2}\left[n-p_{2}+r_{2}\right] \\
= & \frac{1}{2}\left[n\left(q_{1}-q_{2}\right)-p_{1} q_{1}+r_{1} q_{1}+p_{2} q_{2}-r_{2} q_{2}\right] .
\end{aligned}
$$

Since $p_{1}<p_{2}$, we have $q_{2} \leq q_{1}$. If $q_{1}=q_{2}$, then $r_{2}<r_{1}$. Therefore,

$$
f\left(p_{1}\right)-f\left(p_{2}\right)=\frac{1}{2} q_{1}\left[\left(p_{2}-p_{1}\right)+\left(r_{1}-r_{2}\right)\right] \geq 0 .
$$

If $q_{2}<q_{1}$, then $q_{1}-q_{2} \geq 1$. Thus,
$f\left(p_{1}\right)-f\left(p_{2}\right) \geq \frac{1}{2}\left[n-p_{1} q_{1}+r_{1} q_{1}+q_{2}\left(p_{2}-r_{2}\right)\right]=\frac{1}{2}\left[r_{1}+r_{1} q_{1}+q_{2}\left(p_{2}-r_{2}\right)\right] \geq 0$.

Theorem 1. If G is a randomly k-dimensional graph of order n and diameter d, then $k \geq \frac{n-1}{d}$.

Proof. Note that, for each $v \in V(G),\left|\bigcup_{i=1}^{e(v)} \Gamma_{i}(v)\right|=n-1$. For $v \in V(G)$, let $n-1=q(v) e(v)+r(v)$, where $0 \leq r(v)<e(v)$. Then, by Observation 2,

$$
\begin{equation*}
(e(v)-r(v))\binom{q(v)}{2}+r(v)\binom{q(v)+1}{2} \leq \sum_{i=1}^{e(v)}\binom{\left|\Gamma_{i}(v)\right|}{2} . \tag{2}
\end{equation*}
$$

Let $w \in V(G)$ with $e(w)=d, r(w)=r$, and $q(w)=q$, then $n-1=q d+r$. Since for each $v \in V(G), e(v) \leq e(w)$, by Lemma 1 ,

$$
(d-r)\binom{q}{2}+r\binom{q+1}{2} \leq(e(v)-r(v))\binom{q(v)}{2}+r(v)\binom{q(v)+1}{2} .
$$

Therefore,

$$
n\left[(d-r)\binom{q}{2}+r\binom{q+1}{2}\right] \leq \sum_{v \in V(G)}\left[(e(v)-r(v))\binom{q(v)}{2}+r(v)\binom{q(v)+1}{2}\right] .
$$

Thus, by Relations (2) and (1),

$$
n\left[(d-r)\binom{q}{2}+r\binom{q+1}{2}\right] \leq \sum_{v \in V(G)} \sum_{i=1}^{e(v)}\binom{\left|\Gamma_{i}(v)\right|}{2} \leq\binom{ n}{2}(k-1) .
$$

Hence, $q[(d-r)(q-1)+r(q+1)] \leq(n-1)(k-1)$, which implies, $q[(r-d)+(d-$ $r) q+r(q+1)] \leq(n-1)(k-1)$. Therefore, $q(r-d)+q(n-1) \leq(n-1)(k-1)$.
Since $q=\left\lfloor\frac{n-1}{d}\right\rfloor$, we have

$$
\begin{aligned}
k-1 \geq q+q \frac{r-d}{n-1} & =q+\frac{q r}{n-1}-\frac{q d}{n-1} \\
& =q+\frac{q r}{n-1}-\frac{\left\lfloor\frac{n-1}{d}\right\rfloor d}{n-1} \\
& \geq q+\frac{q r}{n-1}-1 .
\end{aligned}
$$

Thus, $k \geq\left\lfloor\frac{n-1}{d}\right\rfloor+\frac{q r}{n-1}$. Note that, $\frac{q r}{n-1} \geq 0$. If $\frac{q r}{n-1}>0$, then $k \geq\left\lceil\frac{n-1}{d}\right\rceil$, since k is an integer. If $\frac{q r}{n-1}=0$, then $r=0$ and consequently, d divides $n-1$. Thus, $\left\lfloor\frac{n-1}{d}\right\rfloor=\left\lceil\frac{n-1}{d}\right\rceil$. Therefore, $k \geq\left\lceil\frac{n-1}{d}\right\rceil \geq \frac{n-1}{d}$.

The following theorem shows that there is no randomly k-dimensional graph of order n, where $4 \leq k \leq n-2$.

Theorem 2. If G is a randomly k-dimensional graph of order n, then $k \leq 3$ or $k \geq n-1$.

Proof. For each $W \subseteq V(G)$, let $\bar{N}(W)=V_{p} \backslash N(W)$ in $R(G)$. We claim that, if $S, T \subseteq V(G)$ with $|S|=|T|=k-1$ and $T \neq S$, then $\bar{N}(S) \cap \bar{N}(T)=\emptyset$. Otherwise, there exists a pair $\{x, y\} \in \bar{N}(S) \cap \bar{N}(T)$. Therefore, $\{x, y\} \notin N(S \cup T)$ and hence, $S \cup T$ is not a resolving set for G. Since $S \neq T,|S \cup T|>|S|=k-1$, which contradicts $\operatorname{res}(G)=k$. Thus, $\bar{N}(S) \cap \bar{N}(T)=\emptyset$.

Since $\beta(G)=k$, for each $S \subseteq V(G)$ with $|S|=k-1, \bar{N}(S) \neq \emptyset$. Now, let $\Omega=\{S \subseteq V(G)| | S \mid=k-1\}$. Therefore,

$$
\left|\bigcup_{S \in \Omega} \bar{N}(S)\right|=\sum_{S \in \Omega}|\bar{N}(S)| \geq \sum_{S \in \Omega} 1=\binom{n}{k-1} .
$$

On the other hand, $\bigcup_{S \in \Omega} \bar{N}(S) \subseteq V_{p}$. Hence, $\left|\bigcup_{S \in \Omega} \bar{N}(S)\right| \leq\binom{ n}{2}$. Consequently, $\binom{n}{k-1} \leq\binom{ n}{2}$. If $n \leq 4$, then $k \leq 3$. Now, let $n \geq 5$. Thus, $2 \leq \frac{n+1}{2}$. We know that for each $a, b \leq \frac{n+1}{2},\binom{n}{a} \leq\binom{ n}{b}$ if and only if $a \leq b$. Therefore, if $k-1 \leq \frac{n+1}{2}$, then $k-1 \leq 2$, which implies $k \leq 3$. If $k-1 \geq \frac{n+1}{2}$, then $n-k+1 \leq \frac{n+1}{2}$. Since $\binom{n}{n-k+1}=\binom{n}{k-1}$, we have $\binom{n}{n-k+1} \leq\binom{ n}{2}$ and consequently, $n-k+1 \leq 2$, which yields $k \geq n-1$.

By Theorem 2, to characterize all randomly k-dimensional graphs, we only need to consider graphs of order $k+1$ and graphs with metric dimension less than 4 . By Theorem A, if G has $k+1$ vertices and $\beta(G)=k$, then $G=K_{k+1}$. Also, if $k=1$, then $G=P_{n}$. Clearly, the only paths with resolving number 1 are $P_{1}=K_{1}$ and $P_{2}=K_{2}$. Furthermore, randomly 2-dimensional graphs are determined in [6] and it has been proved that these graphs are odd cycles. Therefore, to complete the characterization, we only need to determine all randomly 3-dimensional graphs.

3 Randomly 3-Dimensional Graphs

In this section, through several lemmas and theorems, we prove that the complete graph K_{4} is the unique randomly 3-dimensional graph.

Proposition 3. If $\operatorname{res}(G)=k$, then $\Delta(G) \leq 2^{k-1}+k-1$.

Proof. Let $v \in V(G)$ be a vertex with $\operatorname{deg}(v)=\Delta(G)$ and $T=\left\{v, v_{1}, v_{2}, \ldots\right.$, $\left.v_{k-1}\right\}$, where $v_{1}, v_{2}, \ldots, v_{k-1}$ are neighbors of v. Since $\operatorname{res}(G)=k, T$ is a resolving set for G. Note that, $d(u, v)=1$ and $d\left(u, v_{i}\right) \in\{1,2\}$ for each $u \in N(v) \backslash T$ and each $i, 1 \leq i \leq k-1$. Therefore, the maximum number of distinct representations for vertices of $N(v) \backslash T$ is 2^{k-1}. Since T is a resolving set for G, the representations of vertices of $N(v) \backslash T$ are distinct. Thus, $|N(v) \backslash T| \leq 2^{k-1}$ and hence, $\Delta(G)=$ $|N(v)| \leq 2^{k-1}+k-1$.

Lemma 2. If $\operatorname{res}(G)=3$, then $\Delta(G) \leq 5$.

Proof. By Proposition $3, \Delta(G) \leq 6$. Suppose, on the contrary that, there exists a vertex $v \in V(G)$ with $\operatorname{deg}(v)=6$ and $N(v)=\left\{x, y, v_{1}, \ldots, v_{4}\right\}$. Since $\operatorname{res}(G)=3$, set $\{v, x, y\}$ is a resolving set for G. Therefore, the representations of vertices v_{1}, \ldots, v_{4} with respect to this set are $r_{1}=(1,1,1), r_{2}=(1,1,2)$, $r_{3}=(1,2,1)$, and $r_{4}=(1,2,2)$. Without loss of generality, we can assume $r\left(v_{i} \mid\{v, x, y\}\right)=r_{i}$, for each $i, 1 \leq i \leq 4$. Thus, $y \nsim v_{2}, y \nsim v_{4}$, and $y \sim v_{3}$.

On the other hand, set $\left\{v, y, v_{3}\right\}$ is a resolving set for G, too. Hence, the representations of vertices x, v_{1}, v_{2}, v_{4} with respect to this set are $r_{1}, r_{2}, r_{3}, r_{4}$ in
some order. Therefore, the vertex y has two neighbors and two non-neighbors in $\left\{x, v_{1}, v_{2}, v_{4}\right\}$. Since $y \nsim v_{2}$ and $y \nsim v_{4}$, the vertices x, v_{1} are adjacent to y. Thus, $r\left(y \mid\left\{x, v_{1}, v_{3}\right\}\right)=(1,1,1)=r\left(v \mid\left\{x, v_{1}, v_{3}\right\}\right)$, which contradicts $\operatorname{res}(G)=3$. Hence, $\Delta(G) \leq 5$.

Lemma 3. If $\operatorname{res}(G)=3$ and $v \in V(G)$ is a vertex with $\operatorname{deg}(v)=5$, then the induced subgraph $\langle N(v)\rangle$ is a cycle C_{5}.

Proof. Let $H=\langle N(v)\rangle$. By Theorem D, for each $x \in N(v)$ we have, $\mid N(x) \cap$ $N(v) \mid \leq 2$. Therefore, $\Delta(H) \leq 2$, thus, each component of H is a path or a cycle. If the largest component of H has at most three vertices, then there are two vertices $x, y \in N(v)$ which are not adjacent to any vertex in $N(v) \backslash\{x, y\}$. Thus, for each $u \in N(v) \backslash\{x, y\}, r(u \mid\{v, x, y\})=(1,2,2)$, which contradicts the fact that $\operatorname{res}(G)=3$. Therefore, the largest component of H, say H_{1}, has at least four vertices and the other component has at most one vertex, say $\{x\}$. Let (y_{1}, y_{2}, y_{3}) be a path in H_{1}. Hence $r\left(y_{1} \mid\left\{v, x, y_{2}\right\}\right)=(1,2,1)=r\left(y_{3} \mid\left\{v, x, y_{2}\right\}\right)$, which is a contradiction. Therefore, $H=C_{5}$ or $H=P_{5}$. If $H=P_{5}=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)$, then $r\left(y_{4} \mid\left\{v, y_{1}, y_{2}\right\}\right)=(1,2,2)=r\left(y_{5} \mid\left\{v, y_{1}, y_{2}\right\}\right)$, which is impossible. Therefore, $H=C_{5}$.

Lemma 4. If $\operatorname{res}(G)=3$ and $v \in V(G)$ is a vertex with $\operatorname{deg}(v)=4$, then the induced subgraph $\langle N(v)\rangle$ is a path P_{4}.

Proof. Let $H=\langle N(v)\rangle$. By Theorem D, for each $x \in N(v)$, we have $\mid N(x) \cap$ $N(v) \mid \leq 2$. Hence, $\Delta(H) \leq 2$ thus, each component of H is a path or a cycle. If H has more than two components, then it has at least two components with one vertex say $\{x\}$ and $\{y\}$. Thus, $r(u \mid\{v, x, y\})=(1,2,2)$, for each $u \in N(v) \backslash\{x, y\}$, which contradicts $\operatorname{res}(G)=3$. If H has exactly two components $H_{1}=\{x, y\}$ and $H_{2}=\{u, w\}$, then $r(u \mid\{v, x, y\})=(1,2,2)=r(w \mid\{v, x, y\})$, which is a contradiction. Now, let H has a component with one vertex, say $\{x\}$, and a component contains a path $\left(y_{1}, y_{2}, y_{3}\right)$. Consequently, $r\left(u \mid\left\{v, x, y_{2}\right\}\right)=(1,2,1)$, for each $u \in N(v) \backslash\{x, y\}$, which is a contradiction. Therefore, $H=C_{4}$ or $H=P_{4}$. If $H=C_{4}=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{1}\right)$, then $r\left(y_{1} \mid\left\{v, y_{2}, y_{4}\right\}\right)=(1,1,1)=$ $r\left(y_{3} \mid\left\{v, y_{2}, y_{4}\right\}\right)$, which is impossible. Therefore, $H=P_{4}$.

Proposition 4. If G is a randomly 3-dimensional graph, then $\Delta(G) \leq 3$.

Proof. By Lemma 2, $\Delta(G) \leq 5$. If there exists a vertex $v \in V(G)$ with $\operatorname{deg}(v)=$ 5 , then, by Lemma $3,\langle N(v)\rangle=C_{5}$. If $\Gamma_{2}(v)=\emptyset$, then $G=C_{5} \vee K_{1}$ (the join of graphs C_{5} and K_{1}) and hence, $\beta(G)=2$, which is a contradiction. Thus, $\Gamma_{2}(v) \neq \emptyset$. Let $u \in \Gamma_{2}(v)$. Then u has a neighbor in $N(v)$, say x. Since $\langle N(v)\rangle=$ C_{5}, x has exactly two neighbors in $N(v)$, say x_{1}, x_{2}. Therefore, $\operatorname{deg}(x) \geq 4$. By Lemmas 3 and 4, $\left\langle\left\{u, v, x_{1}, x_{2}\right\}\right\rangle=P_{4}$. Note that, by Theorem D, u has at most two neighbors in $N(v)$. Thus, u is adjacent to exactly one of x_{1} and x_{2}, say x_{1}. As in Figure 1(a), the set $\{u, v, s\}$ is not a resolving set for G, because $r(x \mid\{u, v, s\})=(1,1,2)=r\left(x_{1} \mid\{u, v, s\}\right)$. This contradiction implies that $\Delta(G) \leq 4$.

If v is a vertex of degree 4 in G, then by Lemma $4,\langle N(v)\rangle=P_{4}$. Let $\langle N(v)\rangle=$ $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$. If $\Gamma_{2}(v)=\emptyset$, then $G=P_{4} \vee K_{1}$ and consequently, $\beta(G)=2$, which is a contradiction. Thus, $\Gamma_{2}(v) \neq \emptyset$. Let $u \in \Gamma_{2}(v)$. Then, u has a neighbor in $N(v)$ and by Theorem D, u has at most two neighbors in $N(v)$. If u has only one neighbor in $N(v)$, then by symmetry, we can assume $u \sim x_{1}$ or $u \sim x_{2}$. If $u \sim x_{2}$ and $u \nsim x_{1}$, then $\operatorname{deg}\left(x_{2}\right)=4$ and by Lemma $4,\left\langle\left\{u, x_{1}, x_{3}, v\right\}\right\rangle=P_{4}$. Therefore, u has two neighbors in $N(v)$, which is a contradiction. If $u \sim x_{1}$ and $u \nsim x_{2}$, then $r\left(v \mid\left\{x_{1}, x_{3}, u\right\}\right)=(1,1,2)=r\left(x_{2} \mid\left\{x_{1}, x_{3}, u\right\}\right)$, which contradicts $r e s(G)=3$. Hence, u has exactly two neighbors in $N(v)$. Let $T=N(u) \cap N(v)$. By symmetry, we can assume that T is one of the sets $\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\},\left\{x_{1}, x_{4}\right\}$, and $\left\{x_{2}, x_{3}\right\}$. If $T=\left\{x_{1}, x_{2}\right\}$, then $r\left(x_{1} \mid\left\{v, x_{4}, u\right\}\right)=(1,2,1)=r\left(x_{2} \mid\left\{v, x_{4}, u\right\}\right)$. If $T=\left\{x_{1}, x_{3}\right\}$, then $r\left(x_{1} \mid\left\{v, x_{2}, u\right\}\right)=(1,1,1)=r\left(x_{3} \mid\left\{v, x_{2}, u\right\}\right)$. If $T=\left\{x_{1}, x_{4}\right\}$, then $r\left(v \mid\left\{x_{1}, x_{3}, u\right\}\right)=(1,1,2)=r\left(x_{2} \mid\left\{x_{1}, x_{3}, u\right\}\right)$. These contradictions, imply that $T=\left\{x_{2}, x_{3}\right\}$. Thus, $\left|\Gamma_{2}(v)\right|=1$, because each vertex of $\Gamma_{2}(v)$ is adjacent to both vertices x_{2} and x_{3} and if $\Gamma_{2}(v)$ has more than one vertex, then $\operatorname{deg}\left(x_{2}\right)=\operatorname{deg}\left(x_{3}\right) \geq 5$, which is impossible. Now, if $\Gamma_{3}(v)=\emptyset$, then $\left\{x_{1}, x_{4}\right\}$ is a resolving set for G, which is a contradiction. Therefore, $\Gamma_{3}(v) \neq \emptyset$ and hence, u is a cut vertex in G, which contradicts the 2 -connectivity of G (Theorem B). Consequently, $\Delta(G) \leq 3$.

Theorem 3. If G is a randomly 3-dimensional graph, then G is 3 -regular.

(a)

(b)

Figure 1: $(a) \Delta(G)=5,(b)$ Neighbors of a vertex of degree 2.

Proof. By Proposition $4, \Delta(G) \leq 3$ and by Theorem B, $\delta(G) \geq 2$. Suppose that, v is a vertex of degree 2 in G. Let $N(v)=\{x, y\}$. Since $N(v)$ is a separating set of size 2 in G, Theorem C implies that $G \backslash\{v, x, y\}$ is a connected graph and there exists a vertex $u \in V(G) \backslash\{v, x, y\}$ such that $u \sim x$ and $u \sim y$. Note that $G \neq K_{n}$, because G has a vertex of degree 2 and $\beta(G)=3$. Thus, by Proposition A, there exists a vertex $w \in V(G)$ such that $w \sim u$ and $w \nsim v$.

If w is neither adjacent to x nor y, then $r(x \mid\{v, u, w\})=(1,1,2)=r(y \mid\{v, u, w\})$, which contradicts the fact that $\operatorname{res}(G)=3$. Also, if w is adjacent to both x and y, then $r(x \mid\{v, u, w\})=(1,1,1)=r(y \mid\{v, u, w\})$, which is a contradiction. Hence, w is adjacent to exactly one of the vertices x and y, say x. Since $\Delta(G) \leq 3$, the graph in Figure 1(b) is an induced subgraph of G. Clearly, the metric dimension of this subgraph is 2 . Therefore, G has at least six vertices.

If $\left|\Gamma_{2}(v)\right|=2$, then w is a cut vertex in G, because $\Delta(G) \leq 3$. This contradiction implies that there exists a vertex z in $\Gamma_{2}(v) \backslash\{u, w\}$. Since $\Delta(G) \leq 3, z \sim y$. If $z \sim w$, then the graph in Figure 2(a) is an induced subgraph of G with metric dimension 2. In this case, G must have at least seven vertices and consequently, z is a cut vertex in G, which contradicts Theorem B. Hence, $z \nsim w$. By Theorem B, $\operatorname{deg}(z) \geq 2$. Therefore, z has a neighbor in $\Gamma_{3}(v)$. If there exists a vertex $s \in \Gamma_{3}(v)$ such that $s \sim z$ and $s \nsim w$, then $r(v \mid\{y, z, s\})=(1,2,3)=r(u \mid\{y, z, s\})$, which contradicts $\operatorname{res}(G)=3$. Thus, w is adjacent to all neighbors of z in $\Gamma_{3}(v)$. Since $\Delta(G) \leq 3, z$ has exactly one neighbor in $\Gamma_{3}(v)$, say t. Hence $\Gamma_{3}(v)=\{t\}$.

If G has more vertices, then t is a cut vertex in G, which contradicts the 2 connectivity of G. Therefore, G is as in Figure 2(b) and consequently, $\beta(G)=2$, which is a contradiction. Thus, G does not have any vertex of degree 2 .

(a)

(b)

Figure 2: The minimum degree of G is more than 2 .

Theorem 4. If G is a randomly 3-dimensional graph, then G is 3-connected.

Proof. Suppose, on the contrary, that G is not 3 -connected. Therefore, by Theorem B, the connectivity of G is 2 . Since G is 3-regular, (by Theorem 4.1.11 in [16],) the edge-connectivity of G is also 2 . Thus, there exists a minimum edge cut in G of size 2 , say $\{x u, y v\}$. Let H and H_{1} be components of $G \backslash\{x u, y v\}$ such that $x, y \in V(H)$ and $u, v \in V\left(H_{1}\right)$. Note that, $x \neq y$ and $u \neq v$, because G is 2-connected. Since G is 3-regular, $|H| \geq 3$ and $\left|H_{1}\right| \geq 3$. Therefore, $\{x, y\}$ is a separating set in G and components of $G \backslash\{x, y\}$ are H_{1} and $H_{2}=H \backslash\{x, y\}$. Hence, each of the vertices x and y has exactly one neighbor in H_{1}, u and v, respectively. Since G is 3-regular, x has at most two neighbors in H_{2} and u has exactly two neighbors s, t in H_{1}. Thus, u has a neighbor in H_{1} other than v, say s. Therefore, $s \nsim x$ and $s \nsim y$.

If x has two neighbors p, q in H_{2}, then $r(p \mid\{x, u, s\})=(1,2,3)=r(q \mid\{x, u, s\})$, which contradicts $\operatorname{res}(G)=3$. Consequently, x has exactly one neighbor in H_{2}, say p. Since G is 3 -regular, $x \sim y$ and hence, y has exactly one neighbor in H_{2}. Note that p is not the unique neighbor of y in H_{2}, because G is 2-connected. Thus, $d(t, p)=3$ and hence, $r(s \mid\{u, x, p\})=(1,2,3)=r(t \mid\{u, x, p\})$, which is impossible. Therefore, G is 3 -connected.

Proposition 5. If $G \neq K_{4}$ is a randomly 3-dimensional graph, then for each $v \in V(G), N(v)$ is an independent set in G.

Proof. Suppose on the contrary that there exists a vertex $v \in V(G)$, such that $N(v)$ is not an independent set in G. By Theorem $3, \operatorname{deg}(v)=3$. Let $N(v)=\left\{u_{1}, u_{2}, u_{3}\right\}$. Since $G \neq K_{4}$, the induced subgraph $\langle N(v)\rangle$ of G has one or two edges. If $\langle N(v)\rangle$ has two edges, then by symmetry, let $u_{1} \sim u_{2}, u_{2} \sim u_{3}$ and $u_{1} \nsim u_{3}$. Since G is 3 -regular, the set $\left\{u_{1}, u_{3}\right\}$ is a separating set in G, which contradicts Theorem 4. This argument implies that for each $s \in V(G)$, $\langle N(s)\rangle$ does not have two edges. Hence, $\langle N(v)\rangle$ has one edge, say $u_{1} u_{2}$. Since G is 3 -regular, there are exactly four edges between $N(v)$ and $\Gamma_{2}(v)$. Therefore, $\Gamma_{2}(v)$ has at most four vertices, because each vertex of $\Gamma_{2}(v)$ has a neighbor in $N(v)$. On the other hand, 3-regularity of G forces $\Gamma_{2}(v)$ to have at least two vertices. Thus, one of the following cases can happen.

1. $\left|\Gamma_{2}(v)\right|=2$. In this case $\Gamma_{3}(v)=\emptyset$, otherwise $\Gamma_{2}(v)$ is a separating set of size 2, which is impossible. Consequently, G is as in Figure 3(a). Hence, $\beta(G)=2$. But, by assumption $\beta(G)=3$, a contradiction.
2. $\left|\Gamma_{2}(v)\right|=3$. Let $\Gamma_{2}(v)=\{x, y, z\}$ and $N\left(u_{3}\right) \cap \Gamma_{2}(v)=\{y, z\}$. Also, by symmetry, let $u_{1} \sim x$, because each vertex of $\Gamma_{2}(v)$ has a neighbor in $N(v)$. Then the last edge between $N(v)$ and $\Gamma_{2}(v)$ is one of $u_{2} x, u_{2} y$, and $u_{2} z$. But, $u_{2} x \notin E(G)$, otherwise $\left\langle N\left(u_{2}\right)\right\rangle$ has two edges. Thus, by symmetry, we can assume that $u_{2} y \in E(G)$ and $u_{2} z \notin E(G)$. Since $\operatorname{res}(G)=3$, we have $y \sim z$, otherwise $r\left(v \mid\left\{u_{2}, u_{3}, z\right\}\right)=(1,1,2)=r\left(y \mid\left\{u_{2}, u_{3}, z\right\}\right)$, which is impossible. For 3 -regularity of $G, \Gamma_{3}(v) \neq \emptyset$. Hence, $\{x, z\}$ is a separating set of size 2 in G, which contradicts Theorem 4.
3. $\left|\Gamma_{2}(v)\right|=4$. Let $\Gamma_{2}(v)=\{w, x, y, z\}$ and $u_{1} \sim w, u_{2} \sim x, u_{3} \sim y$, and $u_{3} \sim z$. If $x \nsim y$ and $x \nsim z$, then $d\left(y, u_{2}\right)=3=d\left(z, u_{2}\right)$ and it yields $r\left(y \mid\left\{v, u_{2}, u_{3}\right\}\right)=$ $(2,3,1)=r\left(z \mid\left\{v, u_{2}, u_{3}\right\}\right)$. Therefore, G has at least one of the edges $x y$ and $x z$. If G has both $x y$ and $x z$, then $r\left(y \mid\left\{v, x, u_{3}\right\}\right)=r\left(z \mid\left\{v, x, u_{3}\right\}\right)$. Thus, G has exactly one of the edges $x y$ and $x z$, say $x y$. In the same way, G has exactly one of the edges $w y$ and $w z$. If $w \sim y$, then $r\left(x \mid\left\{v, u_{3}, y\right\}\right)=(2,2,1)=r\left(w \mid\left\{v, u_{3}, y\right\}\right)$. Hence, $w \nsim y$ and $w \sim z$. Note that, $x \nsim w$, otherwise $r\left(u_{2} \mid\left\{u_{1}, x, u_{3}\right\}\right)=(1,1,2)=$ $r\left(w \mid\left\{u_{1}, x, u_{3}\right\}\right)$. Therefore, $N(w) \cap\left[\Gamma_{1}(v) \cup \Gamma_{2}(v)\right]=\left\{u_{1}, z\right\}$. Since G is 3-regular,
$\Gamma_{3}(v) \neq \emptyset$. If $z \sim y$, then $\{w, x\}$ is a separating set in G which is impossible. Thus, z has a neighbor in $\Gamma_{3}(v)$, say u. If $u \nsim w$, then $d(w, u)=2=d\left(u_{3}, u\right)$ which implies that $r\left(u_{3} \mid\left\{u_{2}, z, u\right\}\right)=(2,1,2)=r\left(w \mid\left\{u_{2}, z, u\right\}\right)$. Hence, $u \sim w$ and it yields $r(w \mid\{u, v, x\})=r(z \mid\{u, v, x\})$. Consequently, $N(v)$ is an independent set in G.

Figure 3: Two graphs with metric dimension 2.

Theorem 5. If G is a randomly 3-dimensional graph, then $G=K_{4}$.

Proof. Suppose on the contrary that G is a randomly 3-dimensional graph and $G \neq K_{4}$. Let $v \in V(G)$ be an arbitrary fixed vertex and $N(v)=\{x, y, z\}$. By Proposition 5, N(v) is an independent set in G. Since G is 3 -regular, there are six edges between $N(v)$ and $\Gamma_{2}(v)$. If a vertex $a \in \Gamma_{2}(v)$ is adjacent to x and y, then $r(x \mid\{v, a, z\})=(1,1,2)=r(y \mid\{v, a, z\})$, which is impossible. Therefore, by symmetry, each vertex of $\Gamma_{2}(v)$ has exactly one neighbor in $N(v)$ and hence $\Gamma_{2}(v)$ has exactly six vertices. If there exists a vertex $a \in \Gamma_{2}(v)$ with no neighbor in $\Gamma_{2}(v)$, then by symmetry, let $a \sim z$. Thus, $r(x \mid\{v, z, a\})=(1,2,3)=r(y \mid\{v, z, a\})$. Also, if there exists a vertex $a \in \Gamma_{2}(v)$ with two neighbors b and c in $\Gamma_{2}(v)$, by symmetry, let $a \sim z, b \nsim z$ and $c \nsim z$. Then, $r(b \mid\{v, z, a\})=(2,2,1)=$ $r(c \mid\{v, z, a\})$. These contradictions imply that $\Gamma_{2}(v)$ is a matching in G. Since all neighbors of each vertex of G constitute an independent set in G, the induced subgraph $\left\langle\{v\} \cup N(v) \cup \Gamma_{2}(v)\right\rangle$ of G is as in Figure 3(b). Since G is 3-regular, $\Gamma_{3}(v) \neq \emptyset$ and each vertex of $\Gamma_{2}(v)$ has one neighbor in $\Gamma_{3}(v)$. Let $u \in \Gamma_{3}(v)$
be the neighbor of x_{1}. Thus, $y_{1} \nsim u$. If y_{1} and z_{2} have no common neighbor in $\Gamma_{3}(v)$, then $r\left(x \mid\left\{x_{1}, u, z_{2}\right\}\right)=(1,2,3)=r\left(y_{1} \mid\left\{x_{1}, u, z_{2}\right\}\right)$. Therefore, y_{1} and z_{2} have a common neighbor in $\Gamma_{3}(v)$, say w. Consequently, $r(y \mid\{v, x, w\})=$ $(1,2,2)=r(z \mid\{v, x, w\})$. This contradiction implies that $G=K_{4}$.

The next corollary characterizes all randomly k-dimensional graphs.

Corollary 1. Let G be a graph with $\beta(G)=k>1$. Then, G is a randomly k-dimensional graph if and only if G is a complete graph K_{k+1} or an odd cycle.

References

[1] R.C. Brigham, G. Chartrand, R.D. Dutton, and P. Zhang, On the dimension of trees, Discrete Mathematics 294 (2005) 279-283.
[2] J. Caceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara, and D.R. Wood, On the metric dimension of cartesian products of graphs, SIAM Journal on Discrete Mathematics 21(2) (2007) 423-441.
[3] G.G. Chappell, J. Gimbel, and C. Hartman, Bounds on the metric and partition dimensions of a graph, Ars Combinatoria 88 (2008) 349-366.
[4] G. Chartrand, L. Eroh, M.A. Johnson, and O.R. Ollermann, Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics 105 (2000) 99-113.
[5] G. Chartrand and P. Zhang, The theory and applications of resolvability in graphs. A survey. In Proc. 34th Southeastern International Conf. on Combinatorics, Graph Theory and Computing 160 (2003) 47-68.
[6] G. Chartrand and P. Zhang, On the chromatic dimension of a graph, Congressus Numerantium 145 (2000) 97-108.
[7] G. Chartrand, C. Poisson, and P. Zhang, Resolvability and the upper dimension of graphs, Computers and Mathematics with Applications 39 (2000) 19-28.
[8] J.D. Currie and O.R. Oellermann, The metric dimension and metric independence of a graph, J. Combin. Math. Combin. Comput. 39 (2001) 157-167.
[9] M. Fehr, S. Gosselin, and O.R. Ollermann, The metric dimension of Cayley digraphs, Discrete Mathematics 306 (2006) 31-41.
[10] F. Harary and R.A Melter, On the metric dimension of a graph, Ars Combinatoria 2 (1976) 191-195.
[11] C. Hernando, M. Mora, I.M. Pelayo, C. Seara, and D.R. Wood, Extemal graph theory for metric dimension and diameter, The Electronic Journal of Combinatorics (2010) \#R30.
[12] M. Jannesari and B. Omoomi, On randomly k-dimensional graphs, Applied Mathematics Letters 24 (2011) 1625-1629.
[13] S. Khuller, B. Raghavachari, and A. Rosenfeld, Landmarks in graphs, Discrete Applied Mathematics 70(3) (1996) 217-229.
[14] V. Saenpholphat and P. Zhang, Conditional resolvability in graphs. A survey. International Journal of Mathematics and Mathematical Sciences 38 (2004) 1997-2017.
[15] P.J. Slater, Leaves of trees, Congressus Numerantium 14 (1975) 549-559.
[16] D.B. West, Introduction to graph theory, Prentice Hall Inc. Upper Saddle River, NJ 07458, Second Edition (2001).

