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Abstract

Let G = (V, E) be a graph. A set D ⊆ V is a total restrained
dominating set of G if every vertex in V has a neighbor in D and
every vertex in V −D has a neighbor in V −D. The cardinality of a
minimum total restrained dominating set in G is the total restrained
domination number of G. In this paper, we define the concept of total
restrained domination edge critical graphs, find a lower bound for the
total restrained domination number of graphs, and constructively
characterize trees having their total restrained domination numbers
achieving the lower bound.
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1 Introduction

Let G = (V,E) be a simple graph of order |V | = n(G) and size |E| = m(G).
If there is no confusion, then we omit G in these notations and call G an
(n, m)-graph. The degree of a vertex v in G is the number of vertices
adjacent to v, and denoted by degG(v). A vertex with no neighbor in G
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is called an isolated vertex. A vertex of degree one in G is called an end
vertex, the vertex adjacent to and the edge incident to an end vertex are
called a support vertex and a tail, respectively. An edge is called a strong
edge if it is not a tail. A path P in G is called an end path of G if P
contains an end vertex of G and the degree of each vertex of P in G except
end vertices is 2.

A set D ⊆ V is a dominating set of G if every vertex in V − D has a
neighbor in D. The cardinality of a minimum dominating set of G is the
domination number of G and denoted by γ(G) (see [5, 6]). If, in addition,
the induced subgraph 〈D〉 has no isolated vertex, then D is called a total
dominating set (TDS). The cardinality of a minimum total dominating set
of G is called the total domination number and denoted by γt(G). The
total domination in graphs was introduced by Cockayne et al. in [1] (see
also [3, 6, 9]).

Throughout this paper, we assume that G contains no isolated vertices.
A set D ⊆ V is a total restrained dominating set of G (TRDS) if D is a
TDS of G and also the induced subgraph 〈V −D〉 has no isolated vertex.
Note that the set V is a TRDS of G. The cardinality of a minimum to-
tal restrained dominating set of G is called the total restrained domination
number of G and denoted by γtr(G). We call a TRDS in graph G of car-
dinality γtr(G) a γtr(G)− set. The concept of total restrained domination
was introduced by De-Xiang Ma et al. in [7].

A graph G is said to be total restrained domination edge critical if for
every strong edge e in G, γtr(G − e) > γtr(G). For simplicity, we call
such G a γtr-edge critical graph. In this paper, we first characterize γtr-
edge critical paths, cycles and caterpillars and find necessary and sufficient
conditions for a graph to be γtr-edge critical. We then proceed to find a
lower bound and an upper bound of γtr(G) for γtr-edge critical graphs G,
and hence derive a lower bound of γtr(G) for all (n, m)-graphs G. Finally we
characterize the trees which have their total restrained domination number
achieving the lower bound. For unexplained terms and symbols, see [10].

2 Known results

In this section, we state some known results which are useful for proving
our main theorems.
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Proposition A. [2] Let D be a TRDS of a graph G of order n, n ≥ 3.
Then every end vertex and every support vertex of G are in D.

Proposition B. [7] For every integer n, n ≥ 2,

(i) γtr(Kn) =
{

3 if n = 3,
2 if n 6= 3;

(ii) γtr(Kp,q) =
{

p + q if min{p, q} = 1,
2 if min{p, q} 6= 1;

(iii) γtr(Pn) = n− 2
⌊

n−2
4

⌋
;

(iv) γtr(Cn) = n− 2
⌊

n
4

⌋
.

A tree T is called a caterpillar if the resulting subgraph of T ob-
tained by deleting all its end vertices is a path. We call this path the
spine of the caterpillar. Let T be a caterpillar with spine v1...vs and let
{u0 = v1, u1, ..., uk+1 = vs} be the ordered set of vertices in {v1, ..., vs}
with degT (ui) > 2, for each i, 1 ≤ i ≤ k. We denote the number of internal
vertices in (ui, ui+1)-path by zi, 0 ≤ i ≤ k, and one of the end vertices
adjacent to ui, 0 ≤ i ≤ k + 1, by ai.

Proposition C. [2] For every caterpillar T of order n, n ≥ 3, γtr(T ) =

n− 2
k∑

i=1

⌊
zi + 2

4

⌋
.

Let G be a graph. A set M ⊆ E is called a matching if no two edges in
M are adjacent. The cardinality of a maximum matching in G is denoted
by α′(G). A set L ⊆ E is called an edge cover of G if every vertex of G
is incident to some edge of L. The cardinality of a minimum edge cover
is called the edge cover number of G and denoted by β′(G). Obviously,
the edge cover number of a graph is equal to the sum of the edge cover
numbers of its components. The well known Gallai identity relating α′(G)
and β′(G) is stated below.

Theorem A. [10] If G is a graph of order n without isolated vertices, then
α′(G) + β′(G) = n.
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3 γtr-edge critical graphs

In this section, we first characterize γtr-edge critical paths, cycles and cater-
pillars and provide necessary and sufficient conditions for a graph to be γtr-
edge critical. We then proceed to derive a lower bound and an upper bound
for the total restrained domination number of γtr-edge critical graphs.

It is obvious that every TRDS of a spanning subgraph H of graph G is
also a TRDS of G. Thus we have:

Observation 1. If H is a spanning subgraph of a graph G, then γtr(H) ≥
γtr(G).

This observation implies that the γtr(G) is nondecreasing if we delete
an edge of G.

Definition. A graph G is a γtr-edge critical graph if for every strong
edge e of G, γtr(G− e) > γtr(G).

It is clear that every graph G contains a γtr-edge critical spanning
subgraph H with γtr(H) = γtr(G). This is seen by removing edges in suc-
cession, whenever possible, without diminishing the total restrained domi-
nation number.

Remark 1. The difference γtr(G− e)− γtr(G) can be arbitrary large. For
example, in the graph of Figure 1, γtr(G) = k+3 while γtr(G−e) = 2k+4,
for k ≥ 1. Note that D = A1∪A2 is a γtr(G)-set and D′ = A1∪A2∪B1∪B2

is a γtr(G− e)-set, where e is the dotted edge denoted in graph G.

Suppose that G is a graph with components G1, G2, ..., Gk and for each
i, 1 ≤ i ≤ k, Di is a TRDS of Gi. Then the union of Di is a TRDS of G.
Thus, we have:

Observation 2. If G is a graph with components G1, G2, ..., Gk, then

γtr(G) =
k∑

i=1

γtr(Gi).

By Observation 2, the following observation is immediate.
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Figure 1: Graph G, where γtr(G) = k + 3 and γtr(G− e) = 2k + 4.

Observation 3. A graph G is γtr-edge critical if and only if each compo-
nent of G is γtr-edge critical.

Theorem 1.

(i) The path Pn, n ≥ 2, is γtr-edge critical if and only if n ≡ 2 or 3 (mod4).

(ii) The cycle Cn, n ≥ 3, is γtr-edge critical if and only if n ≡ 0 or 1 (mod4).

(iii) The caterpillar T is γtr-edge critical if and only if for each i, 0 ≤ i ≤ k,
zi ≡ 2 or 3 (mod4) (see page 2 for the definition of zi).

Proof. (i) Consider the path Pn of order n and assume that n ≡ 0 or 1 (mod4).
Let e be an edge adjacent to a tail. Then Pn − e is a graph with two
components P2 and Pn−2. By Proposition B(iii) and Observation 2,

γtr(Pn − e) = γtr(P2) + γtr(Pn−2)

= 2 + (n− 2)− 2
⌊

(n− 2)− 2
4

⌋

= n− 2
⌊

n− 4
4

⌋
.

As n ≡ 0 or 1 (mod4), we have
⌊

n−4
4

⌋
=

⌊
n−2

4

⌋
, and so

γtr(Pn − e) = n− 2
⌊

n− 2
4

⌋
= γtr(Pn).
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Thus, if n ≡ 0 or 1 (mod4), then Pn is not γtr-edge critical.
Now suppose that n ≡ 2 or 3 (mod4). Let e be a strong edge of Pn.
Then Pn − e is a graph with two components Pn1 and Pn2 , such that
n1 + n2 = n. By Proposition B(iii) and Observation 2,

γtr(Pn − e) = γtr(Pn1) + γtr(Pn2)

= n1 − 2
⌊

n1 − 2
4

⌋
+ n2 − 2

⌊
n2 − 2

4

⌋

= n− 2(
⌊

n1 − 2
4

⌋
+

⌊
n2 − 2

4

⌋
).

Assume that at least one of n1 or n2 is congruent to 0 or 1 modulo 4
(say, n1 ≡ 0 or 1 (mod4), and so

⌊
n1−2

4

⌋
=

⌊
n1−4

4

⌋
). Then⌊

n1 − 2
4

⌋
+

⌊
n2 − 2

4

⌋
=

⌊
n1 − 4

4

⌋
+

⌊
n2 − 2

4

⌋

≤ n1 − 4
4

+
n2 − 2

4

=
n− 2− 4

4
=

n− 2
4

− 1

<

⌊
n− 2

4

⌋
,

and so n − 2(
⌊

n1−2
4

⌋
+

⌊
n2−2

4

⌋
) > n − 2

⌊
n−2

4

⌋
; i.e., γtr(Pn − e) >

γtr(Pn).
Assume now that n1 and n2 are congruent to 3 modulo 4. In this
case,

⌊
n1−2

4

⌋
+

⌊
n2−2

4

⌋
=

⌊
n−2

4

⌋
− 1, and it can be easily observed

that
⌊

n1−2
4

⌋
+

⌊
n2−2

4

⌋
<

⌊
n−2

4

⌋
; i.e., γtr(Pn − e) > γtr(Pn).

(ii) As Cn − e is Pn for any edge e in Cn, by Proposition B(iv), Cn is
γtr-edge critical if and only if

n− 2
⌊

n− 2
4

⌋
= γtr(Pn) > γtr(Cn) = n− 2

⌊n

4

⌋
.

The inequality above holds if and only if
⌊

n−2
4

⌋
<

⌊
n
4

⌋
, i.e., n ≡

0 or 1 (mod4).

(iii) By Proposition A, it can be seen that the caterpillar T is a γtr-edge
critical graph if and only if the (ai, ai+1)-paths are γtr-edge critical,
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for each i, 0 ≤ i ≤ k. By the first part above, the latter holds if and
only if zi +4 ≡ 2 or 3 (mod4). Thus, T is γtr-edge critical if and only
if for each i, 0 ≤ i ≤ k, zi ≡ 2 or 3 (mod4).

Theorem 2. Let G be a graph. Then G is γtr-edge critical if and only if
every γtr(G)-set D satisfies each of the following conditions:
(1) Every component of 〈D〉 and 〈V −D〉 is a star.
(2) Every vertex in V −D has exactly one neighbor in D.

Note. Condition (2) implies that the number of edges between D and V −D
is equal to n− γtr(G).

Proof. Suppose that G is a γtr-edge critical graph and D is a γtr(G)-set.
(1) If 〈D〉 or 〈V −D〉 has a strong edge, then D is a TRDS for the graph
obtained from G by deleting the strong edge. This contradicts the fact that
G is γtr-edge critical. Thus, every component of 〈D〉 and 〈V −D〉 is a star.
(2) Every vertex in V − D is dominated by some vertex in D. If a vertex
v in V − D has more than one neighbor in D, say u1 and u2, then D is a
TRDS of the graph G− u1v, a contradiction. Thus, condition (2) holds.

We now prove the sufficiency by contradiction. Assume that every γtr(G)-
set satisfies the two conditions, but G is not γtr-edge critical. Let H be a
γtr-edge critical proper spanning subgraph of G such that γtr(H) = γtr(G).
Suppose that D is a γtr(H)-set. By the above necessity conditions, D
satisfies conditions (1) and (2) in H. Observe that D is also a γtr(G)-set,
but now D no longer satisfies the conditions in G, as G contains at least
one edge not in H. This contradiction shows that G is γtr-edge critical.

Corollary 1. Let G be an (n, m)-graph. If G is γtr-edge critical, then

3n

2
−m ≤ γtr(G) ≤ 2n−m− 2.

Proof. Let D be a γtr(G)-set. By Theorem 2, the number of edges with
one end in D and another one in V − D is equal to n − γtr(G). As 〈D〉
and 〈V −D〉 are forests, the number of edges in 〈D〉 and 〈V −D〉 does not
exceed |D| − 1 and |V −D| − 1, respectively. Thus,

m ≤ (|D| − 1) + (|V −D| − 1) + (n− γtr(G))

= (γtr(G)− 1) + (n− γtr(G)− 1) + (n− γtr(G))

= 2n− γtr(G)− 2,
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and so
γtr(G) ≤ 2n−m− 2.

On the other hand, as the degree of every vertex in 〈D〉 and 〈V −D〉 is at
least one, we have

m ≥ |D|
2

+
|V −D|

2
+ n− γtr(G)

=
γtr(G)

2
+

n− γtr(G)
2

+ n− γtr(G)

=
3n

2
− γtr(G),

i.e.,
3n

2
−m ≤ γtr(G).

4 Total restrained domination number of graphs

In this section, we find some bounds for the total restrained domination
number of graphs.

Lemma 1. Let D be a γtr(G)-set of a γtr-edge critical graph G. If k and
k′ are the numbers of components in 〈D〉 and 〈V −D〉, respectively, then

γ(G) ≤ k + k′ ≤ α′(G).

Proof. By Theorem 2, every component of 〈D〉 and 〈V − D〉 is a star.
Let A be the set of the centers of these stars. Then A is a dominating set
of G and |A| = k + k′. Hence

γ(G) ≤ |A| = k + k′.

Form a set B ⊆ E by selecting an edge from each component of 〈D〉 and
〈V −D〉. Then B is a matching of G, and so by above inequality

γ(G) ≤ k + k′ = |B| ≤ α′(G).
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Remark 2. Suppose that G is a graph and D is a subset of V such that each
component of 〈D〉 and 〈V −D〉 is a star. Denote the set of edges between
D and V − D by FD(G) and let fD(G) = |FD(G)|. Now we construct a
bipartite multigraph G∗

D with partite sets X and Y from G with respect
to D as follows. Every vertex in X corresponds to a component of 〈D〉
and every vertex in Y corresponds to a component of 〈V − D〉. Let k
and k′ be the numbers of components in 〈D〉 and 〈V − D〉, respectively;
so |X| = k and |Y | = k′. Corresponding to every edge in G joining a
component of 〈D〉 and a component of 〈V − D〉, there is an edge in G∗

D

joining the two vertices corresponding to the components (note that G∗
D

may contain multiple edges). Then G∗
D is an (n∗,m∗)-multigraph, where

n∗ = n(G∗
D) = k + k′ and m∗ = m(G∗

D) = fD(G).

Referring to the notations in Remark 2, we have:

Lemma 2.
m(G∗

D) = n(G∗
D)− (n(G)−m(G)).

Proof. We prove the equality by induction on fD(G). Assume fD(G) = 0.
Then G is a forest with k +k′ components, and so m(G) = n(G)− (k +k′).
Hence n(G)−m(G) = k + k′ = n(G∗

D)−m(G∗
D).

Assume that fD(G) > 0 and the equality holds for every graph H with
fD(H) < fD(G). Suppose that H is a graph obtained from G by deleting
an edge of FD(G). Then fD(H) = fD(G)−1 < fD(G), and by the induction
hypothesis, m(H∗

D) = n(H∗
D)−(n(H)−m(H)). Since m(H∗

D) = m(G∗
D)−1,

n(H∗
D) = n(G∗

D), m(H) = m(G)− 1 and n(H) = n(G), we have m(G∗
D) =

n(G∗
D)− (n(G)−m(G)), as desired.

Theorem 3. For every γtr-edge critical (n, m)-graph G,

β′(G) + n−m ≤ γtr(G) ≤ 2n−m− γ(G).

Proof. Let D be a γtr(G)-set and G∗
D be the corresponding (n∗,m∗)-

multigraph constructed from G as described in Remark 2. By Theorem 2,
m∗ = fD(G) = n− γtr(G), and by Lemma 2, n∗ − (n−m) = m∗. Hence

k + k′ − (n−m) = n∗ − (n−m) = m∗ = n− γtr(G),

and so
γtr(G) = n− (k + k′) + (n−m).

This equality and the inequalities in Lemma 1 imply that

n− α′(G) + (n−m) ≤ γtr(G) ≤ n− γ(G) + (n−m).
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Now, by Theorem A, we have

β′(G) + n−m ≤ γtr(G) ≤ 2n−m− γ(G).

Remark 3. The above bounds are sharp, as stars are γtr-edge critical
graphs and their γtr achieve both lower and upper bounds above.

Corollary 2. If G is an (n, m)-graph, then γtr(G) ≥ β′(G) + n−m.

Proof. Suppose that H is a γtr-edge critical spanning subgraph of G such
that γtr(H) = γtr(G). Since H is a spanning subgraph of G, each edge cover
of H is an edge cover of G, so β′(G) ≤ β′(H). Hence by Theorem 3,

β′(G) + n−m ≤ β′(H) + n(H)−m(H) ≤ γtr(H) = γtr(G).

Remark 4. In [2] it is proved that if G is an (n, m)-graph, then

γtr(G) ≥ 3n

2
−m;

and in [4] it is proved that if T is a tree of order n, then

γtr(T ) ≥
⌊

n + 2
2

⌋
.

Since for every graph G of order n, n
2 ≤

⌊
n+1

2

⌋
≤ β′(G), the lower bound

obtained in Corollary 2 is sharper than the above two.

Theorem 4. If G is an (n, m)-graph such that γtr(G) = β′(G) + n − m,
then G is γtr-edge critical.

Proof. We prove the statement by contradiction. Suppose that G is not
γtr-edge critical. Then there is an edge, say e, such that γtr(G−e) = γtr(G).
By Corollary 2 and the hypothesis,

γtr(G) = β′(G) + n−m ≤ β′(G− e) + n−m

= β′(G− e) + n(G− e)− (m(G− e) + 1)

≤ γtr(G− e)− 1 = γtr(G)− 1,

a contradiction.
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Remark 5. For every integer k > 0 there exists a graph G such that
γtr(G) − β′(G) = k + 1. For instance, in the graph G of Figure 2, the set
D = ∪2k+1

i=1
Ai is a γtr(G)-set with |D| = 5k + 2 and the set of bold edges is an

edge cover of size 4k + 1. Moreover, note that graph G is γtr-edge critical.
So this example shows that the converse of Theorem 4 is not true.

A2

Ak

A1 Ak+1

Ak+2

A2k

A2k+1

k k

Figure 2: Graph G, where γtr(G)− β′(G) = k + 1.

5 Characterization of trees with minimum γtr

It follows from Corollary 2 that if T is a tree, then γtr(T ) ≥ β′(T ) + 1. In
this final section, we characterize all trees T such that γtr(T ) = β′(T ) + 1.
We first present some useful lemmas.

Lemma 3. Suppose that T and T ′ are two trees such that for some integer
k, γtr(T ′) ≤ γtr(T )+k and β′(T ) ≤ β′(T ′)−k. If γtr(T ) = β′(T )+1, then
γtr(T ′) = β′(T ′) + 1 and γtr(T ′) = γtr(T ) + k.

Proof. By Corollary 2 and the hypothesis, we have

β′(T ′) + 1 ≤ γtr(T ′) ≤ γtr(T ) + k

= (β′(T ) + 1) + k = (β′(T ) + k) + 1 ≤ β′(T ′) + 1.

Hence γtr(T ′) = β′(T ′) + 1 and γtr(T ′) = γtr(T ) + k.

Lemma 4. Suppose that T and T ′ are two trees such that for some integer
k, γtr(T ′) ≤ γtr(T )−k and β′(T ) ≤ β′(T ′)+k. If γtr(T ) = β′(T )+1, then
γtr(T ′) = β′(T ′) + 1 and γtr(T ′) = γtr(T )− k.
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Proof. By Corollary 2 and the hypothesis, we have

β′(T ′) + 1 ≤ γtr(T ′) ≤ γtr(T )− k

= (β′(T ) + 1)− k = (β′(T )− k) + 1 ≤ β′(T ′) + 1.

Hence γtr(T ′) = β′(T ′) + 1 and γtr(T ′) = γtr(T )− k.

Lemma 5. Let T be a tree with γtr(T ) = β′(T ) + 1 and P be an end path
with k vertices in T . If D is a γtr(T )-set such that D′ = D − V (P ) is a
TRDS for T ′ = T − V (P ), then at most

⌊
k+1
2

⌋
vertices of P belong to D.

Proof. Suppose that this is not true; i.e., D contains at least
⌊

k+1
2

⌋
+ 1

vertices of P . By Corollary 2,

β′(T ′) + 1 ≤ γtr(T ′).

Since D′ = D − V (P ) is a TRDS of T ′,

γtr(T ′) ≤ |D′| ≤ |D| − (
⌊

k + 1
2

⌋
+ 1) = γtr(T )−

⌊
k + 1

2

⌋
− 1.

The union of an edge cover of P and an edge cover of T ′ is an edge cover
of T and β′(P ) =

⌊
k+1
2

⌋
. Thus

β′(T ) ≤ β′(T ′) +
⌊

k + 1
2

⌋
.

Now we have

β′(T ′) + 1 ≤ γtr(T ′) ≤ γtr(T )−
⌊

k + 1
2

⌋
− 1

= β′(T ) + 1−
⌊

k + 1
2

⌋
− 1 = β′(T )−

⌊
k + 1

2

⌋
≤ (β′(T ′) +

⌊
k+1
2

⌋
)−

⌊
k+1
2

⌋
= β′(T ′),

a contradiction. This shows that D contains at most
⌊

k+1
2

⌋
vertices

of P .

Now we construct a family Φ of trees recursively as follows:

(i) Let P2 be in Φ.
(ii) Let T ∈ Φ and D be a γtr(T )-set. Then T ′ ∈ Φ if T ′ is a tree constructed
from T by performing one of the following operations.
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O1. Add a new vertex t to T and join t to a support vertex in T . Let
D′ := D ∪ {t}.

O2. Add a new path abcd to T and join vertex a to a vertex s in D. Let
D′ := D ∪ {c, d}.

O3. Let abcd be an end path in T such that a 6∈ D and b, c, d ∈ D. Add a
new path tx to T , and join t to vertex a. Let D′ := (D−{b})∪{t, x}.

O4. Let abcd be an end path in T such that a 6∈ D. Add a new path txy
to T and join t to a. Let D′ := D ∪ {x, y}.

In the following lemma, we show that D′ is a γtr(T ′)-set and hence Φ
can be constructed recursively.

Lemma 6. Let T be a tree such that γtr(T ) = β′(T )+1 and T ′ constructed
from T by one of the operations above. Then γtr(T ′) = β′(T ′) + 1 and D′

is a γtr(T ′)-set.

Proof. We first show that if we perform each of the operations above,
then T and T ′ satisfy the hypothesis of Lemma 3 for some k. Hence we can
conclude that γtr(T ′) = β′(T ′) + 1. To see this, let M ′ be an edge cover of
T ′.

Operation O1. By Proposition A, we have every support vertex is in D, so
it is obvious that D′ is a TRDS of T ′. Thus γtr(T ′) ≤ |D′| = γtr(T ) + 1.
Suppose that M is obtained from M ′ by deleting the edge incident to t
(note that each edge incident to an end vertex belongs to M ′). The set M
is an edge cover for T ; so β′(T ) ≤ β′(T ′) − 1. In this case, k = 1 and we
are done.

Operation O2. Similarly, for this operation, we have γtr(T ′) ≤ |D′| =
γtr(T ) + 2. Suppose that M is obtained from M ′ by deleting the edges
incident to the vertices b and d. Since b and d are not adjacent, there
are at least two such edges. Moreover if edge as belongs to M , then we
substitute as with an edge of T incident to s to get an edge cover for T .
So β′(T ) ≤ β′(T ′)− 2. Hence, in this case, k = 2 and we are done.

Operation O3. For this operation, we have k = 1, and the argument is
similar to the above.

Operation O4. Similarly, γtr(T ′) ≤ γtr(T ) + 2. If at, ab ∈ M ′, then we can
substitute at with tx and get a new edge cover of T ′. Hence by symmetry
of edges ab and at, without loss of generality we may assume at 6∈ M ′.
Thus tx ∈ M ′, also we know that xy ∈ M ′, and so M ′−{tx, xy} is an edge
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cover for T of size β′(T ′)−2. Hence β′(T ) ≤ β′(T ′)−2 and we have k = 2,
and the desired result can be obtained.

For the second part of the lemma, it is seen that in each case D′ is a TRDS
of T ′. Moreover, in each case for chosen k, we have |D′| = γtr(T ) + k. On
the other hand, by Lemma 3, γtr(T ′) = γtr(T ) + k. Thus |D′| = γtr(T ′)
and so D′ is a γtr(T ′)-set.

Theorem 5. The set Φ is the set of all trees T with γtr(T ) = β′(T ) + 1.

Proof. Obviously γtr(P2) = 2 = β′(P2)+1. Thus by Lemma 6 and using
the induction on the number of the operations, for every tree T in Φ, we
have γtr(T ) = β′(T ) + 1.
We now show that every tree T of order n with γtr(T ) = β′(T ) + 1 is
contained in Φ. Our proof is by induction on n. For n = 2, we have T = P2,
and P2 ∈ Φ. Suppose that n ≥ 3 and the statement is true for all trees of
order less than n. Our strategy is to find some proper subtree of T , say T ′,
that satisfies the hypothesis of Lemma 4. Hence γtr(T ′) = β′(T ′)+1 and by
the induction hypothesis, T ′ belongs to Φ. Moreover, we find T ′ such that T
can be constructed from T ′ by performing one of the operations O1, . . . , O4,
and conclude that T ∈ Φ.
Thus, let T be a tree of order n ≥ 3 with γtr(T ) = β′(T ) + 1. Note that,
by Theorem 4, T is γtr-edge critical. Suppose that D is a γtr(T )-set, P is
the longest path in T and c is a support vertex in P .
If degT (c) > 2, then c is adjacent to two end vertices, say t and d. By
Proposition A, the vertices t, d and c are in D. Since D′ = D − {t} is
a TRDS in T ′ = T − {t}, γtr(T ′) ≤ γtr(T ) − 1. On the other hand, the
union of an edge cover of T ′ = T − {t} and edge ct is an edge cover of
T , so β′(T ) ≤ β′(T ′) + 1. On the other hand, the union of a γtr(T ′)-set
and {t} is a TRDS of T . Thus γtr(T ) ≤ γtr(T ′) + 1, and so γtr(T ) =
γtr(T ′) + 1. Therefore the tree T ′ is a desired subtree of T from which T
can be constructed by O1.
Assume now that degT (c) = 2. Then c is adjacent to an end vertex, say d
and vertex, say b. If degT (b) = 1, then T = P3 and P3 ∈ Φ. Assume that
degT (b) ≥ 2. Then we have the following two cases to consider.

Case 1. degT (b) > 2.
In this case, b has a neighbor not in P , say t. By our choice of P , it is
obvious that the length (say l) of the longest path bt . . . beginning with
bt is at most two. By Proposition A, the vertices c, d, t and the neighbors
of t other than b (if there exist) are in D. Thus, for l = 1 and l = 2,
γtr(T − bc) = γtr(T ), which contradicts that T is γtr-edge critical.

Case 2. degT (b) = 2.
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In this case, let the neighbors of b be vertices a and c. If degT (a) = 1, then
T = P4, while γtr(P4) 6= β′(P4) + 1. Thus, we consider the following two
subcases.

Case 2.1. degT (a) > 2.
Assume that t is a neighbor of a not in P . Let l be the length of longest
path at . . . beginning with at. Then, by the choice of P , it is obvious that
l ≤ 3. The following three cases can happen.

Case 2.1.1. l = 1.
By Proposition A, the vertices a, c and d are in D, so b is also in D. This
is a contradiction for, by Theorem 2, every component of 〈D〉 is a star.

Case 2.1.2. l = 2.
If x is an end vertex adjacent to t, then by Proposition A, vertices c, d, t and
x are in D. If b ∈ D, then a has two neighbors in D, which, by Theorem 2,
contradicts that T is a γtr-edge critical graph. Hence b ∈ V −D, and since
it should not be an isolated vertex in 〈V −D〉, we have a 6∈ D. In this case,
let T ′ = T − {t, x}. It can be seen that T can be constructed from T ′ by
performing O3. Moreover it can be easily checked that the union of an edge
cover of T ′ and the edge tx is an edge cover of T ; so β′(T ) ≤ β′(T ′)+1. On
the other hand, (D ∪ {b})− {x, t} is a TRDS of T ′ (note that degT (a) > 2
and T is γtr-edge critical, hence by Theorem 2 all neighbors of a except t
are in V −D); so γtr(T ′) ≤ γtr(T )− 1, and we are done in this case.

Case 2.1.3. l = 3
Let atxy be a longest path beginning with at of length 3. Note that the
path obtained by substituting the subpath atxy with subpath abcd in P is
also a longest path in T . So by symmetry, we may assume that degT (t) = 2
and degT (x) = 2. By Proposition A, the vertices c, d, x and y are in D.
If b and t both belong to D, then a has two neighbors in D which, by
Theorem 2, contradicts that T is γtr-edge critical. Hence at least one of
b and t is in V − D, say t ∈ V − D. Since there is no isolated vertex in
〈V − D〉 and x ∈ D, we have a 6∈ D. In this case, let T ′ = T − {t, x, y}.
Then T can be constructed from T ′ by performing O4. Moreover, it can be
easily seen that the union of an edge cover of T ′ and the set {tx, xy} is an
edge cover of T ; so β′(T ) ≤ β′(T ′) + 2. On the other hand, D− {x, y} is a
TRDS of T ′ and so γtr(T ′) ≤ γtr(T )− 2, and we are done in this case.

Case 2.2. degT (a) = 2.
In this case, we denote the neighbors of a by b and s. By Proposition A,
vertices c and d should be in D.
If b 6∈ D, then since 〈V −D〉 contains no isolated vertex, a 6∈ D and s ∈ D
to dominate a. In this case, let T ′ = T − {a, b, c, d}. Then T can be
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constructed from T ′ by performing O2. It can be easily shown that T and
T ′ satisfy the conditions of Lemma 4 for k = 2.
If b ∈ D, then a ∈ V − D, because, by Theorem 2, every component of
〈D〉 is a star. Since there is no isolated vertex in 〈V − D〉, a ∈ V − D
implies that s 6∈ D. If degT (s) > 2, let T ′ = T − {a, b, c, d}, then the set
D − {b, c, d} is a γtr(T ′)-set (note that, by Theorem 2, all neighbors of s
except one are in V −D), while D contains three vertices of the end path
abcd in T . This contradicts Lemma 5. Thus degT (s) ≯ 2. However, in the
case that degT (s) = 1, we have T = P5, while γtr(P5) 6= β′(P5) + 1. Hence
degT (s) = 2. Furthermore since a 6∈ D, the only other neighbor of s is in
D. So (D − {b}) ∪ {s} is also a γtr(T )-set which does not contain b. We
are done so long as b 6∈ D.
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