Note
 Chromatic equivalence classes of certain cycles with edges ${ }^{\text {w }}$

Behnaz Omoomi, Yee-Hock Peng*
Department of Mathematics, University Putra Malaysia, 43400 UPM Serdang, DE West Malaysia

Received 7 November 1997; revised 26 March 1999; accepted 14 August 2000

Abstract

Let $P(G)$ denote the chromatic polynomial of a graph G. Two graphs G and H are chromatically equivalent, written $G \sim H$, if $P(G)=P(H)$. A graph G is chromatically unique if for any graph $H, G \sim H$ implies that G is isomorphic with H. In this paper, we give the necessary and sufficient conditions for a family of generalized polygon trees to be chromatically unique. (C) 2001 Elsevier Science B.V. All rights reserved.

MSC: primary 05 C 15
Keywords: Generalized polygon trees; Chromatically unique graph; Chromatic equivalence class

1. Introduction

The graphs that we consider are finite, undirected and simple. Let $P(G)$ denote the chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically equivalent, and we write $G \sim H$, if $P(G)=P(H)$. A graph G is chromatically unique if G is isomorphic with H for any graph H such that $G \sim H$. A set of graphs \mathscr{S} is called a chromatic equivalence class if for any graph H, that is chromatically equivalent with a graph G in $\mathscr{S}, H \in \mathscr{S}$.
A path in G is called a simple path if the degree of each interior vertex is two in G. A generalized polygon tree is a graph defined recursively as follows. A cycle C_{p} $(p \geqslant 3)$ is a generalized polygon tree. Next, suppose H is a generalized polygon tree containing a simple path P_{k}, where $k \geqslant 1$. If G is a graph obtained from the union of H and a cycle C_{r}, where $r>k$, by identifying P_{k} in H with a path of length k in

[^0]

Fig. 1. $G_{t}^{s}(a, b ; c, d), s, t \geqslant 0$.
C_{r}, then G is also a generalized polygon tree. Consider the generalized polygon tree $G_{t}^{s}(a, b ; c, d)$ with three interior regions shown in Fig. 1. The integers a, b, c, d, s and t represent the lengths of the respective paths between the vertices of degree three, where $s \geqslant 0, t \geqslant 0$. Without loss of generality, assume that $a \leqslant b$ and $a \leqslant c \leqslant d$. Thus, $\min \{a, b, c, d\}=a$. Let $r=s+t$. We now form a family $\mathscr{C}_{r}(a, b ; c, d)$ of the graphs $G_{t}^{s}(a, b ; c, d)$ where the values of a, b, c, d and r are fixed but the values of s and t vary; that is

$$
\mathscr{C}_{r}(a, b ; c, d)=\left\{G_{t}^{s}(a, b ; c, d) \mid r=s+t, s \geqslant 0, t \geqslant 0\right\} .
$$

It is clear that the families $\mathscr{C}_{0}(a, b ; c, d)$ and $\mathscr{C}_{1}(a, b ; c, d)$ are singletons.
In [1], Chao and Zhao studied the chromatic polynomials of the family \mathscr{F} of connected graphs with k edges and $(k-2)$ vertices each of whose degrees is at least two, where k is at least six. They first divided this family of graphs into three subfamilies $\mathscr{F}_{1}, \mathscr{F}_{2}$ and \mathscr{F}_{3} according to their chromatic polynomials, and computed the chromatic polynomials for the graphs in each subfamily. Then they discussed the chromatic equivalence of graphs in \mathscr{F}, and proved many results. One of these results is Theorem B which is stated at the end of this section. They also discussed the chromatic uniqueness of graphs in \mathscr{F}_{3} but they did not study the chromatic uniqueness of graphs in \mathscr{F}_{2} which consists of graphs of types Z_{12}, Z_{13} and Z_{14}. Note that the graph $G_{t}^{s}(a, b ; c, d)$ is in \mathscr{F}_{2}. In fact, $G_{0}^{0}(a, b ; c, d)=Z_{12}$, the graph $G_{t}^{s}(a, b ; c, d)$ shown in Fig. 1 is the graph Z_{14} where $s+t=j_{1}+j_{2}$, and $G_{r}^{0}(a, b ; c, d)$ with $r \geqslant 1$ is exactly the graph Z_{13}, where $j=r$. On the other hand $\mathscr{C}_{r}(a, b ; c, d)=\mathscr{F}_{2}$.
Xu et al. [5] gave the necessary and sufficient conditions for $G_{0}^{0}(a, b ; c, d)$ to be chromatically unique. In their paper, they called $G_{0}^{0}(a, b ; c, d)$ a 4-bridge graph. In [2], Peng showed that the graph $G_{1}^{0}(a, b ; c, d)$ is chromatically unique if each of the a, b, c, and d is at least four. Note that if $r \geqslant 2$, then $G_{r}^{0}(a, b ; c, d)$ is not a chromatically unique graph and it is clear that for each $r \geqslant 1$, the graph $G_{r}^{0}(a, b ; c, d)$ with $\min \{a, b, c, d\}=1$ is not chromatically unique. In this paper, we characterize the chromaticity of $G_{1}^{0}(a, b ; c, d)$ for a, b, c or d less than four.

In the remaining of this section, we state some known results that will be used to prove our main theorems. The girth of a graph G, denoted by $g(G)$, is the length of a shortest cycle of G.

Theorem A (Whitney [4]). Let G and H be chromatically equivalent graphs. Then
(a) $|V(G)|=|V(H)|$,
(b) $|E(G)|=|E(H)|$,
(c) $g(G)=g(H)$,
(d) G and H have the same number of shortest cycles.

Theorem B (Chao and Zhao [1], Peng et al. [3]). All the graphs in $\mathscr{C}_{r}(a, b ; c, d)$ are chromatically equivalent.

By this theorem we only need to compute $P\left(G_{r}^{0}(a, b ; c, d)\right)$ for computing the chromatic polynomial of $G_{t}^{s}(a, b ; c, d)$

Theorem C (Peng [2]). If $G_{1}^{0}(a, b ; c, d)$ and $G_{1}^{0}\left(a^{\prime}, b^{\prime} ; c^{\prime}, d^{\prime}\right)$ are chromatically equivalent, then they are isomorphic.

The next known result gives the chromatic polynomial of $G_{t}^{s}(a, b ; c, d)$. In [1], Chao and Zhao also determined the chromatic polynomial of this graph, but we shall use the computed chromatic polynomial of $G_{t}^{s}(a, b ; c, d), s, t \geqslant 0$ in [3] to prove our main results.

Theorem D (Peng et al. [3]). Let the order of $G_{t}^{s}(a, b ; c, d)$ be $n(n=a+b+c+d+$ $r-2$), and $x=1-\lambda$. Then we have

$$
P\left(G_{t}^{s}(a, b ; c, d)\right)=\frac{(-1)^{n} x}{(x-1)^{2}} \cdot Q\left(G_{t}^{s}(a, b ; c, d)\right),
$$

where

$$
\begin{aligned}
Q\left(G_{t}^{s}(a, b ; c, d)\right)= & \left(x^{n+1}-x^{a+b+r}-x^{c+d+r}+x^{r+1}-x\right) \\
& -\left(1+x+x^{2}\right)+(x+1)\left(x^{a}+x^{b}+x^{c}+x^{d}\right) \\
& -\left(x^{a+c}+x^{a+d}+x^{b+c}+x^{b+d}\right) .
\end{aligned}
$$

2. Main results

In this section, we shall characterize the chromaticity of $G_{1}^{0}(a, b ; c, d)$ when $\min \{a, b, c, d\}<4$. First, we consider the case when $\min \{a, b, c, d\}=2$. In Theorem 2, we consider the case when $\min \{a, b, c, d\}=3$.

Theorem 1. The graph $G_{1}^{0}(a, b ; c, d)$ when $\min \{a, b, c, d\}=2$ is chromatically unique if and only if $G_{1}^{0}(a, b ; c, d)$ is not isomorphic with $G_{1}^{0}(2,3 ; 3,5)$.

Proof. Let $G=G_{1}^{0}(a, b ; c, d)$ and $H \sim G$. By Lemma 4 and Theorem 2 in [1], we have $H=G_{t^{\prime}}^{s^{\prime}}\left(a^{\prime}, b^{\prime} ; c^{\prime}, d^{\prime}\right)$, where $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ are at least two. If $r^{\prime}=1$ then by Theorem C,
$G \cong H$. Now suppose that $r^{\prime} \geqslant 2$. We solve the equation $Q(G)=Q(H)$. After cancelling the terms $x^{n+1},-x$ and $-\left(1+x+x^{2}\right)$, we have $Q_{1}(G)=Q_{1}(H)$ where

$$
\begin{aligned}
Q_{1}(G)= & x^{2}+(x+1)\left(x^{a}+x^{b}+x^{c}+x^{d}\right)-x^{1+a+b}-x^{1+c+d} \\
& -x^{a+c}-x^{a+d}-x^{b+c}-x^{b+d}, \\
Q_{1}(H)= & x^{r^{\prime}+1}+(x+1)\left(x^{a^{\prime}}+x^{b^{\prime}}+x^{c^{\prime}}+x^{d^{\prime}}\right)-x^{r^{\prime}+a^{\prime}+b^{\prime}} \\
& -x^{r^{\prime}+c^{\prime}+d^{\prime}}-x^{a^{\prime}+c^{\prime}}-x^{a^{\prime}+d^{\prime}}-x^{b^{\prime}+c^{\prime}}-x^{b^{\prime}+d^{\prime}}
\end{aligned}
$$

and

$$
a+b+c+d+1=a^{\prime}+b^{\prime}+c^{\prime}+d^{\prime}+r^{\prime}
$$

Without loss of generality, assume that $a \leqslant b, a \leqslant c \leqslant d$, and $a^{\prime} \leqslant b^{\prime}, a^{\prime} \leqslant c^{\prime} \leqslant d^{\prime}$. It is easy to see that $\min \{a, b, c, d, 2\}=\min \left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, r^{\prime}+1\right\}$. This means $2=\min \left\{a^{\prime}, r^{\prime}+1\right\}$. If $r^{\prime}+1=2$, then $r^{\prime}=1$ and this contradicts our assumption; thus $a^{\prime}=2$. Also we have $2=a=\min \{a, b, c, d\}=\min \left\{r^{\prime}+1, b^{\prime}, c^{\prime}, d^{\prime}\right\}$ and we know that $r^{\prime}+1 \neq 2$. Therefore, $b^{\prime}=2$ or $c^{\prime}=2$. We now consider these two cases.

Case 1: Suppose $b^{\prime}=2$. Then from $Q_{1}(G)=Q_{1}(H)$, after cancelling equal terms, we have $Q_{2}(G)=Q_{2}(H)$ where

$$
\begin{aligned}
Q_{2}(G)= & (x+1)\left(x^{b}+x^{c}+x^{d}\right)-x^{3+b}-x^{1+c+d} \\
& -x^{2+c}-x^{2+d}-x^{b+c}-x^{b+d}, \\
Q_{2}(H)= & x^{r^{\prime}+1}+(x+1)\left(x^{c^{\prime}}+x^{d^{\prime}}\right)+x^{3}-x^{r^{\prime}+4} \\
& -x^{r^{\prime}+c^{\prime}+d^{\prime}}-x^{2+c^{\prime}}-x^{2+d^{\prime}}-x^{2+c^{\prime}}-x^{2+d^{\prime}}
\end{aligned}
$$

and

$$
b+c+d=c^{\prime}+d^{\prime}+r^{\prime}+1 ; \quad a=2 \leqslant b, 2 \leqslant c \leqslant d, \quad a^{\prime}=b^{\prime}=2, \quad 2 \leqslant c^{\prime} \leqslant d^{\prime} .
$$

Since $a^{\prime}=b^{\prime}=2, g(G)=g(H)=4$. Therefore, $b=2$ or $c=d=2$ because $a=2$.
Subcase 1.1: Suppose $b=2$. Then $x^{2} \in Q_{2}(G)$ and x^{2} cannot be cancelled in $Q_{2}(G)$. So we must have $x^{2} \in Q_{2}(H)$. Hence $r^{\prime}+1=2$ or $c^{\prime}=2$. But $r^{\prime}+1=2$ contradicts our assumption. Therefore we have $c^{\prime}=2$ and $Q_{3}(G)=Q_{3}(H)$, where

$$
\begin{aligned}
& Q_{3}(G)=(x+1)\left(x^{c}+x^{d}\right)-x^{5}-x^{1+c+d}-2 x^{2+c}-2 x^{2+d}, \\
& Q_{3}(H)=x^{r^{\prime}+1}+(x+1)\left(x^{d^{\prime}}\right)+x^{3}-x^{r^{\prime}+4}-x^{r^{\prime}+d^{\prime}+2}-2 x^{4}-2 x^{2+d^{\prime}}
\end{aligned}
$$

and

$$
c+d=d^{\prime}+r^{\prime}+1 ; \quad a=b=2, \quad 2 \leqslant c \leqslant d, \quad a^{\prime}=b^{\prime}=2, \quad 2=c^{\prime} \leqslant d^{\prime} .
$$

Since $x^{3} \in Q_{3}(H)$ and cannot be cancelled, we must have $x^{3} \in Q_{3}(G)$. Thus $c=3$ or $d=3$ or $c+1=3$ or $d+1=3$. If $d=3$, then we have $c=2$ or $c=3$ because $d \geqslant c \geqslant 2$, and similarly if $d+1=3$ (or $d=2$), then $c=2$. Hence, it is sufficient to consider two cases when $c+1=3$ or $c=3$.

Subcase 1.1.1: Suppose $c=3$. Since $x^{4} \in Q_{3}(G)$ and cannot be cancelled, and since $-2 x^{4} \in Q_{3}(H)$, we must have $3 x^{4} \in Q_{3}(H)$. But $r^{\prime}+1=d^{\prime}=d^{\prime}+1=4$, which is impossible.

Subcase 1.1.2: Suppose $c+1=3$ (or $c=2$). Then $x^{2} \in Q_{3}(G)$ and cannot be cancelled. Since $r^{\prime}+1 \neq 2$, we have $d^{\prime}=2$. This means H has two cycles of shortest length but G has only one cycle of the shortest length because $d=r^{\prime}+1 \neq 2$.
The two subcases above show that $b=2$ is impossible.
Subcase 1.2: Suppose $c=d=2$ and $b \neq 2$. Then $g(G)=4$ and G has only one cycle of the shortest length. By Theorem A, H must have only one cycle of the shortest length; therefore $d^{\prime} \neq 2$. Then from $Q_{2}(G)=Q_{2}(H)$, after cancelling equal terms, we have $Q_{4}(G)=Q_{4}(H)$, where

$$
\begin{aligned}
& Q_{4}(G)=(x+1) x^{b}+2 x^{2}+2 x^{3}-x^{3+b}-x^{5}-2 x^{4}-2 x^{2+b}, \\
& Q_{4}(H)=x^{r^{\prime}+1}+(x+1)\left(x^{c^{\prime}}+x^{d^{\prime}}\right)+x^{3}-x^{r^{\prime}+4}-x^{r^{\prime}+c^{\prime}+d^{\prime}}-2 x^{2+c^{\prime}}-2 x^{2+d^{\prime}}
\end{aligned}
$$

and

$$
b+3=c^{\prime}+d^{\prime}+r^{\prime} ; \quad a=c=d=2, \quad 2 \leqslant b, \quad a^{\prime}=b^{\prime}=2, \quad 2 \leqslant c^{\prime} \leqslant d^{\prime} .
$$

Since $2 x^{2} \in Q_{4}(G)$ and cannot be cancelled, we must have $2 x^{2} \in Q_{4}(H)$. But this is impossible because $r^{\prime}+1 \neq 2$ and $d^{\prime} \neq 2$. So we have no solution for $Q(G)=Q(H)$ when $b^{\prime}=2$.

Case 2: Suppose $c^{\prime}=2$. Then from $Q_{1}(G)=Q_{1}(H)$, after cancelling equal terms, we have $Q_{5}(G)=Q_{5}(H)$, where

$$
\begin{aligned}
Q_{5}(G)= & (x+1)\left(x^{b}+x^{c}+x^{d}\right)-x^{3+b}-x^{1+c+d}-x^{2+c}-x^{2+d}-x^{b+c}-x^{b+d}, \\
Q_{5}(H)= & x^{r^{\prime}+1}+(x+1)\left(x^{b^{\prime}}+x^{d^{\prime}}\right)+x^{3}-x^{r^{\prime}+b^{\prime}+2} \\
& -x^{r^{\prime}+d^{\prime}+2}-x^{4}-x^{2+d^{\prime}}-x^{b^{\prime}+d^{\prime}}-x^{b^{\prime}+2},
\end{aligned}
$$

and

$$
b+c+d=b^{\prime}+d^{\prime}+r^{\prime}+1 ; \quad a=2 \leqslant b, \quad 2 \leqslant c \leqslant d, \quad a^{\prime}=2 \leqslant b^{\prime}, \quad 2=c^{\prime} \leqslant d^{\prime} .
$$

Since $a^{\prime}=c^{\prime}$, without loss of generality, we assume $b^{\prime} \leqslant d^{\prime}$. From Case $1, b^{\prime} \neq 2$; therefore $g(G)=g(H)>4$ and $b \geqslant 3$. Since $x^{3} \in Q_{5}(H)$ and cannot be cancelled, we must have $x^{3} \in Q_{5}(G)$ and thus $b=3$ or $c=3$. The case $c=2$ and the case $d=2$ are impossible because $x^{2} \notin Q_{5}(H) .\left(r^{\prime}+1 \neq 2, b^{\prime} \neq 2\right.$ and $b^{\prime} \leqslant d^{\prime}$.) Also the case $d=3$ implies that $c=2$ or $c=3$. We now consider cases when $b=3$ and $c=3$.

Subcase 2.1: Suppose $b=3$. Then $g(G)=g(H)=5$. Therefore, $b^{\prime}=3$ because $g(H)=a^{\prime}+b^{\prime}=2+b^{\prime}$. Now we have $Q_{6}(G)=Q_{6}(H)$, where

$$
\begin{aligned}
& Q_{6}(G)=(x+1)\left(x^{c}+x^{d}\right)-x^{6}-x^{1+c+d}-x^{2+c}-x^{2+d}-x^{3+c}-x^{3+d}, \\
& Q_{6}(H)=x^{r^{\prime}+1}+(x+1) x^{d^{\prime}}+x^{3}-x^{r^{\prime}+5}-x^{r^{\prime}+d^{\prime}+2}-x^{4}-x^{2+d^{\prime}}-x^{5}-x^{3+d^{\prime}}
\end{aligned}
$$

and

$$
\begin{aligned}
c+d=d^{\prime}+r^{\prime}+1 ; \quad a=2, \quad b=3, \quad 3 \leqslant c \leqslant d, \quad a^{\prime}=2, \\
b^{\prime}=3, \quad c^{\prime}=2, \quad 3 \leqslant d^{\prime} .
\end{aligned}
$$

Since $x^{3} \in Q_{6}(H)$ and cannot be cancelled, $x^{3} \in Q_{6}(G)$ and so we have $c=3$. We now have $Q_{7}(G)=Q_{7}(H)$, where

$$
\begin{aligned}
& Q_{7}(G)=(x+1) x^{d}+x^{4}-x^{6}-x^{4+d}-x^{5}-x^{2+d}-x^{6}-x^{3+d} \\
& Q_{7}(H)=x^{r^{\prime}+1}+(x+1) x^{d^{\prime}}-x^{r^{\prime}+5}-x^{r^{\prime}+d^{\prime}+2}-x^{4}-x^{2+d^{\prime}}-x^{5}-x^{3+d^{\prime}}
\end{aligned}
$$

and

$$
2+d=d^{\prime}+r^{\prime}
$$

Since $3=c \leqslant d, d \neq 2$ and thus x^{4} in $Q_{7}(G)$ cannot be cancelled. So we must have $2 x^{4} \in Q_{7}(G)$ because $-x^{4} \in Q_{7}(H)$. This means we have either $r^{\prime}=3$ and $d^{\prime}=4$ or $r^{\prime}=3$ and $d^{\prime}=3$. If the former holds, then $d=5$ and we get one solution for $Q(G)=Q(H)$, that is $a=2, b=c=3$ and $d=5$; also $a^{\prime}=2, b^{\prime}=3, c^{\prime}=2, d^{\prime}=4$ and $r^{\prime}=3$. With these values we have $G_{1}^{0}(2,3 ; 3,5) \sim G_{3}^{0}(2,3 ; 2,4)$ but $G_{1}^{0}(2,3 ; 3,5) \not \not 二 G_{3}^{0}(2,3 ; 2,4)$. If the latter holds, then $d=4$ and we have $Q_{8}(G)=Q_{8}(H)$, where

$$
\begin{aligned}
& Q_{8}(G)=x^{4}-x^{6}-x^{8}-x^{6}-x^{6}-x^{7} \\
& Q_{8}(H)=x^{3}-x^{8}-x^{8}-x^{5}-x^{5}-x^{6}
\end{aligned}
$$

and it is a contradiction.
Subcase 2.2: Suppose $c=3$ and $b \neq 3$. Then $g(G)=6=g(H)$. Since $b^{\prime} \leqslant d^{\prime}$, we have $r^{\prime}=2$ or $b^{\prime}=4$. If the former holds, then from $Q_{5}(G)=Q_{5}(H)$, after cancelling equal terms, we have $Q_{9}(G)=Q_{9}(H)$ where

$$
\begin{aligned}
& Q_{9}(G)=(x+1)\left(x^{b}+x^{d}\right)+x^{4}-x^{3+b}-x^{4+d}-x^{5}-x^{2+d}-x^{3+b}-x^{b+d} \\
& Q_{9}(H)=x^{3}+(x+1)\left(x^{b^{\prime}}+x^{d^{\prime}}\right)-x^{4+b^{\prime}}-x^{4+d^{\prime}}-x^{4}-x^{2+d^{\prime}}-x^{b^{\prime}+d^{\prime}}-x^{b^{\prime}+2}
\end{aligned}
$$

and

$$
\begin{aligned}
& b+d=b^{\prime}+d^{\prime} ; \quad a=2 \leqslant b, \quad 3=c \leqslant d, \quad r^{\prime}=2, \quad a^{\prime}=2, \quad 4 \leqslant b^{\prime} \\
& c^{\prime}=2, \quad 4 \leqslant d^{\prime} .
\end{aligned}
$$

Now $x^{3} \in Q_{9}(H)$ and cannot be cancelled. Therefore, $x^{3} \in Q_{9}(G)$; hence, $d=3$ because $b \neq 3$. With this we have $2 x^{4} \in Q_{9}(G)$ and cannot be cancelled. Since $-x^{4} \in Q_{9}(H)$, we must have $3 x^{4} \in Q_{9}(H)$, and this is impossible. If the latter holds, then from $Q_{5}(G)=$ $Q_{5}(H)$, after cancelling equal terms, we have $Q_{10}(G)=Q_{10}(H)$, where

$$
\begin{aligned}
& Q_{10}(G)=(x+1)\left(x^{b}+x^{d}\right)-x^{3+b}-x^{4+d}-x^{5}-x^{2+d}-x^{3+b}-x^{b+d}, \\
& Q_{10}(H)=x^{r^{\prime}+1}+(x+1) x^{d^{\prime}}+x^{5}-x^{r^{\prime}+6}-x^{r^{\prime}+d^{\prime}+2}-x^{4}-x^{2+d^{\prime}}-x^{4+d^{\prime}}-x^{6}
\end{aligned}
$$

and

$$
b+d=d^{\prime}+r^{\prime}+2 ; \quad a=2 \leqslant b, \quad 3=c \leqslant d, \quad a^{\prime}=2, \quad b^{\prime}=4, \quad c^{\prime}=2, \quad 4 \leqslant d^{\prime} .
$$

Now $x^{5} \in Q_{10}(H)$ and cannot be cancelled. Since $-x^{5} \in Q_{10}(G)$, we must have $2 x^{5} \in$ $Q_{10}(G)$. If $b=d=5$, then $2 x^{6} \in Q_{10}(G)$ and cannot be cancelled, and since $-x^{6} \in Q_{10}(H)$ we must have $3 x^{6} \in Q_{10}(H)$; and this is impossible. If $b=d=4$, then $2 x^{4} \in Q_{10}(G)$ cannot be cancelled and since $-x^{4} \in Q_{10}(H)$, we must have $3 x^{4} \in Q_{10}(H)$, and this is impossible. If $b=4$ and $d=5$, then $x^{6} \in Q_{10}(G)$ and cannot be cancelled and since $-x^{4}$ and $-x^{6}$ are in $Q_{10}(H)$, we must have $2 x^{4}$ and $2 x^{6}$ in $Q_{10}(H)$ which is impossible. If $b=5$ and $d=4$, then we have $Q_{11}(G)=Q_{11}(H)$ where

$$
\begin{aligned}
& Q_{11}(G)=x^{4}-x^{8}-x^{8}-x^{8}-x^{9}, \\
& Q_{11}(H)=x^{r^{\prime}+1}+(x+1) x^{d^{\prime}}-x^{r^{\prime}+6}-x^{r^{\prime}+d^{\prime}+2}-x^{4}-x^{2+d^{\prime}}-x^{4+d^{\prime}}-x^{6}
\end{aligned}
$$

and

$$
7=d^{\prime}+r^{\prime} ; \quad 4 \leqslant d^{\prime}
$$

Since $-x^{4}$ and $-x^{6}$ are in $Q_{11}(H)$ but they are not in $Q_{11}(G)$ and since $x^{4} \in Q_{11}(G)$ cannot be cancelled in $Q_{11}(G)$, we must have $2 x^{4}$ and x^{6} in $Q_{11}(H)$, but this is impossible. Therefore $Q(G)=Q(H)$ has no other solution when $c^{\prime}=2$.

The next main result is for the case when $\min \{a, b, c, d\}=3$. The proof is similar to that of Theorem 1. The detailed proof can be obtained by e-mail from the second author or view at http://www.fsas.upm.edu.my/~yhpeng/publish/prooft2.pdf

Theorem 2. The graph $G_{1}^{0}(a, b ; c, d)$ when $\min \{a, b, c, d\}=3$ is chromatically unique if and only if $G_{1}^{0}(a, b ; c, d)$ is not isomorphic with $G_{1}^{0}(3, b ; b+1, b+3)$ and $G_{1}^{0}(3, c+3 ; c, c+1)$ and $G_{1}^{0}(3,3 ; c, c+2)$ and $G_{1}^{0}(3, b ; 3, b+2)$ and $G_{1}^{0}(3,5 ; 5,8)$.

The following theorem follows from the proof of Theorems 1 and 2.
Theorem 3. Each of the following families is a chromatic equivalence class.
(a) $\mathscr{C}_{1}(2,3 ; 3,5) \cup \mathscr{C}_{3}(2,3 ; 2,4)$.
(b) $\mathscr{C}_{1}(3,5 ; 5,8) \cup \mathscr{C}_{5}(2,6 ; 4,5)$.
(c) $\mathscr{C}_{1}(3, b ; b+1, b+3) \cup \mathscr{C}_{3}(2, b+1 ; b, b+2)$ for any $b \geqslant 3$.
(d) $\mathscr{C}_{1}(3, b+3 ; b, b+1) \cup \mathscr{C}_{3}(2, b+2 ; b, b+1)$ for any $b \geqslant 3$.
(e) $\mathscr{C}_{1}(3,3 ; b, b+2) \cup \mathscr{C}_{b-1}(2,4 ; 3, b+1)$ for any $b \geqslant 3$.
(f) $\mathscr{C}_{1}(3, b ; 3, b+2) \cup \mathscr{C}_{b-1}(2, b+1 ; 3,4)$ for any $b \geqslant 3$.

Remark. Note that if $b=2$ in the graphs (c) and (d), then we get the graph (a).

Corollary. Each of the following families of graphs is not a chromatic equivalence class.
(a) $\mathscr{C}_{5}(2,6 ; 4,5)$.
(b) $\mathscr{C}_{3}(2, b+1 ; b, b+2)(b \geqslant 2)$.
(c) $\mathscr{C}_{3}(2, b+2 ; b, b+1)(b \geqslant 2)$.
(d) $\mathscr{C}_{r}(2,4 ; 3, r+2)(r \geqslant 2)$.
(e) $\mathscr{C}_{r}(2, r+2 ; 3,4)(r \geqslant 2)$.

Combining Theorem 3 in [2] and Theorems 1 and 2 above, we have the following characterization theorem.

Theorem 4. The graph $G_{1}^{0}(a, b ; c, d)$ with $\min \{a, b, c, d\}>1$ is chromatically unique if and only if $G_{1}^{0}(a, b ; c, d)$ is not isomorphic with any one of the following graphs.
(a) $G_{1}^{0}(2,3 ; 3,5)$,
(b) $G_{1}^{0}(3,5 ; 5,8)$,
(c) $G_{1}^{0}(3, b ; b+1, b+3)$ for any $b \geqslant 3$,
(d) $G_{1}^{0}(3, c+3 ;, c, c+1)$ for any $c \geqslant 3$,
(e) $G_{1}^{0}(3,3 ; c, c+2)$ for any $c \geqslant 3$,
(f) $G_{1}^{0}(3, b ; 3, b+2)$ for any $b \geqslant 3$.

Remark. Note that if $b=2$ in the graph (c) and if $c=2$ in the graph (d), then we get the graph (a).

We also discover that the conjecture in [3] is only true for $r=1$. For each $r \geqslant 2$, we provide two counter examples as follows:

- $G_{r}^{0}(r+2, b ; b+1, b+r+2) \sim G_{r+2}^{0}(r+1, b+1 ; b, b+r+1)$ for $b \geqslant 4$ but $G_{r+2}^{0}(r+1, b+1 ; b, b+r+1) \notin \mathscr{C}_{r}(r+2, b ; b+1, b+r+2)$.
- $G_{r}^{0}(r+2, c+r+2 ; c, c+1) \sim G_{r+2}^{0}(r+1, c+r+1 ; c, c+1)$ for $c \geqslant 4$ but $G_{r+2}^{0}(r+1, c+r+1 ; c, c+1) \notin \mathscr{C}_{r}(r+2, c+r+2 ; c, c+1)$.

We discuss the chromatic equivalence of graphs in $\mathscr{C}_{r}(a, b ; c, d)(r \geqslant 2)$ in another article.

Acknowledgements

The authors wish to thank the referees who made many suggestions, and shortened our manuscript a great deal.

References

[1] C.Y. Chao, L.C. Zhao, Chromatic polynomials of a family of graphs, Ars Combin. 15 (1983) 111-129.
[2] Y.H. Peng, Another family of chromatically unique graphs, Graphs and Combin. 11 (1995) 285-291.
[3] Y.H. Peng, C.H.C. Little, K.L. Teo, H. Wang, Chromatic equivalence classes of certain generalized polygon trees, Discrete Math. 172 (1997) 103-114.
[4] H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932) 572-579.
[5] S.J. Xu, J.J. Liu, Y.H. Peng, The chromaticity of s-bridge graphs and related graphs, Discrete Math. 135 (1994) 349-358.

[^0]: ${ }^{4}$ This work was partly supported by the University Putra Malaysia research grant \# 50438-97-09.

 * Corresponding author.

 E-mail address: yhpeng@fsas.upm.edu.my (Y.-H. Peng)

