On the total restrained domination edge critical graphs

K.M. Koh^{a}, Zeinab Maleki ${ }^{b}$ and Behnaz Omoomi ${ }^{b}$
${ }^{a}$ Department of Mathematics
National University of Singapore
Singapore 117543, Singapore
${ }^{b}$ Department of Mathematical Sciences
Isfahan University of Technology
Isfahan, 84156-83111, Iran

Abstract

Let $G=(V, E)$ be a graph. A set $D \subseteq V$ is a total restrained dominating set of G if every vertex in V has a neighbor in D and every vertex in $V-D$ has a neighbor in $V-D$. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number of G. In this paper, we define the concept of total restrained domination edge critical graphs, find a lower bound for the total restrained domination number of graphs, and constructively characterize trees having their total restrained domination numbers achieving the lower bound.

Key Words: Domination; Total restrained domination number; Total restrained domination edge critical graphs; Matching; Edge cover; Trees.

1 Introduction

Let $G=(V, E)$ be a simple graph of order $|V|=n(G)$ and size $|E|=m(G)$. If there is no confusion, then we omit G in these notations and call G an (n, m)-graph. The degree of a vertex v in G is the number of vertices adjacent to v, and denoted by $\operatorname{deg}_{G}(v)$. A vertex with no neighbor in G
is called an isolated vertex. A vertex of degree one in G is called an end vertex, the vertex adjacent to and the edge incident to an end vertex are called a support vertex and a tail, respectively. An edge is called a strong edge if it is not a tail. A path P in G is called an end path of G if P contains an end vertex of G and the degree of each vertex of P in G except end vertices is 2 .

A set $D \subseteq V$ is a dominating set of G if every vertex in $V-D$ has a neighbor in D. The cardinality of a minimum dominating set of G is the domination number of G and denoted by $\gamma(G)$ (see [5, 6]). If, in addition, the induced subgraph $\langle D\rangle$ has no isolated vertex, then D is called a total dominating set (TDS). The cardinality of a minimum total dominating set of G is called the total domination number and denoted by $\gamma_{t}(G)$. The total domination in graphs was introduced by Cockayne et al. in [1] (see also $[3,6,9]$).

Throughout this paper, we assume that G contains no isolated vertices. A set $D \subseteq V$ is a total restrained dominating set of G (TRDS) if D is a TDS of G and also the induced subgraph $\langle V-D\rangle$ has no isolated vertex. Note that the set V is a TRDS of G. The cardinality of a minimum total restrained dominating set of G is called the total restrained domination number of G and denoted by $\gamma_{t r}(G)$. We call a TRDS in graph G of cardinality $\gamma_{t r}(G)$ a $\gamma_{t r}(G)$ - set. The concept of total restrained domination was introduced by De-Xiang Ma et al. in [7].

A graph G is said to be total restrained domination edge critical if for every strong edge e in $G, \gamma_{t r}(G-e)>\gamma_{t r}(G)$. For simplicity, we call such G a $\gamma_{t r}$-edge critical graph. In this paper, we first characterize $\gamma_{t r^{-}}$ edge critical paths, cycles and caterpillars and find necessary and sufficient conditions for a graph to be $\gamma_{t r}$-edge critical. We then proceed to find a lower bound and an upper bound of $\gamma_{t r}(G)$ for $\gamma_{t r}$-edge critical graphs G, and hence derive a lower bound of $\gamma_{t r}(G)$ for all (n, m)-graphs G. Finally we characterize the trees which have their total restrained domination number achieving the lower bound. For unexplained terms and symbols, see [10].

2 Known results

In this section, we state some known results which are useful for proving our main theorems.

Proposition A. [2] Let D be a TRDS of a graph G of order $n, n \geq 3$. Then every end vertex and every support vertex of G are in D.

Proposition B. [7] For every integer n, $n \geq 2$,
(i) $\quad \gamma_{t r}\left(K_{n}\right)= \begin{cases}3 & \text { if } n=3, \\ 2 & \text { if } n \neq 3 ;\end{cases}$
(ii) $\quad \gamma_{t r}\left(K_{p, q}\right)= \begin{cases}p+q & \text { if } \min \{p, q\}=1, \\ 2 & \text { if } \min \{p, q\} \neq 1 ;\end{cases}$
(iii) $\quad \gamma_{t r}\left(P_{n}\right)=n-2\left\lfloor\frac{n-2}{4}\right\rfloor$;
(iv) $\quad \gamma_{t r}\left(C_{n}\right)=n-2\left\lfloor\frac{n}{4}\right\rfloor$.

A tree T is called a caterpillar if the resulting subgraph of T obtained by deleting all its end vertices is a path. We call this path the spine of the caterpillar. Let T be a caterpillar with spine $v_{1} \ldots v_{s}$ and let $\left\{u_{0}=v_{1}, u_{1}, \ldots, u_{k+1}=v_{s}\right\}$ be the ordered set of vertices in $\left\{v_{1}, \ldots, v_{s}\right\}$ with $\operatorname{deg}_{T}\left(u_{i}\right)>2$, for each $\mathrm{i}, 1 \leq i \leq k$. We denote the number of internal vertices in $\left(u_{i}, u_{i+1}\right)$-path by $z_{i}, 0 \leq i \leq k$, and one of the end vertices adjacent to $u_{i}, 0 \leq i \leq k+1$, by a_{i}.

Proposition C. [2] For every caterpillar T of order $n, n \geq 3, \gamma_{t r}(T)=$ $n-2 \sum_{i=1}^{k}\left\lfloor\frac{z_{i}+2}{4}\right\rfloor$.

Let G be a graph. A set $M \subseteq E$ is called a matching if no two edges in M are adjacent. The cardinality of a maximum matching in G is denoted by $\alpha^{\prime}(G)$. A set $L \subseteq E$ is called an edge cover of G if every vertex of G is incident to some edge of L. The cardinality of a minimum edge cover is called the edge cover number of G and denoted by $\beta^{\prime}(G)$. Obviously, the edge cover number of a graph is equal to the sum of the edge cover numbers of its components. The well known Gallai identity relating $\alpha^{\prime}(G)$ and $\beta^{\prime}(G)$ is stated below.

Theorem A. [10] If G is a graph of order n without isolated vertices, then $\alpha^{\prime}(G)+\beta^{\prime}(G)=n$.

$3 \quad \gamma_{t r}$-edge critical graphs

In this section, we first characterize $\gamma_{t r}$-edge critical paths, cycles and caterpillars and provide necessary and sufficient conditions for a graph to be $\gamma_{t r}{ }^{-}$ edge critical. We then proceed to derive a lower bound and an upper bound for the total restrained domination number of $\gamma_{t r}$-edge critical graphs.

It is obvious that every TRDS of a spanning subgraph H of graph G is also a TRDS of G. Thus we have:

Observation 1. If H is a spanning subgraph of a graph G, then $\gamma_{t r}(H) \geq$ $\gamma_{t r}(G)$.

This observation implies that the $\gamma_{t r}(G)$ is nondecreasing if we delete an edge of G.

Definition. A graph G is a $\gamma_{t r}$-edge critical graph if for every strong edge e of $G, \gamma_{t r}(G-e)>\gamma_{t r}(G)$.

It is clear that every graph G contains a $\gamma_{t r}$-edge critical spanning subgraph H with $\gamma_{t r}(H)=\gamma_{t r}(G)$. This is seen by removing edges in succession, whenever possible, without diminishing the total restrained domination number.

Remark 1. The difference $\gamma_{t r}(G-e)-\gamma_{t r}(G)$ can be arbitrary large. For example, in the graph of Figure 1, $\gamma_{t r}(G)=k+3$ while $\gamma_{t r}(G-e)=2 k+4$, for $k \geq 1$. Note that $D=A_{1} \cup A_{2}$ is a $\gamma_{t r}(G)$-set and $D^{\prime}=A_{1} \cup A_{2} \cup B_{1} \cup B_{2}$ is a $\gamma_{t r}(G-e)$-set, where e is the dotted edge denoted in graph G.

Suppose that G is a graph with components $G_{1}, G_{2}, \ldots, G_{k}$ and for each i, $1 \leq i \leq k, D_{i}$ is a TRDS of G_{i}. Then the union of D_{i} is a TRDS of G. Thus, we have:

Observation 2. If G is a graph with components $G_{1}, G_{2}, \ldots, G_{k}$, then

$$
\gamma_{t r}(G)=\sum_{i=1}^{k} \gamma_{t r}\left(G_{i}\right)
$$

By Observation 2, the following observation is immediate.
k
k

Figure 1: Graph G, where $\gamma_{t r}(G)=k+3$ and $\gamma_{t r}(G-e)=2 k+4$.

Observation 3. A graph G is $\gamma_{t r}$-edge critical if and only if each component of G is $\gamma_{t r}$-edge critical.

Theorem 1.

(i) The path $P_{n}, n \geq 2$, is $\gamma_{t r}$-edge critical if and only if $n \equiv 2$ or $3(\bmod 4)$.
(ii) The cycle $C_{n}, n \geq 3$, is $\gamma_{t r}$-edge critical if and only if $n \equiv 0$ or $1(\bmod 4)$.
(iii) The caterpillar T is $\gamma_{t r}$-edge critical if and only if for each $i, 0 \leq i \leq k$, $z_{i} \equiv 2$ or $3(\bmod 4)$ (see page 2 for the definition of $\left.z_{i}\right)$.

Proof. (i) Consider the path P_{n} of order n and assume that $n \equiv 0$ or $1(\bmod 4)$. Let e be an edge adjacent to a tail. Then $P_{n}-e$ is a graph with two components P_{2} and P_{n-2}. By Proposition B(iii) and Observation 2,

$$
\begin{aligned}
\gamma_{t r}\left(P_{n}-e\right) & =\gamma_{t r}\left(P_{2}\right)+\gamma_{t r}\left(P_{n-2}\right) \\
& =2+(n-2)-2\left\lfloor\frac{(n-2)-2}{4}\right\rfloor \\
& =n-2\left\lfloor\frac{n-4}{4}\right\rfloor
\end{aligned}
$$

As $n \equiv 0$ or $1(\bmod 4)$, we have $\left\lfloor\frac{n-4}{4}\right\rfloor=\left\lfloor\frac{n-2}{4}\right\rfloor$, and so

$$
\gamma_{t r}\left(P_{n}-e\right)=n-2\left\lfloor\frac{n-2}{4}\right\rfloor=\gamma_{t r}\left(P_{n}\right)
$$

Thus, if $n \equiv 0$ or $1(\bmod 4)$, then P_{n} is not $\gamma_{t r}$-edge critical.
Now suppose that $n \equiv 2$ or $3(\bmod 4)$. Let e be a strong edge of P_{n}. Then $P_{n}-e$ is a graph with two components $P_{n_{1}}$ and $P_{n_{2}}$, such that $n_{1}+n_{2}=n$. By Proposition B(iii) and Observation 2,

$$
\begin{aligned}
\gamma_{t r}\left(P_{n}-e\right) & =\gamma_{t r}\left(P_{n_{1}}\right)+\gamma_{t r}\left(P_{n_{2}}\right) \\
& =n_{1}-2\left\lfloor\frac{n_{1}-2}{4}\right\rfloor+n_{2}-2\left\lfloor\frac{n_{2}-2}{4}\right\rfloor \\
& =n-2\left(\left\lfloor\frac{n_{1}-2}{4}\right\rfloor+\left\lfloor\frac{n_{2}-2}{4}\right\rfloor\right) .
\end{aligned}
$$

Assume that at least one of n_{1} or n_{2} is congruent to 0 or 1 modulo 4 (say, $n_{1} \equiv 0$ or $1(\bmod 4)$, and so $\left.\left\lfloor\frac{n_{1}-2}{4}\right\rfloor=\left\lfloor\frac{n_{1}-4}{4}\right\rfloor\right)$. Then

$$
\begin{aligned}
\left\lfloor\frac{n_{1}-2}{4}\right\rfloor+\left\lfloor\frac{n_{2}-2}{4}\right\rfloor & =\left\lfloor\frac{n_{1}-4}{4}\right\rfloor+\left\lfloor\frac{n_{2}-2}{4}\right\rfloor \\
& \leq \frac{n_{1}-4}{4}+\frac{n_{2}-2}{4} \\
& =\frac{n-2-4}{4}=\frac{n-2}{4}-1 \\
& <\left\lfloor\frac{n-2}{4}\right\rfloor
\end{aligned}
$$

and so $n-2\left(\left\lfloor\frac{n_{1}-2}{4}\right\rfloor+\left\lfloor\frac{n_{2}-2}{4}\right\rfloor\right)>n-2\left\lfloor\frac{n-2}{4}\right\rfloor$; i.e., $\gamma_{t r}\left(P_{n}-e\right)>$ $\gamma_{t r}\left(P_{n}\right)$.
Assume now that n_{1} and n_{2} are congruent to 3 modulo 4. In this case, $\left\lfloor\frac{n_{1}-2}{4}\right\rfloor+\left\lfloor\frac{n_{2}-2}{4}\right\rfloor=\left\lfloor\frac{n-2}{4}\right\rfloor-1$, and it can be easily observed that $\left\lfloor\frac{n_{1}-2}{4}\right\rfloor+\left\lfloor\frac{n_{2}-2}{4}\right\rfloor<\left\lfloor\frac{n-2}{4}\right\rfloor$; i.e., $\gamma_{t r}\left(P_{n}-e\right)>\gamma_{t r}\left(P_{n}\right)$.
(ii) As $C_{n}-e$ is P_{n} for any edge e in C_{n}, by Proposition $\mathrm{B}(\mathrm{iv}), C_{n}$ is $\gamma_{t r}$-edge critical if and only if

$$
n-2\left\lfloor\frac{n-2}{4}\right\rfloor=\gamma_{t r}\left(P_{n}\right)>\gamma_{t r}\left(C_{n}\right)=n-2\left\lfloor\frac{n}{4}\right\rfloor .
$$

The inequality above holds if and only if $\left\lfloor\frac{n-2}{4}\right\rfloor<\left\lfloor\frac{n}{4}\right\rfloor$, i.e., $n \equiv$ 0 or $1(\bmod 4)$.
(iii) By Proposition A, it can be seen that the caterpillar T is a $\gamma_{t r}$-edge critical graph if and only if the $\left(a_{i}, a_{i+1}\right)$-paths are $\gamma_{t r}$-edge critical,
for each $i, 0 \leq i \leq k$. By the first part above, the latter holds if and only if $z_{i}+4 \equiv 2$ or $3(\bmod 4)$. Thus, T is $\gamma_{t r}$-edge critical if and only if for each i, $0 \leq i \leq k, z_{i} \equiv 2$ or $3(\bmod 4)$.

Theorem 2. Let G be a graph. Then G is $\gamma_{t r}$-edge critical if and only if every $\gamma_{t r}(G)$-set D satisfies each of the following conditions:
(1) Every component of $\langle D\rangle$ and $\langle V-D\rangle$ is a star.
(2) Every vertex in $V-D$ has exactly one neighbor in D.

Note. Condition (2) implies that the number of edges between D and $V-D$ is equal to $n-\gamma_{t r}(G)$.

Proof. Suppose that G is a $\gamma_{t r}$-edge critical graph and D is a $\gamma_{t r}(G)$-set. (1) If $\langle D\rangle$ or $\langle V-D\rangle$ has a strong edge, then D is a TRDS for the graph obtained from G by deleting the strong edge. This contradicts the fact that G is $\gamma_{t r}$-edge critical. Thus, every component of $\langle D\rangle$ and $\langle V-D\rangle$ is a star. (2) Every vertex in $V-D$ is dominated by some vertex in D. If a vertex v in $V-D$ has more than one neighbor in D, say u_{1} and u_{2}, then D is a TRDS of the graph $G-u_{1} v$, a contradiction. Thus, condition (2) holds.

We now prove the sufficiency by contradiction. Assume that every $\gamma_{t r}(G)-$ set satisfies the two conditions, but G is not $\gamma_{t r}$-edge critical. Let H be a $\gamma_{t r}$-edge critical proper spanning subgraph of G such that $\gamma_{t r}(H)=\gamma_{t r}(G)$. Suppose that D is a $\gamma_{t r}(H)$-set. By the above necessity conditions, D satisfies conditions (1) and (2) in H. Observe that D is also a $\gamma_{t r}(G)$-set, but now D no longer satisfies the conditions in G, as G contains at least one edge not in H. This contradiction shows that G is $\gamma_{t r}$-edge critical.

Corollary 1. Let G be an (n, m)-graph. If G is $\gamma_{t r}$-edge critical, then

$$
\frac{3 n}{2}-m \leq \gamma_{t r}(G) \leq 2 n-m-2
$$

Proof. Let D be a $\gamma_{t r}(G)$-set. By Theorem 2, the number of edges with one end in D and another one in $V-D$ is equal to $n-\gamma_{t r}(G)$. As $\langle D\rangle$ and $\langle V-D\rangle$ are forests, the number of edges in $\langle D\rangle$ and $\langle V-D\rangle$ does not exceed $|D|-1$ and $|V-D|-1$, respectively. Thus,

$$
\begin{aligned}
m & \leq(|D|-1)+(|V-D|-1)+\left(n-\gamma_{t r}(G)\right) \\
& =\left(\gamma_{t r}(G)-1\right)+\left(n-\gamma_{t r}(G)-1\right)+\left(n-\gamma_{t r}(G)\right) \\
& =2 n-\gamma_{t r}(G)-2
\end{aligned}
$$

and so

$$
\gamma_{t r}(G) \leq 2 n-m-2
$$

On the other hand, as the degree of every vertex in $\langle D\rangle$ and $\langle V-D\rangle$ is at least one, we have

$$
\begin{aligned}
m & \geq \frac{|D|}{2}+\frac{|V-D|}{2}+n-\gamma_{t r}(G) \\
& =\frac{\gamma_{t r}(G)}{2}+\frac{n-\gamma_{t r}(G)}{2}+n-\gamma_{t r}(G) \\
& =\frac{3 n}{2}-\gamma_{t r}(G),
\end{aligned}
$$

i.e.,

$$
\frac{3 n}{2}-m \leq \gamma_{t r}(G)
$$

4 Total restrained domination number of graphs

In this section, we find some bounds for the total restrained domination number of graphs.

Lemma 1. Let D be a $\gamma_{t r}(G)$-set of a $\gamma_{t r}$-edge critical graph G. If k and k^{\prime} are the numbers of components in $\langle D\rangle$ and $\langle V-D\rangle$, respectively, then

$$
\gamma(G) \leq k+k^{\prime} \leq \alpha^{\prime}(G)
$$

Proof. By Theorem 2, every component of $\langle D\rangle$ and $\langle V-D\rangle$ is a star. Let A be the set of the centers of these stars. Then A is a dominating set of G and $|A|=k+k^{\prime}$. Hence

$$
\gamma(G) \leq|A|=k+k^{\prime}
$$

Form a set $B \subseteq E$ by selecting an edge from each component of $\langle D\rangle$ and $\langle V-D\rangle$. Then B is a matching of G, and so by above inequality

$$
\gamma(G) \leq k+k^{\prime}=|B| \leq \alpha^{\prime}(G)
$$

Remark 2. Suppose that G is a graph and D is a subset of V such that each component of $\langle D\rangle$ and $\langle V-D\rangle$ is a star. Denote the set of edges between D and $V-D$ by $F_{D}(G)$ and let $f_{D}(G)=\left|F_{D}(G)\right|$. Now we construct a bipartite multigraph G_{D}^{*} with partite sets X and Y from G with respect to D as follows. Every vertex in X corresponds to a component of $\langle D\rangle$ and every vertex in Y corresponds to a component of $\langle V-D\rangle$. Let k and k^{\prime} be the numbers of components in $\langle D\rangle$ and $\langle V-D\rangle$, respectively; so $|X|=k$ and $|Y|=k^{\prime}$. Corresponding to every edge in G joining a component of $\langle D\rangle$ and a component of $\langle V-D\rangle$, there is an edge in G_{D}^{*} joining the two vertices corresponding to the components (note that G_{D}^{*} may contain multiple edges). Then G_{D}^{*} is an $\left(n^{*}, m^{*}\right)$-multigraph, where $n^{*}=n\left(G_{D}^{*}\right)=k+k^{\prime}$ and $m^{*}=m\left(G_{D}^{*}\right)=f_{D}(G)$.

Referring to the notations in Remark 2, we have:

Lemma 2.

$$
m\left(G_{D}^{*}\right)=n\left(G_{D}^{*}\right)-(n(G)-m(G))
$$

Proof. We prove the equality by induction on $f_{D}(G)$. Assume $f_{D}(G)=0$. Then G is a forest with $k+k^{\prime}$ components, and so $m(G)=n(G)-\left(k+k^{\prime}\right)$. Hence $n(G)-m(G)=k+k^{\prime}=n\left(G_{D}^{*}\right)-m\left(G_{D}^{*}\right)$.
Assume that $f_{D}(G)>0$ and the equality holds for every graph H with $f_{D}(H)<f_{D}(G)$. Suppose that H is a graph obtained from G by deleting an edge of $F_{D}(G)$. Then $f_{D}(H)=f_{D}(G)-1<f_{D}(G)$, and by the induction hypothesis, $m\left(H_{D}^{*}\right)=n\left(H_{D}^{*}\right)-(n(H)-m(H))$. Since $m\left(H_{D}^{*}\right)=m\left(G_{D}^{*}\right)-1$, $n\left(H_{D}^{*}\right)=n\left(G_{D}^{*}\right), m(H)=m(G)-1$ and $n(H)=n(G)$, we have $m\left(G_{D}^{*}\right)=$ $n\left(G_{D}^{*}\right)-(n(G)-m(G))$, as desired.

Theorem 3. For every $\gamma_{t r}$-edge critical (n, m)-graph G,

$$
\beta^{\prime}(G)+n-m \leq \gamma_{t r}(G) \leq 2 n-m-\gamma(G)
$$

Proof. Let D be a $\gamma_{t r}(G)$-set and G_{D}^{*} be the corresponding $\left(n^{*}, m^{*}\right)$ multigraph constructed from G as described in Remark 2. By Theorem 2, $m^{*}=f_{D}(G)=n-\gamma_{t r}(G)$, and by Lemma 2, $n^{*}-(n-m)=m^{*}$. Hence

$$
k+k^{\prime}-(n-m)=n^{*}-(n-m)=m^{*}=n-\gamma_{t r}(G),
$$

and so

$$
\gamma_{t r}(G)=n-\left(k+k^{\prime}\right)+(n-m) .
$$

This equality and the inequalities in Lemma 1 imply that

$$
n-\alpha^{\prime}(G)+(n-m) \leq \gamma_{t r}(G) \leq n-\gamma(G)+(n-m) .
$$

Now, by Theorem A, we have

$$
\beta^{\prime}(G)+n-m \leq \gamma_{t r}(G) \leq 2 n-m-\gamma(G)
$$

Remark 3. The above bounds are sharp, as stars are $\gamma_{t r}$-edge critical graphs and their $\gamma_{t r}$ achieve both lower and upper bounds above.

Corollary 2. If G is an (n, m)-graph, then $\gamma_{t r}(G) \geq \beta^{\prime}(G)+n-m$.
Proof. Suppose that H is a $\gamma_{t r}$-edge critical spanning subgraph of G such that $\gamma_{t r}(H)=\gamma_{t r}(G)$. Since H is a spanning subgraph of G, each edge cover of H is an edge cover of G, so $\beta^{\prime}(G) \leq \beta^{\prime}(H)$. Hence by Theorem 3,

$$
\beta^{\prime}(G)+n-m \leq \beta^{\prime}(H)+n(H)-m(H) \leq \gamma_{t r}(H)=\gamma_{t r}(G)
$$

Remark 4. In [2] it is proved that if G is an (n, m)-graph, then

$$
\gamma_{t r}(G) \geq \frac{3 n}{2}-m
$$

and in [4] it is proved that if T is a tree of order n, then

$$
\gamma_{t r}(T) \geq\left\lfloor\frac{n+2}{2}\right\rfloor
$$

Since for every graph G of order $n, \frac{n}{2} \leq\left\lfloor\frac{n+1}{2}\right\rfloor \leq \beta^{\prime}(G)$, the lower bound obtained in Corollary 2 is sharper than the above two.

Theorem 4. If G is an (n, m)-graph such that $\gamma_{t r}(G)=\beta^{\prime}(G)+n-m$, then G is $\gamma_{t r}$-edge critical.

Proof. We prove the statement by contradiction. Suppose that G is not $\gamma_{t r}$-edge critical. Then there is an edge, say e, such that $\gamma_{t r}(G-e)=\gamma_{t r}(G)$. By Corollary 2 and the hypothesis,

$$
\begin{aligned}
\gamma_{t r}(G) & =\beta^{\prime}(G)+n-m \leq \beta^{\prime}(G-e)+n-m \\
& =\beta^{\prime}(G-e)+n(G-e)-(m(G-e)+1) \\
& \leq \gamma_{t r}(G-e)-1=\gamma_{t r}(G)-1
\end{aligned}
$$

a contradiction.

Remark 5. For every integer $k>0$ there exists a graph G such that $\gamma_{t r}(G)-\beta^{\prime}(G)=k+1$. For instance, in the graph G of Figure 2, the set $D={ }_{i=1}^{\mathrm{U}_{1}+1} A_{i}$ is a $\gamma_{t r}(G)$-set with $|D|=5 k+2$ and the set of bold edges is an edge cover of size $4 k+1$. Moreover, note that graph G is $\gamma_{t r}$-edge critical. So this example shows that the converse of Theorem 4 is not true.

Figure 2: Graph G, where $\gamma_{t r}(G)-\beta^{\prime}(G)=k+1$.

5 Characterization of trees with minimum $\gamma_{\text {tr }}$

It follows from Corollary 2 that if T is a tree, then $\gamma_{t r}(T) \geq \beta^{\prime}(T)+1$. In this final section, we characterize all trees T such that $\gamma_{t r}(T)=\beta^{\prime}(T)+1$. We first present some useful lemmas.

Lemma 3. Suppose that T and T^{\prime} are two trees such that for some integer $k, \gamma_{t r}\left(T^{\prime}\right) \leq \gamma_{t r}(T)+k$ and $\beta^{\prime}(T) \leq \beta^{\prime}\left(T^{\prime}\right)-k$. If $\gamma_{t r}(T)=\beta^{\prime}(T)+1$, then $\gamma_{t r}\left(T^{\prime}\right)=\beta^{\prime}\left(T^{\prime}\right)+1$ and $\gamma_{t r}\left(T^{\prime}\right)=\gamma_{t r}(T)+k$.

Proof. By Corollary 2 and the hypothesis, we have

$$
\begin{aligned}
\beta^{\prime}\left(T^{\prime}\right)+1 & \leq \gamma_{t r}\left(T^{\prime}\right) \leq \gamma_{t r}(T)+k \\
& =\left(\beta^{\prime}(T)+1\right)+k=\left(\beta^{\prime}(T)+k\right)+1 \leq \beta^{\prime}\left(T^{\prime}\right)+1
\end{aligned}
$$

Hence $\gamma_{t r}\left(T^{\prime}\right)=\beta^{\prime}\left(T^{\prime}\right)+1$ and $\gamma_{t r}\left(T^{\prime}\right)=\gamma_{t r}(T)+k$.

Lemma 4. Suppose that T and T^{\prime} are two trees such that for some integer $k, \gamma_{t r}\left(T^{\prime}\right) \leq \gamma_{t r}(T)-k$ and $\beta^{\prime}(T) \leq \beta^{\prime}\left(T^{\prime}\right)+k$. If $\gamma_{t r}(T)=\beta^{\prime}(T)+1$, then $\gamma_{t r}\left(T^{\prime}\right)=\beta^{\prime}\left(T^{\prime}\right)+1$ and $\gamma_{t r}\left(T^{\prime}\right)=\gamma_{t r}(T)-k$.

Proof. By Corollary 2 and the hypothesis, we have

$$
\begin{aligned}
\beta^{\prime}\left(T^{\prime}\right)+1 & \leq \gamma_{t r}\left(T^{\prime}\right) \leq \gamma_{t r}(T)-k \\
& =\left(\beta^{\prime}(T)+1\right)-k=\left(\beta^{\prime}(T)-k\right)+1 \leq \beta^{\prime}\left(T^{\prime}\right)+1
\end{aligned}
$$

Hence $\gamma_{t r}\left(T^{\prime}\right)=\beta^{\prime}\left(T^{\prime}\right)+1$ and $\gamma_{t r}\left(T^{\prime}\right)=\gamma_{t r}(T)-k$.
Lemma 5. Let T be a tree with $\gamma_{t r}(T)=\beta^{\prime}(T)+1$ and P be an end path with k vertices in T. If D is a $\gamma_{t r}(T)$-set such that $D^{\prime}=D-V(P)$ is a TRDS for $T^{\prime}=T-V(P)$, then at most $\left\lfloor\frac{k+1}{2}\right\rfloor$ vertices of P belong to D.

Proof. Suppose that this is not true; i.e., D contains at least $\left\lfloor\frac{k+1}{2}\right\rfloor+1$ vertices of P. By Corollary 2,

$$
\beta^{\prime}\left(T^{\prime}\right)+1 \leq \gamma_{t r}\left(T^{\prime}\right)
$$

Since $D^{\prime}=D-V(P)$ is a TRDS of T^{\prime},

$$
\gamma_{t r}\left(T^{\prime}\right) \leq\left|D^{\prime}\right| \leq|D|-\left(\left\lfloor\frac{k+1}{2}\right\rfloor+1\right)=\gamma_{t r}(T)-\left\lfloor\frac{k+1}{2}\right\rfloor-1
$$

The union of an edge cover of P and an edge cover of T^{\prime} is an edge cover of T and $\beta^{\prime}(P)=\left\lfloor\frac{k+1}{2}\right\rfloor$. Thus

$$
\beta^{\prime}(T) \leq \beta^{\prime}\left(T^{\prime}\right)+\left\lfloor\frac{k+1}{2}\right\rfloor .
$$

Now we have

$$
\begin{aligned}
\beta^{\prime}\left(T^{\prime}\right)+1 & \leq \gamma_{t r}\left(T^{\prime}\right) \leq \gamma_{t r}(T)-\left\lfloor\frac{k+1}{2}\right\rfloor-1 \\
& =\beta^{\prime}(T)+1-\left\lfloor\frac{k+1}{2}\right\rfloor-1=\beta^{\prime}(T)-\left\lfloor\frac{k+1}{2}\right\rfloor \\
& \leq\left(\beta^{\prime}\left(T^{\prime}\right)+\left\lfloor\frac{k+1}{2}\right\rfloor\right)-\left\lfloor\frac{k+1}{2}\right\rfloor=\beta^{\prime}\left(T^{\prime}\right)
\end{aligned}
$$

a contradiction. This shows that D contains at most $\left\lfloor\frac{k+1}{2}\right\rfloor$ vertices of P.

Now we construct a family Φ of trees recursively as follows:
(i) Let P_{2} be in Φ.
(ii) Let $T \in \Phi$ and D be a $\gamma_{t r}(T)$-set. Then $T^{\prime} \in \Phi$ if T^{\prime} is a tree constructed from T by performing one of the following operations.
O_{1}. Add a new vertex t to T and join t to a support vertex in T. Let $D^{\prime}:=D \cup\{t\}$.
O_{2}. Add a new path $a b c d$ to T and join vertex a to a vertex s in D. Let $D^{\prime}:=D \cup\{c, d\}$.
O_{3}. Let $a b c d$ be an end path in T such that $a \notin D$ and $b, c, d \in D$. Add a new path $t x$ to T, and join t to vertex a. Let $D^{\prime}:=(D-\{b\}) \cup\{t, x\}$.
O_{4}. Let $a b c d$ be an end path in T such that $a \notin D$. Add a new path $t x y$ to T and join t to a. Let $D^{\prime}:=D \cup\{x, y\}$.

In the following lemma, we show that D^{\prime} is a $\gamma_{t r}\left(T^{\prime}\right)$-set and hence Φ can be constructed recursively.

Lemma 6. Let T be a tree such that $\gamma_{t r}(T)=\beta^{\prime}(T)+1$ and T^{\prime} constructed from T by one of the operations above. Then $\gamma_{t r}\left(T^{\prime}\right)=\beta^{\prime}\left(T^{\prime}\right)+1$ and D^{\prime} is a $\gamma_{t r}\left(T^{\prime}\right)$-set.

Proof. We first show that if we perform each of the operations above, then T and T^{\prime} satisfy the hypothesis of Lemma 3 for some k. Hence we can conclude that $\gamma_{t r}\left(T^{\prime}\right)=\beta^{\prime}\left(T^{\prime}\right)+1$. To see this, let M^{\prime} be an edge cover of T^{\prime}.

Operation O_{1}. By Proposition A, we have every support vertex is in D, so it is obvious that D^{\prime} is a TRDS of T^{\prime}. Thus $\gamma_{t r}\left(T^{\prime}\right) \leq\left|D^{\prime}\right|=\gamma_{t r}(T)+1$. Suppose that M is obtained from M^{\prime} by deleting the edge incident to t (note that each edge incident to an end vertex belongs to M^{\prime}). The set M is an edge cover for T; so $\beta^{\prime}(T) \leq \beta^{\prime}\left(T^{\prime}\right)-1$. In this case, $k=1$ and we are done.

Operation O_{2}. Similarly, for this operation, we have $\gamma_{t r}\left(T^{\prime}\right) \leq\left|D^{\prime}\right|=$ $\gamma_{t r}(T)+2$. Suppose that M is obtained from M^{\prime} by deleting the edges incident to the vertices b and d. Since b and d are not adjacent, there are at least two such edges. Moreover if edge as belongs to M, then we substitute as with an edge of T incident to s to get an edge cover for T. So $\beta^{\prime}(T) \leq \beta^{\prime}\left(T^{\prime}\right)-2$. Hence, in this case, $k=2$ and we are done.

Operation O_{3}. For this operation, we have $k=1$, and the argument is similar to the above.

Operation O_{4}. Similarly, $\gamma_{t r}\left(T^{\prime}\right) \leq \gamma_{t r}(T)+2$. If $a t, a b \in M^{\prime}$, then we can substitute at with $t x$ and get a new edge cover of T^{\prime}. Hence by symmetry of edges $a b$ and $a t$, without loss of generality we may assume at $\notin M^{\prime}$. Thus $t x \in M^{\prime}$, also we know that $x y \in M^{\prime}$, and so $M^{\prime}-\{t x, x y\}$ is an edge
cover for T of size $\beta^{\prime}\left(T^{\prime}\right)-2$. Hence $\beta^{\prime}(T) \leq \beta^{\prime}\left(T^{\prime}\right)-2$ and we have $k=2$, and the desired result can be obtained.

For the second part of the lemma, it is seen that in each case D^{\prime} is a TRDS of T^{\prime}. Moreover, in each case for chosen k, we have $\left|D^{\prime}\right|=\gamma_{t r}(T)+k$. On the other hand, by Lemma 3, $\gamma_{t r}\left(T^{\prime}\right)=\gamma_{t r}(T)+k$. Thus $\left|D^{\prime}\right|=\gamma_{t r}\left(T^{\prime}\right)$ and so D^{\prime} is a $\gamma_{t r}\left(T^{\prime}\right)$-set.

Theorem 5. The set Φ is the set of all trees T with $\gamma_{t r}(T)=\beta^{\prime}(T)+1$.
Proof. Obviously $\gamma_{t r}\left(P_{2}\right)=2=\beta^{\prime}\left(P_{2}\right)+1$. Thus by Lemma 6 and using the induction on the number of the operations, for every tree T in Φ, we have $\gamma_{t r}(T)=\beta^{\prime}(T)+1$.
We now show that every tree T of order n with $\gamma_{t r}(T)=\beta^{\prime}(T)+1$ is contained in Φ. Our proof is by induction on n. For $n=2$, we have $T=P_{2}$, and $P_{2} \in \Phi$. Suppose that $n \geq 3$ and the statement is true for all trees of order less than n. Our strategy is to find some proper subtree of T, say T^{\prime}, that satisfies the hypothesis of Lemma 4. Hence $\gamma_{t r}\left(T^{\prime}\right)=\beta^{\prime}\left(T^{\prime}\right)+1$ and by the induction hypothesis, T^{\prime} belongs to Φ. Moreover, we find T^{\prime} such that T can be constructed from T^{\prime} by performing one of the operations O_{1}, \ldots, O_{4}, and conclude that $T \in \Phi$.
Thus, let T be a tree of order $n \geq 3$ with $\gamma_{t r}(T)=\beta^{\prime}(T)+1$. Note that, by Theorem 4, T is $\gamma_{t r}$-edge critical. Suppose that D is a $\gamma_{t r}(T)$-set, P is the longest path in T and c is a support vertex in P.
If $d e g_{T}(c)>2$, then c is adjacent to two end vertices, say t and d. By Proposition A, the vertices t, d and c are in D. Since $D^{\prime}=D-\{t\}$ is a TRDS in $T^{\prime}=T-\{t\}, \gamma_{t r}\left(T^{\prime}\right) \leq \gamma_{t r}(T)-1$. On the other hand, the union of an edge cover of $T^{\prime}=T-\{t\}$ and edge $c t$ is an edge cover of T, so $\beta^{\prime}(T) \leq \beta^{\prime}\left(T^{\prime}\right)+1$. On the other hand, the union of a $\gamma_{t r}\left(T^{\prime}\right)$-set and $\{t\}$ is a TRDS of T. Thus $\gamma_{t r}(T) \leq \gamma_{t r}\left(T^{\prime}\right)+1$, and so $\gamma_{t r}(T)=$ $\gamma_{t r}\left(T^{\prime}\right)+1$. Therefore the tree T^{\prime} is a desired subtree of T from which T can be constructed by O_{1}.
Assume now that $d e g_{T}(c)=2$. Then c is adjacent to an end vertex, say d and vertex, say b. If $\operatorname{deg}_{T}(b)=1$, then $T=P_{3}$ and $P_{3} \in \Phi$. Assume that $\operatorname{deg}_{T}(b) \geq 2$. Then we have the following two cases to consider.

Case 1. $\operatorname{deg}_{T}(b)>2$.
In this case, b has a neighbor not in P, say t. By our choice of P, it is obvious that the length (say l) of the longest path $b t \ldots$ beginning with $b t$ is at most two. By Proposition A, the vertices c, d, t and the neighbors of t other than b (if there exist) are in D. Thus, for $l=1$ and $l=2$, $\gamma_{t r}(T-b c)=\gamma_{t r}(T)$, which contradicts that T is $\gamma_{t r}$-edge critical.

Case 2. $\operatorname{deg}_{T}(b)=2$.

In this case, let the neighbors of b be vertices a and c. If $\operatorname{deg}_{T}(a)=1$, then $T=P_{4}$, while $\gamma_{t r}\left(P_{4}\right) \neq \beta^{\prime}\left(P_{4}\right)+1$. Thus, we consider the following two subcases.

Case 2.1. $\operatorname{deg}_{T}(a)>2$.
Assume that t is a neighbor of a not in P. Let l be the length of longest path $a t \ldots$ beginning with $a t$. Then, by the choice of P, it is obvious that $l \leq 3$. The following three cases can happen.

Case 2.1.1. $l=1$.
By Proposition A, the vertices a, c and d are in D, so b is also in D. This is a contradiction for, by Theorem 2 , every component of $\langle D\rangle$ is a star.

Case 2.1.2. $l=2$.
If x is an end vertex adjacent to t, then by Proposition A, vertices c, d, t and x are in D. If $b \in D$, then a has two neighbors in D, which, by Theorem 2, contradicts that T is a $\gamma_{t r}$-edge critical graph. Hence $b \in V-D$, and since it should not be an isolated vertex in $\langle V-D\rangle$, we have $a \notin D$. In this case, let $T^{\prime}=T-\{t, x\}$. It can be seen that T can be constructed from T^{\prime} by performing O_{3}. Moreover it can be easily checked that the union of an edge cover of T^{\prime} and the edge $t x$ is an edge cover of T; so $\beta^{\prime}(T) \leq \beta^{\prime}\left(T^{\prime}\right)+1$. On the other hand, $(D \cup\{b\})-\{x, t\}$ is a TRDS of $T^{\prime}\left(\right.$ note that $\operatorname{deg}_{T}(a)>2$ and T is $\gamma_{t r}$-edge critical, hence by Theorem 2 all neighbors of a except t are in $V-D)$; so $\gamma_{t r}\left(T^{\prime}\right) \leq \gamma_{t r}(T)-1$, and we are done in this case.

Case 2.1.3. $l=3$
Let atxy be a longest path beginning with at of length 3 . Note that the path obtained by substituting the subpath atxy with subpath $a b c d$ in P is also a longest path in T. So by symmetry, we may assume that $d e g_{T}(t)=2$ and $\operatorname{deg}_{T}(x)=2$. By Proposition A, the vertices c, d, x and y are in D. If b and t both belong to D, then a has two neighbors in D which, by Theorem 2, contradicts that T is $\gamma_{t r}$-edge critical. Hence at least one of b and t is in $V-D$, say $t \in V-D$. Since there is no isolated vertex in $\langle V-D\rangle$ and $x \in D$, we have $a \notin D$. In this case, let $T^{\prime}=T-\{t, x, y\}$. Then T can be constructed from T^{\prime} by performing O_{4}. Moreover, it can be easily seen that the union of an edge cover of T^{\prime} and the set $\{t x, x y\}$ is an edge cover of T; so $\beta^{\prime}(T) \leq \beta^{\prime}\left(T^{\prime}\right)+2$. On the other hand, $D-\{x, y\}$ is a TRDS of T^{\prime} and so $\gamma_{t r}\left(T^{\prime}\right) \leq \gamma_{t r}(T)-2$, and we are done in this case.

Case 2.2. $\operatorname{deg}_{T}(a)=2$.
In this case, we denote the neighbors of a by b and s. By Proposition A, vertices c and d should be in D.
If $b \notin D$, then since $\langle V-D\rangle$ contains no isolated vertex, $a \notin D$ and $s \in D$ to dominate a. In this case, let $T^{\prime}=T-\{a, b, c, d\}$. Then T can be
constructed from T^{\prime} by performing O_{2}. It can be easily shown that T and T^{\prime} satisfy the conditions of Lemma 4 for $k=2$.
If $b \in D$, then $a \in V-D$, because, by Theorem 2, every component of $\langle D\rangle$ is a star. Since there is no isolated vertex in $\langle V-D\rangle, a \in V-D$ implies that $s \notin D$. If $\operatorname{deg}_{T}(s)>2$, let $T^{\prime}=T-\{a, b, c, d\}$, then the set $D-\{b, c, d\}$ is a $\gamma_{t r}\left(T^{\prime}\right)$-set (note that, by Theorem 2, all neighbors of s except one are in $V-D$), while D contains three vertices of the end path $a b c d$ in T. This contradicts Lemma 5. Thus $\operatorname{deg}_{T}(s) \ngtr 2$. However, in the case that $\operatorname{deg}_{T}(s)=1$, we have $T=P_{5}$, while $\gamma_{t r}\left(P_{5}\right) \neq \beta^{\prime}\left(P_{5}\right)+1$. Hence $\operatorname{deg}_{T}(s)=2$. Furthermore since $a \notin D$, the only other neighbor of s is in D. So $(D-\{b\}) \cup\{s\}$ is also a $\gamma_{t r}(T)$-set which does not contain b. We are done so long as $b \notin D$.

References

[1] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi. Total domination in graphs. Networks 10, (1980), 211-219.
[2] J. Cyman and J. Raczek. On the total restrained domination number of a graph. Astrulasian Journal of combinatorics 36, (2006), 91-100.
[3] S. Gravier. Total dominatin number of grid graphs. Discrete Applied Mathematics 121, (2002), 119-128.
[4] J.H. Hattingh, E. Jonck, E.J. Joubert and A.R. Plummer. Total restrained domination in trees. Discrete Mathematics 307, (2007), 16431650.
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater. Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1997.
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater. Domination in Graphs. Marcel Dekker Inc., New York, 1997.
[7] D. Ma, X. Chen and L. Sun. On total restrained domination in graphs. Czechoslovak Mathematical Journal 55, (2005), 165-173.
[8] J. Raczek and J. Cyman. Total restrained domination numbers of trees. Discrete Mathematics 308, (2008), 44-50.
[9] E. Shan, L. Kang and M.A. Henning. A characterization of trees with equal total domination and paired-domination numbers. Astrulasian Journal of combinatorics 30, (2004), 31-39.
[10] D.B. West. Introduction to Graph Theory. 2nd Eddition, Prentice Hall, Upper Saddle River, NJ, 2001.

