

Discrete Mathematics 232 (2001) 175-183

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Note Chromatic equivalence classes of certain cycles with edges $\stackrel{\leftrightarrow}{\asymp}$

Behnaz Omoomi, Yee-Hock Peng*

Department of Mathematics, University Putra Malaysia, 43400 UPM Serdang, DE West Malaysia

Received 7 November 1997; revised 26 March 1999; accepted 14 August 2000

Abstract

Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are chromatically equivalent, written $G \sim H$, if P(G) = P(H). A graph G is chromatically unique if for any graph H, $G \sim H$ implies that G is isomorphic with H. In this paper, we give the necessary and sufficient conditions for a family of generalized polygon trees to be chromatically unique. © 2001 Elsevier Science B.V. All rights reserved.

MSC: primary 05C15

Keywords: Generalized polygon trees; Chromatically unique graph; Chromatic equivalence class

1. Introduction

The graphs that we consider are finite, undirected and simple. Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are said to be *chromatically* equivalent, and we write $G \sim H$, if P(G) = P(H). A graph G is *chromatically unique* if G is isomorphic with H for any graph H such that $G \sim H$. A set of graphs \mathcal{S} is called a *chromatic equivalence class* if for any graph H, that is chromatically equivalent with a graph G in $\mathcal{S}, H \in \mathcal{S}$.

A path in G is called a *simple* path if the degree of each interior vertex is two in G. A generalized polygon tree is a graph defined recursively as follows. A cycle C_p $(p \ge 3)$ is a generalized polygon tree. Next, suppose H is a generalized polygon tree containing a simple path P_k , where $k \ge 1$. If G is a graph obtained from the union of H and a cycle C_r , where r > k, by identifying P_k in H with a path of length k in

th This work was partly supported by the University Putra Malaysia research grant # 50438-97-09.

^{*} Corresponding author.

E-mail address: yhpeng@fsas.upm.edu.my (Y.-H. Peng)

Fig. 1. $G_t^s(a, b; c, d)$, $s, t \ge 0$.

 C_r , then *G* is also a generalized polygon tree. Consider the generalized polygon tree $G_t^s(a,b;c,d)$ with three interior regions shown in Fig. 1. The integers a, b, c, d, s and *t* represent the lengths of the respective paths between the vertices of degree three, where $s \ge 0$, $t \ge 0$. Without loss of generality, assume that $a \le b$ and $a \le c \le d$. Thus, $\min\{a, b, c, d\} = a$. Let r = s + t. We now form a family $\mathscr{C}_r(a, b; c, d)$ of the graphs $G_t^s(a, b; c, d)$ where the values of *a*, *b*, *c*, *d* and *r* are fixed but the values of *s* and *t* vary; that is

$$\mathscr{C}_r(a,b;c,d) = \{ G_t^s(a,b;c,d) \, | \, r = s+t, \, s \ge 0, \, t \ge 0 \}.$$

It is clear that the families $\mathscr{C}_0(a,b;c,d)$ and $\mathscr{C}_1(a,b;c,d)$ are singletons.

In [1], Chao and Zhao studied the chromatic polynomials of the family \mathscr{F} of connected graphs with k edges and (k-2) vertices each of whose degrees is at least two, where k is at least six. They first divided this family of graphs into three subfamilies \mathscr{F}_1 , \mathscr{F}_2 and \mathscr{F}_3 according to their chromatic polynomials, and computed the chromatic polynomials for the graphs in each subfamily. Then they discussed the chromatic equivalence of graphs in \mathscr{F} , and proved many results. One of these results is Theorem B which is stated at the end of this section. They also discussed the chromatic uniqueness of graphs in \mathscr{F}_3 but they did not study the chromatic uniqueness of graphs in \mathscr{F}_2 . In fact, $G_0^0(a,b;c,d) = Z_{12}$, the graph $G_t^s(a,b;c,d)$ shown in Fig. 1 is the graph Z_{14} where $s + t = j_1 + j_2$, and $G_r^0(a,b;c,d) = \mathscr{F}_2$.

Xu et al. [5] gave the necessary and sufficient conditions for $G_0^0(a, b; c, d)$ to be chromatically unique. In their paper, they called $G_0^0(a, b; c, d)$ a 4-bridge graph. In [2], Peng showed that the graph $G_1^0(a, b; c, d)$ is chromatically unique if each of the a, b, c, and d is at least four. Note that if $r \ge 2$, then $G_r^0(a, b; c, d)$ is not a chromatically unique graph and it is clear that for each $r \ge 1$, the graph $G_r^0(a, b; c, d)$ with min $\{a, b, c, d\} = 1$ is not chromatically unique. In this paper, we characterize the chromaticity of $G_1^0(a, b; c, d)$ for a, b, c or d less than four.

In the remaining of this section, we state some known results that will be used to prove our main theorems. The girth of a graph G, denoted by g(G), is the length of a shortest cycle of G.

Theorem A (Whitney [4]). Let G and H be chromatically equivalent graphs. Then

- (a) |V(G)| = |V(H)|, (b) |E(G)| = |E(H)|,
- (c) q(G) = q(H),
- (d) G and H have the same number of shortest cycles.

Theorem B (Chao and Zhao [1], Peng et al. [3]). All the graphs in $\mathscr{C}_r(a,b;c,d)$ are chromatically equivalent.

By this theorem we only need to compute $P(G_r^0(a,b;c,d))$ for computing the chromatic polynomial of $G_r^s(a,b;c,d)$

Theorem C (Peng [2]). If $G_1^0(a,b;c,d)$ and $G_1^0(a',b';c',d')$ are chromatically equivalent, then they are isomorphic.

The next known result gives the chromatic polynomial of $G_t^s(a, b; c, d)$. In [1], Chao and Zhao also determined the chromatic polynomial of this graph, but we shall use the computed chromatic polynomial of $G_t^s(a, b; c, d)$, $s, t \ge 0$ in [3] to prove our main results.

Theorem D (Peng et al. [3]). Let the order of $G_t^s(a,b;c,d)$ be n (n = a + b + c + d + r - 2), and $x = 1 - \lambda$. Then we have

$$P(G_t^s(a,b;c,d)) = \frac{(-1)^n x}{(x-1)^2} \cdot Q(G_t^s(a,b;c,d)),$$

where

$$Q(G_t^s(a,b;c,d)) = (x^{n+1} - x^{a+b+r} - x^{c+d+r} + x^{r+1} - x)$$
$$-(1 + x + x^2) + (x + 1)(x^a + x^b + x^c + x^d)$$
$$-(x^{a+c} + x^{a+d} + x^{b+c} + x^{b+d}).$$

2. Main results

In this section, we shall characterize the chromaticity of $G_1^0(a, b; c, d)$ when $\min\{a, b, c, d\} < 4$. First, we consider the case when $\min\{a, b, c, d\} = 2$. In Theorem 2, we consider the case when $\min\{a, b, c, d\} = 3$.

Theorem 1. The graph $G_1^0(a,b;c,d)$ when $\min\{a,b,c,d\} = 2$ is chromatically unique if and only if $G_1^0(a,b;c,d)$ is not isomorphic with $G_1^0(2,3;3,5)$.

Proof. Let $G = G_1^0(a, b; c, d)$ and $H \sim G$. By Lemma 4 and Theorem 2 in [1], we have $H = G_{t'}^{s'}(a', b'; c', d')$, where a', b', c', d' are at least two. If r' = 1 then by Theorem C,

 $G \cong H$. Now suppose that $r' \ge 2$. We solve the equation Q(G) = Q(H). After cancelling the terms x^{n+1} , -x and $-(1 + x + x^2)$, we have $Q_1(G) = Q_1(H)$ where

$$Q_{1}(G) = x^{2} + (x + 1)(x^{a} + x^{b} + x^{c} + x^{d}) - x^{1+a+b} - x^{1+c+d}$$
$$-x^{a+c} - x^{a+d} - x^{b+c} - x^{b+d},$$
$$Q_{1}(H) = x^{r'+1} + (x + 1)(x^{a'} + x^{b'} + x^{c'} + x^{d'}) - x^{r'+a'+b'}$$
$$-x^{r'+c'+d'} - x^{a'+c'} - x^{a'+d'} - x^{b'+c'} - x^{b'+d'}$$

and

$$a + b + c + d + 1 = a' + b' + c' + d' + r'.$$

Without loss of generality, assume that $a \le b$, $a \le c \le d$, and $a' \le b'$, $a' \le c' \le d'$. It is easy to see that $\min\{a, b, c, d, 2\} = \min\{a', b', c', d', r'+1\}$. This means $2 = \min\{a', r'+1\}$. If r'+1=2, then r'=1 and this contradicts our assumption; thus a'=2. Also we have $2 = a = \min\{a, b, c, d\} = \min\{r'+1, b', c', d'\}$ and we know that $r'+1 \ne 2$. Therefore, b'=2 or c'=2. We now consider these two cases.

Case 1: Suppose b' = 2. Then from $Q_1(G) = Q_1(H)$, after cancelling equal terms, we have $Q_2(G) = Q_2(H)$ where

$$Q_{2}(G) = (x + 1)(x^{b} + x^{c} + x^{d}) - x^{3+b} - x^{1+c+d}$$
$$-x^{2+c} - x^{2+d} - x^{b+c} - x^{b+d},$$
$$Q_{2}(H) = x^{r'+1} + (x + 1)(x^{c'} + x^{d'}) + x^{3} - x^{r'+4}$$
$$-x^{r'+c'+d'} - x^{2+c'} - x^{2+d'} - x^{2+c'} - x^{2+d'}$$

and

$$b + c + d = c' + d' + r' + 1;$$
 $a = 2 \le b, \ 2 \le c \le d, \ a' = b' = 2, \ 2 \le c' \le d'.$

Since a' = b' = 2, g(G) = g(H) = 4. Therefore, b = 2 or c = d = 2 because a = 2.

Subcase 1.1: Suppose b = 2. Then $x^2 \in Q_2(G)$ and x^2 cannot be cancelled in $Q_2(G)$. So we must have $x^2 \in Q_2(H)$. Hence r' + 1 = 2 or c' = 2. But r' + 1 = 2 contradicts our assumption. Therefore we have c' = 2 and $Q_3(G) = Q_3(H)$, where

$$Q_{3}(G) = (x+1)(x^{c}+x^{d}) - x^{5} - x^{1+c+d} - 2x^{2+c} - 2x^{2+d},$$

$$Q_{3}(H) = x^{r'+1} + (x+1)(x^{d'}) + x^{3} - x^{r'+4} - x^{r'+d'+2} - 2x^{4} - 2x^{2+d'}$$

and

$$c + d = d' + r' + 1;$$
 $a = b = 2, \quad 2 \le c \le d, \quad a' = b' = 2, \quad 2 = c' \le d'.$

Since $x^3 \in Q_3(H)$ and cannot be cancelled, we must have $x^3 \in Q_3(G)$. Thus c = 3 or d = 3 or c + 1 = 3 or d + 1 = 3. If d = 3, then we have c = 2 or c = 3 because $d \ge c \ge 2$, and similarly if d + 1 = 3 (or d = 2), then c = 2. Hence, it is sufficient to consider two cases when c + 1 = 3 or c = 3.

Subcase 1.1.1: Suppose c = 3. Since $x^4 \in Q_3(G)$ and cannot be cancelled, and since $-2x^4 \in Q_3(H)$, we must have $3x^4 \in Q_3(H)$. But r' + 1 = d' = d' + 1 = 4, which is impossible.

Subcase 1.1.2: Suppose c+1=3 (or c=2). Then $x^2 \in Q_3(G)$ and cannot be cancelled. Since $r'+1 \neq 2$, we have d'=2. This means *H* has two cycles of shortest length but *G* has only one cycle of the shortest length because $d = r' + 1 \neq 2$.

The two subcases above show that b = 2 is impossible.

Subcase 1.2: Suppose c=d=2 and $b \neq 2$. Then g(G)=4 and G has only one cycle of the shortest length. By Theorem A, H must have only one cycle of the shortest length; therefore $d' \neq 2$. Then from $Q_2(G) = Q_2(H)$, after cancelling equal terms, we have $Q_4(G) = Q_4(H)$, where

$$Q_4(G) = (x+1)x^b + 2x^2 + 2x^3 - x^{3+b} - x^5 - 2x^4 - 2x^{2+b},$$

$$Q_4(H) = x^{r'+1} + (x+1)(x^{c'} + x^{d'}) + x^3 - x^{r'+4} - x^{r'+c'+d'} - 2x^{2+c'} - 2x^{2+d}$$

and

$$b+3 = c'+d'+r';$$
 $a = c = d = 2, 2 \le b, a' = b' = 2, 2 \le c' \le d'.$

Since $2x^2 \in Q_4(G)$ and cannot be cancelled, we must have $2x^2 \in Q_4(H)$. But this is impossible because $r' + 1 \neq 2$ and $d' \neq 2$. So we have no solution for Q(G) = Q(H) when b' = 2.

Case 2: Suppose c' = 2. Then from $Q_1(G) = Q_1(H)$, after cancelling equal terms, we have $Q_5(G) = Q_5(H)$, where

$$Q_{5}(G) = (x+1)(x^{b} + x^{c} + x^{d}) - x^{3+b} - x^{1+c+d} - x^{2+c} - x^{2+d} - x^{b+c} - x^{b+d},$$

$$Q_{5}(H) = x^{r'+1} + (x+1)(x^{b'} + x^{d'}) + x^{3} - x^{r'+b'+2} - x^{r'+d'+2} - x^{4} - x^{2+d'} - x^{b'+d'} - x^{b'+2},$$

and

$$b + c + d = b' + d' + r' + 1; \quad a = 2 \le b, \quad 2 \le c \le d, \quad a' = 2 \le b', \quad 2 = c' \le d'.$$

Since a' = c', without loss of generality, we assume $b' \leq d'$. From Case 1, $b' \neq 2$; therefore g(G) = g(H) > 4 and $b \geq 3$. Since $x^3 \in Q_5(H)$ and cannot be cancelled, we must have $x^3 \in Q_5(G)$ and thus b = 3 or c = 3. The case c = 2 and the case d = 2 are impossible because $x^2 \notin Q_5(H)$. $(r' + 1 \neq 2, b' \neq 2$ and $b' \leq d'$.) Also the case d = 3implies that c = 2 or c = 3. We now consider cases when b = 3 and c = 3.

Subcase 2.1: Suppose b=3. Then g(G) = g(H) = 5. Therefore, b' = 3 because g(H) = a' + b' = 2 + b'. Now we have $Q_6(G) = Q_6(H)$, where

$$Q_6(G) = (x+1)(x^c + x^d) - x^6 - x^{1+c+d} - x^{2+c} - x^{2+d} - x^{3+c} - x^{3+d},$$

$$Q_6(H) = x^{r'+1} + (x+1)x^{d'} + x^3 - x^{r'+5} - x^{r'+d'+2} - x^4 - x^{2+d'} - x^5 - x^{3+d'},$$

and

$$c + d = d' + r' + 1;$$
 $a = 2, b = 3, 3 \le c \le d, a' = 2,$
 $b' = 3, c' = 2, 3 \le d'.$

Since $x^3 \in Q_6(H)$ and cannot be cancelled, $x^3 \in Q_6(G)$ and so we have c = 3. We now have $Q_7(G) = Q_7(H)$, where

$$Q_7(G) = (x+1)x^d + x^4 - x^6 - x^{4+d} - x^5 - x^{2+d} - x^6 - x^{3+d},$$

$$Q_7(H) = x^{r'+1} + (x+1)x^{d'} - x^{r'+5} - x^{r'+d'+2} - x^4 - x^{2+d'} - x^5 - x^{3+d'}$$

and

$$2+d=d'+r'.$$

Since $3 = c \leq d$, $d \neq 2$ and thus x^4 in $Q_7(G)$ cannot be cancelled. So we must have $2x^4 \in Q_7(G)$ because $-x^4 \in Q_7(H)$. This means we have either r'=3 and d'=4 or r'=3 and d'=3. If the former holds, then d=5 and we get one solution for Q(G) = Q(H), that is a = 2, b = c = 3 and d = 5; also a' = 2, b' = 3, c' = 2, d' = 4 and r' = 3. With these values we have $G_1^0(2,3; 3,5) \sim G_3^0(2,3; 2,4)$ but $G_1^0(2,3; 3,5) \not\cong G_3^0(2,3; 2,4)$. If the latter holds, then d = 4 and we have $Q_8(G) = Q_8(H)$, where

$$Q_8(G) = x^4 - x^6 - x^8 - x^6 - x^6 - x^7,$$

$$Q_8(H) = x^3 - x^8 - x^8 - x^5 - x^5 - x^6$$

and it is a contradiction.

Subcase 2.2: Suppose c = 3 and $b \neq 3$. Then g(G) = 6 = g(H). Since $b' \leq d'$, we have r' = 2 or b' = 4. If the former holds, then from $Q_5(G) = Q_5(H)$, after cancelling equal terms, we have $Q_9(G) = Q_9(H)$ where

$$Q_{9}(G) = (x+1)(x^{b} + x^{d}) + x^{4} - x^{3+b} - x^{4+d} - x^{5} - x^{2+d} - x^{3+b} - x^{b+d},$$

$$Q_{9}(H) = x^{3} + (x+1)(x^{b'} + x^{d'}) - x^{4+b'} - x^{4+d'} - x^{4} - x^{2+d'} - x^{b'+d'} - x^{b'+2}$$

and

$$b + d = b' + d';$$
 $a = 2 \le b,$ $3 = c \le d,$ $r' = 2,$ $a' = 2,$ $4 \le b',$
 $c' = 2,$ $4 \le d'.$

Now $x^3 \in Q_9(H)$ and cannot be cancelled. Therefore, $x^3 \in Q_9(G)$; hence, d = 3 because $b \neq 3$. With this we have $2x^4 \in Q_9(G)$ and cannot be cancelled. Since $-x^4 \in Q_9(H)$, we must have $3x^4 \in Q_9(H)$, and this is impossible. If the latter holds, then from $Q_5(G) = Q_5(H)$, after cancelling equal terms, we have $Q_{10}(G) = Q_{10}(H)$, where

$$Q_{10}(G) = (x+1)(x^b + x^d) - x^{3+b} - x^{4+d} - x^5 - x^{2+d} - x^{3+b} - x^{b+d},$$

$$Q_{10}(H) = x^{r'+1} + (x+1)x^{d'} + x^5 - x^{r'+6} - x^{r'+d'+2} - x^4 - x^{2+d'} - x^{4+d'} - x^6$$

180

and

$$b + d = d' + r' + 2;$$
 $a = 2 \le b,$ $3 = c \le d,$ $a' = 2,$ $b' = 4,$ $c' = 2,$ $4 \le d'.$

Now $x^5 \in Q_{10}(H)$ and cannot be cancelled. Since $-x^5 \in Q_{10}(G)$, we must have $2x^5 \in Q_{10}(G)$. If b=d=5, then $2x^6 \in Q_{10}(G)$ and cannot be cancelled, and since $-x^6 \in Q_{10}(H)$ we must have $3x^6 \in Q_{10}(H)$; and this is impossible. If b = d = 4, then $2x^4 \in Q_{10}(G)$ cannot be cancelled and since $-x^4 \in Q_{10}(H)$, we must have $3x^4 \in Q_{10}(H)$, and this is impossible. If b=4 and d=5, then $x^6 \in Q_{10}(G)$ and cannot be cancelled and since $-x^4$ and $-x^6$ are in $Q_{10}(H)$, we must have $2x^4$ and $2x^6$ in $Q_{10}(H)$ which is impossible. If b=5 and d=4, then we have $Q_{11}(G) = Q_{11}(H)$ where

$$Q_{11}(G) = x^4 - x^8 - x^8 - x^9,$$

$$Q_{11}(H) = x^{r'+1} + (x+1)x^{d'} - x^{r'+6} - x^{r'+d'+2} - x^4 - x^{2+d'} - x^{4+d'} - x^6$$

and

$$7 = d' + r'; \quad 4 \leqslant d'.$$

Since $-x^4$ and $-x^6$ are in $Q_{11}(H)$ but they are not in $Q_{11}(G)$ and since $x^4 \in Q_{11}(G)$ cannot be cancelled in $Q_{11}(G)$, we must have $2x^4$ and x^6 in $Q_{11}(H)$, but this is impossible. Therefore Q(G) = Q(H) has no other solution when c' = 2. \Box

The next main result is for the case when $\min\{a, b, c, d\} = 3$. The proof is similar to that of Theorem 1. The detailed proof can be obtained by e-mail from the second author or view at http://www.fsas.upm.edu.my/~yhpeng/publish/prooft2.pdf

Theorem 2. The graph $G_1^0(a,b; c,d)$ when $\min\{a,b,c,d\} = 3$ is chromatically unique if and only if $G_1^0(a,b; c,d)$ is not isomorphic with $G_1^0(3,b; b+1,b+3)$ and $G_1^0(3,c+3; c,c+1)$ and $G_1^0(3,3; c,c+2)$ and $G_1^0(3,b; 3,b+2)$ and $G_1^0(3,5; 5,8)$.

The following theorem follows from the proof of Theorems 1 and 2.

Theorem 3. Each of the following families is a chromatic equivalence class.

(a) $\mathscr{C}_1(2,3; 3,5) \cup \mathscr{C}_3(2,3; 2,4).$ (b) $\mathscr{C}_1(3,5; 5,8) \cup \mathscr{C}_5(2,6; 4,5).$ (c) $\mathscr{C}_1(3,b; b+1,b+3) \cup \mathscr{C}_3(2,b+1; b,b+2)$ for any $b \ge 3.$ (d) $\mathscr{C}_1(3,b+3; b,b+1) \cup \mathscr{C}_3(2,b+2; b,b+1)$ for any $b \ge 3.$ (e) $\mathscr{C}_1(3,3; b,b+2) \cup \mathscr{C}_{b-1}(2,4; 3,b+1)$ for any $b \ge 3.$ (f) $\mathscr{C}_1(3,b; 3,b+2) \cup \mathscr{C}_{b-1}(2,b+1; 3,4)$ for any $b \ge 3.$

Remark. Note that if b = 2 in the graphs (c) and (d), then we get the graph (a).

Corollary. Each of the following families of graphs is not a chromatic equivalence class.

- (a) $\mathscr{C}_5(2,6; 4,5)$. (b) $\mathscr{C}_3(2, b+1; b, b+2)$ $(b \ge 2)$.
- (c) $\mathscr{C}_3(2, b+2; b, b+1)$ $(b \ge 2)$.
- (d) $\mathscr{C}_r(2,4; 3,r+2) \ (r \ge 2).$
- (e) $\mathscr{C}_r(2, r+2; 3, 4)$ $(r \ge 2)$.

Combining Theorem 3 in [2] and Theorems 1 and 2 above, we have the following characterization theorem.

Theorem 4. The graph $G_1^0(a,b; c,d)$ with $\min\{a,b,c,d\} > 1$ is chromatically unique if and only if $G_1^0(a,b; c,d)$ is not isomorphic with any one of the following graphs.

(a) $G_1^0(2,3; 3,5)$, (b) $G_1^0(3,5; 5,8)$, (c) $G_1^0(3,b; b+1,b+3)$ for any $b \ge 3$, (d) $G_1^0(3, c+3; , c, c+1)$ for any $c \ge 3$, (e) $G_1^0(3,3; c,c+2)$ for any $c \ge 3$, (f) $G_1^0(3,b; 3,b+2)$ for any $b \ge 3$.

Remark. Note that if b = 2 in the graph (c) and if c = 2 in the graph (d), then we get the graph (a).

We also discover that the conjecture in [3] is only true for r = 1. For each $r \ge 2$, we provide two counter examples as follows:

- $G_r^0(r+2,b; b+1,b+r+2) \sim G_{r+2}^0(r+1,b+1; b,b+r+1)$ for $b \ge 4$ but $G_{r+2}^0(r+1,b+1; b,b+r+1) \notin \mathscr{C}_r(r+2,b; b+1,b+r+2).$ $G_r^0(r+2,c+r+2; c,c+1) \sim G_{r+2}^0(r+1,c+r+1; c,c+1)$ for $c \ge 4$ but $G_{r+2}^0(r+1,c+r+1; c,c+1) \notin \mathscr{C}_r(r+2,c+r+2; c,c+1).$

We discuss the chromatic equivalence of graphs in $\mathscr{C}_r(a,b; c,d)$ $(r \ge 2)$ in another article.

Acknowledgements

The authors wish to thank the referees who made many suggestions, and shortened our manuscript a great deal.

References

[1] C.Y. Chao, L.C. Zhao, Chromatic polynomials of a family of graphs, Ars Combin. 15 (1983) 111-129.

- [2] Y.H. Peng, Another family of chromatically unique graphs, Graphs and Combin. 11 (1995) 285-291.
- [3] Y.H. Peng, C.H.C. Little, K.L. Teo, H. Wang, Chromatic equivalence classes of certain generalized polygon trees, Discrete Math. 172 (1997) 103–114.
- [4] H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932) 572-579.
- [5] S.J. Xu, J.J. Liu, Y.H. Peng, The chromaticity of s-bridge graphs and related graphs, Discrete Math. 135 (1994) 349–358.