Small oriented cycle double cover of graphs

Behrooz Bagheri Gh. and Behnaz Omoomi
Department of Mathematical Sciences
Isfahan University of Technology
84156-83111, Isfahan, Iran

Abstract

A small oriented cycle double cover (SOCDC) of a bridgeless graph G on n vertices is a collection of at most $n-1$ directed cycles of the symmetric orientation, G_{s}, of G such that each arc of G_{s} lies in exactly one of the cycles. It is conjectured that every 2 -connected graph except two complete graphs K_{4} and K_{6} has an SOCDC. In this paper, we study graphs with SOCDC and obtain some properties of the minimal counterexample to this conjecture.

Keywords: Cycle double cover, Small cycle double cover, Oriented cycle double cover, Small oriented cycle double cover.

1 SOCDC conjecture

We denote by G a finite undirected graph with vertex set V and edge set E with no loops or multiple edges. The symmetric orientation of G, denoted by G_{s}, is an oriented graph obtained from G by replacing each edge of G by a pair of opposite directed arcs. An even graph (odd graph) is a graph such that each vertex is incident to an even (odd) number of edges. A directed even graph is a graph such that for each vertex its out-degree equals to its in-degree. A cycle (a directed cycle) is a minimal non-empty even graph (directed even graph). We denote every directed cycle C and directed path P on n vertices with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ and directed edge set $E(C)=\left\{v_{i} v_{i+1}, v_{n} v_{1}: 1 \leq i \leq n-1\right\}$ and $E(P)=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$ by $C=\left[v_{1}, \ldots, v_{n}\right]$, and $P=\left(v_{1}, \ldots, v_{n}\right)$, respectively.

A cycle double cover (CDC) \mathcal{C} of a graph G is a collection of cycles in G such that every edge of G belongs to exactly two cycles of \mathcal{C}. Note that the cycles are not necessarily distinct. It can be easily seen that a necessary condition for a graph to have a CDC is that the graph has no cut edge which is called a bridgeless graph. Seymour [13] in 1979 conjectured that every bridgeless graph has a CDC. No counterexample to the CDC conjecture is known. It is proved that the minimal counterexample to the CDC conjecture is a bridgeless cubic graph with edge chromatic number equal to 4 , which is called a snark.

A small cycle double cover (SCDC) of a graph on n vertices is a CDC with at most $n-1$ cycles. There exist simple graphs of order n for which any CDC requires at least $n-1$ cycles (e.g., $K_{n}, n \geq 3$). Furthermore, no simple bridgeless graph of order n is known to require more than $n-1$ cycles in a CDC. Note that clearly it is false if not restricted to simple graphs. Bondy [2] conjectured that every simple bridgeless graph has an SCDC. For more results on the CDC conjecture see [5, 15].

The CDC conjecture has many stronger forms. In this paper, we consider the oriented version of these conjectures.

An oriented cycle double cover (OCDC) is a CDC in which every cycle can be oriented in such a way that every edge of the graph is covered by two directed cycles in two different directions.

Conjecture 1.1 [6] (Oriented CDC conjecture) Every bridgeless graph has an OCDC.
No counterexample to this conjecture is known. It is clear that the validity of the OCDC conjecture implies the validity of the CDC conjecture. While there is a CDC of the Petersen graph that can not be oriented in such a way that forms an OCDC.

Definition 1.2 A small oriented cycle double cover (SOCDC) of a graph on n vertices is an OCDC with at most $n-1$ directed cycles.

The natural question is that which simple bridgeless graphs of order n have an OCDC with at most $n-1$ cycles (SOCDC)?

It can be proved that an OCDC for planar graphs can be obtained from their planar embedding and by the Euler's formula it can be seen that the sparse planar graphs have SOCDC. In fact, every bridgeless planar graph G with $|E(G)|<2|V(G)|-2$, has an SOCDC. Moreover, every simple triangle-free planar graph G with at least three vertices admits an SOCDC, since $|E(G)| \leq 2|V(G)|-4$.

If \mathcal{C} is a CDC of a cubic graph G of order n, then $|\mathcal{C}| \leq n / 2+2[7]$. Therefore, every OCDC of a cubic graph of order $n \geq 6$ is an SOCDC. Moreover, in cubic graph G, $\chi^{\prime}(G)=3$ implies the existence of an OCDC of G [15]. Thus, every cubic graph with edge chromatic number 3, $G \neq K_{4}$, has an SOCDC.

An oriented perfect path double cover (OPPDC) of a graph G is a collection of directed paths in the symmetric orientation G_{s} such that each arc of G_{s} lies in exactly one of the paths and each vertex of G appears just once as a beginning and just once as end of a directed path. Maxová and Nešetřil in [10] showed that two complete graphs K_{3} and K_{5} have no OPPDC and in [9], they conjectured every connected graph except K_{3} and K_{5} has an OPPDC.

The join of two simple graphs G and $H, G \vee H$, is the graph obtained from the disjoint union of G and H by adding the edges $\{u v: u \in V(G), v \in V(H)\}$.

In [10], it is shown that if G is a connected graph, then graph G has an OPPDC if and only if $G \vee K_{1}$ has an SOCDC. Also, a list of some families of graphs that admit an

OPPDC are presented in $[1,10]$. Therefore, the join of those graphs and K_{1} admit an SOCDC.

In [11] infinite classes of graphs with an SCDC are obtained using the Cartesian product $G \square H$, for some classes of G and H. Applying the same method, one can obtain the similar results in the oriented version, adding the assumption that G or H has an OPPDC, if it is necessary.

Since K_{3} and K_{5} have no OPPDC, K_{4} and K_{6} have no SOCDC. It is known that every $K_{2 n-1}, n \geq 4$, has an OPPDC [1], thus every $K_{2 n}, n \geq 4$, has an SOCDC. Moreover, every $K_{2 n+1}$ has an SOCDC, since $K_{2 n+1}$ has a Hamiltonian cycle decomposition [14]. It can be observed that if every block of a graph G has an SOCDC, then G has also an SOCDC.

This fact motivates us to present the following conjecture.
Conjecture 1.3 (SOCDC conjecture) Every simple 2-connected graph except K_{4} and K_{6} admits an SOCDC.

In the following proposition, we construct some graphs with no SOCDC. In fact, we show that the difference $|\mathcal{C}|-(n-1)$ could be large enough for every OCDC, \mathcal{C} of some bridgeless graph of order n.

Let $V\left(K_{4}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. The collection $\mathcal{C}=\left\{\left[v_{1}, v_{2}, v_{4}\right],\left[v_{2}, v_{1}, v_{3}\right],\left[v_{3}, v_{4}, v_{2}\right]\right.$, [$\left.\left.v_{4}, v_{3}, v_{1}\right]\right\}$ is an OCDC of K_{4}. Since K_{4} has six edges, if \mathcal{C} is an arbitrary OCDC of K_{4}, then $|\mathcal{C}| \leq(2 \times 6) / 3=4$. Thus, every OCDC of K_{4} is of size 4 .

Let $V\left(K_{6}\right)=\left\{v_{1}, \ldots, v_{6}\right\}$. The collection $\mathcal{C}=\left\{\left[v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right],\left[v_{2}, v_{6}, v_{3}, v_{5}, v_{4}\right]\right.$, $\left.\left[v_{1}, v_{5}, v_{2}, v_{4}, v_{3}\right],\left[v_{1}, v_{4}, v_{6}, v_{2}, v_{5}\right],\left[v_{1}, v_{6}, v_{5}, v_{3}, v_{2}\right],\left[v_{1}, v_{3}, v_{6}, v_{4}\right]\right\}$ is an OCDC of K_{6} of size 6.

Proposition 1.4 For every integer $r \geq 1$, there exists a bridgeless graph G of order n such that every OCDC of G has $(n-1)+r$ directed cycles.

Proof. Let P be a path of length r with $V(P)=\left\{v_{1}, \ldots, v_{r+1}\right\}$ and $E(P)=\left\{v_{i} v_{i+1}\right.$: $1 \leq i \leq r\}$. Assume that G is a graph obtained from P by replacing each edge $v_{i} v_{i+1}$ of P with a clique K_{4}, say K_{4}^{i}, where $V\left(K_{4}^{i}\right)=\left\{v_{i}, v_{i}^{\prime}, v_{i+1}, v_{i+1}^{\prime}\right\}, 1 \leq i \leq r$. Every OCDC of G is decomposable to r OCDC of K_{4}. Moreover, every OCDC of K_{4} has four cycles. Therefore, every OCDC of G has $4 r$ cycles. Note that $|V(G)|=3 r+1$, thus every OCDC of G has $(|V(G)|-1)+r$ cycles.

The above conjecture has a close relation to the following conjecture.
Conjecture 1.5 [3] (Hajós' conjecture) If G is a simple, even graph of order n, then G can be decomposed into $\lfloor(n-1) / 2\rfloor$ cycles.

If the Hajós' conjecture holds, then every even graph has an SOCDC obtained by taking two copies of the cycles used in its decomposition, in two opposite directions.

As the Hajós' conjecture is true for even graphs with maximum degree four [4], planar graphs [12], projective graphs and K_{6}^{-}-minor free graphs [3], these graphs have an SOCDC.

In the next section, we study the properties of the minimal counterexample to the SOCDC cojecture.

2 The minimal counterexample to the SOCDC conjecture

If the SOCDC conjecture is false, then it must has a minimal counterexample. In this section, we study the properties of the minimal counterexample to the SOCDC conjecture.

Observation 2.1 If G is a graph with an SOCDC and G^{\prime} is the graph obtained from G by subdividing one edge of G, then G^{\prime} also admits an SOCDC.

Corollary 2.2 Let G be the minimal counterexample to the SOCDC conjecture, then the minimum degree of G is at least 3 .

Theorem 2.3 The minimal counterexample to the SOCDC conjecture is 3-connected.
Proof. Let G, the minimal counterexample to the SOCDC conjecture be a 2-connected graph of order n with vertex cut $\left\{v_{1}, v_{2}\right\}$ and $G=G_{1} \cup G_{2}$, where $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\left\{v_{1}, v_{2}\right\}$ and $\left|V\left(G_{i}\right)\right|=n_{i}, i=1,2$. Assume that $G_{i} \cup\left\{v_{1} v_{2}\right\}$ has an SOCDC, $\mathcal{C}_{\mathrm{i}}, \mathrm{i}=1,2$. Let $C_{i}^{j}, j=1,2$, be the two directed cycles in $\mathcal{C}_{i}, i=1,2$, which include the directed edge $v_{j} v_{j+1}$, where subscripts are reduced modulo 2 . In each of the following cases, we show that G admits an SOCDC, which is a contradiction.
(I) If $v_{1} v_{2} \in E(G)$, then we define

$$
\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2} \cup\left\{C_{1}^{1} \Delta C_{2}^{2}\right\} \backslash\left\{C_{1}^{1}, C_{2}^{2}\right\}
$$

The collection \mathcal{C} is an OCDC of G, where

$$
\begin{aligned}
|\mathcal{C}| & =\left|\mathcal{C}_{1}\right|+\left|\mathcal{C}_{2}\right|-1 \leq\left(n_{1}-1\right)+\left(n_{2}-1\right)-1 \\
& \leq\left(n_{1}+n_{2}\right)-3 \\
& \leq(n+2)-3=n-1 .
\end{aligned}
$$

If $G_{1} \cup\left\{v_{1} v_{2}\right\}=K_{4}$ with $V\left(K_{4}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, and $G_{2} \cup\left\{v_{1} v_{2}\right\}$ has an SOCDC, say \mathcal{C}_{2}, then let $C_{1}=\left[v_{1}, v_{2}, v_{4}\right], C_{2}=\left[v_{1}, v_{4}, v_{3}, v_{2}\right], C_{3}=C_{2}^{1} \cup\left(v_{1}, v_{3}, v_{4}, v_{2}\right) \backslash\left\{v_{1} v_{2}\right\}$, and $C_{4}=C_{2}^{2} \cup\left(v_{2}, v_{3}, v_{1}\right) \backslash\left\{v_{2} v_{1}\right\}$. Therefore,

$$
\mathcal{C}=\mathcal{C}_{2} \cup\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\} \backslash\left\{C_{1}^{1}, C_{2}^{2}\right\}
$$

is an SOCDC of G.
If $G_{1} \cup\left\{v_{1} v_{2}\right\}=K_{6}$ with $V\left(K_{6}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$, and $G_{2} \cup\left\{v_{1} v_{2}\right\}$ has an SOCDC, say \mathcal{C}_{2}, then let $C_{1}=\left[v_{1}, v_{2}, v_{4}, v_{6}, v_{3}, v_{5}\right], C_{2}=\left[v_{1}, v_{3}, v_{6}, v_{2}\right], C_{3}=$ $\left[v_{1}, v_{4}, v_{2}, v_{5}, v_{6}\right], C_{4}=\left[v_{1}, v_{5}, v_{2}, v_{3}, v_{4}\right], C_{5}=C_{2}^{1} \cup\left(v_{1}, v_{6}, v_{5}, v_{4}, v_{3}, v_{2}\right) \backslash\left\{v_{1} v_{2}\right\}$, and $C_{6}=C_{2}^{2} \cup\left(v_{2}, v_{6}, v_{4}, v_{5}, v_{3}, v_{1}\right) \backslash\left\{v_{2} v_{1}\right\}$. Therefore,

$$
\mathcal{C}=\mathcal{C}_{2} \cup\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\} \backslash\left\{C_{1}^{1}, C_{2}^{2}\right\}
$$

is an SOCDC of G.
If $G_{1} \cup\left\{v_{1} v_{2}\right\}=G_{2} \cup\left\{v_{1} v_{2}\right\}=K_{4}$ or $G_{1} \cup\left\{v_{1} v_{2}\right\}=K_{4}$ and $G_{2} \cup\left\{v_{1} v_{2}\right\}=K_{6}$ or $G_{1} \cup\left\{v_{1} v_{2}\right\}=G_{2} \cup\left\{v_{1} v_{2}\right\}=K_{6}$, then by Theorem 1 in [1], $G \backslash v_{1}$ admits an OPPDC, thus G has an SOCDC.
(II) If $v_{1} v_{2} \notin E(G)$, then we define

$$
\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2} \cup\left\{C_{1}^{1} \Delta C_{2}^{2}, C_{1}^{2} \Delta C_{2}^{1}\right\} \backslash\left\{C_{1}^{1}, C_{1}^{2}, C_{2}^{1}, C_{2}^{2}\right\}
$$

The collection \mathcal{C} is an OCDC of G, where $|\mathcal{C}| \leq n-2$.
Furthermore, if $G_{1} \cup\left\{v_{1} v_{2}\right\}=K_{4}$ or $K_{6}, v_{1} v_{2} \notin E(G)$, and $G_{2} \cup\left\{v_{1} v_{2}\right\}$ has an SOCDC, by the similar argument in above using the given OCDC for K_{4} and K_{6} of size 4 and 6 , an SOCDC for G is obtained.
If $G_{1} \cup\left\{v_{1} v_{2}\right\}=G_{2} \cup\left\{v_{1} v_{2}\right\}=K_{4}$ with $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $V\left(G_{2}\right)=$ $\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$, then
$\mathcal{C}=\left\{\left[v_{1}, v_{4}, v_{3}, v_{2}, v_{5}, v_{6}\right],\left[v_{1}, v_{5}, v_{2}, v_{3}\right],\left[v_{1}, v_{3}, v_{4}, v_{2}, v_{6}, v_{5}\right],\left[v_{1}, v_{6}, v_{2}, v_{4}\right]\right\}$
is an SOCDC of G.
If $G_{1} \cup\left\{v_{1} v_{2}\right\}=K_{4}$ with $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $G_{2} \cup\left\{v_{1} v_{2}\right\}=K_{6} V\left(G_{2}\right)=$ $\left\{v_{1}, v_{2}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$, then

$$
\begin{aligned}
& \mathcal{C}=\left\{\left[v_{1}, v_{6}, v_{5}, v_{7}, v_{8}, v_{2}, v_{3}\right],\left[v_{1}, v_{3}, v_{4}, v_{2}, v_{8}\right],\left[v_{1}, v_{7}, v_{6}, v_{8}, v_{5}, v_{2}, v_{4}\right],\left[v_{1}, v_{5}, v_{8},\right.\right. \\
&\left.\left.v_{7}, v_{2}, v_{6}\right],\left[v_{1}, v_{8}, v_{6}, v_{2}, v_{7}, v_{5}\right],\left[v_{1}, v_{4}, v_{3}, v_{2}, v_{5}, v_{6}, v_{7}\right]\right\}
\end{aligned}
$$

is an SOCDC of G.
If $G_{1} \cup\left\{v_{1} v_{2}\right\}=G_{2} \cup\left\{v_{1} v_{2}\right\}=K_{6}$ with $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and $V\left(G_{2}\right)=$ $\left\{v_{1}, v_{2}, v_{7}, v_{8}, v_{9}, v_{10}\right\}$, then

$$
\begin{aligned}
\mathcal{C}=\{ & {\left[v_{1}, v_{6}, v_{4}, v_{5}, v_{3}, v_{2}, v_{7}, v_{9}, v_{8}, v_{10}\right],\left[v_{1}, v_{3}, v_{5}, v_{4}, v_{6}, v_{2}, v_{10}, v_{8}, v_{9}, v_{7}\right],\left[v_{1}, v_{4},\right.} \\
& \left.v_{3}, v_{6}, v_{5}, v_{2}, v_{9}, v_{10}, v_{7}, v_{8}\right],\left[v_{1}, v_{5}, v_{6}, v_{3}, v_{4}, v_{2}, v_{8}, v_{7}, v_{10}, v_{9}\right],\left[v_{1}, v_{8}, v_{2}, v_{4}\right], \\
& {\left.\left[v_{1}, v_{10}, v_{2}, v_{6}\right],\left[v_{1}, v_{9}, v_{2}, v_{5}\right],\left[v_{1}, v_{7}, v_{2}, v_{3}\right]\right\} }
\end{aligned}
$$

is an SOCDC of G.

Corollary 2.4 The minimal counterexample to the SOCDC conjecture is 3-edge-connected.
An edge cut F, is called trivial if one of the component in $G \backslash F$ be an isolated vertex.

Theorem 2.5 The minimal counterexample to the SOCDC conjecture has no non-trivial edge cut of size 3 .

Proof. Let G be the minimal counterexample to the SOCDC conjecture. We know that G is 2 -connected and 3 -edge-connected. Assume that G has a non-trivial edge cut of size 3. We consider the following cases.
(I) $G=G_{1} \cup G_{2} \cup\left\{u_{1} v_{1}, u_{2} v_{2}, u_{3} v_{3}\right\}$, where $G_{1} \cap G_{2}=\emptyset$, the vertices u_{i} are distinct vertices of G_{1}, and the vertices v_{i} are distinct vertices of $G_{2}, i=1,2,3$.

Denote by H_{i} the graph obtained by contracting the subgraph G_{i+1} to a single vertex $w_{i}, i=1,2$, where subscripts are reduced modulo 2 . Since $\operatorname{deg}\left(w_{i}\right)=3, H_{i} \neq K_{6}, i=1,2$. By the minimality of G, H_{i} has an SOCDC or $H_{i}=K_{4}$. Therefore, H_{i} has an OCDC, \mathcal{C}_{i}, $i=1,2$. Let $C_{i}^{j}, j=1,2,3$, be the three directed cycles in \mathcal{C}_{i} which include $w_{i}, i=1,2$, where without loss of generality, we assume that C_{1}^{j} includes directed path $\left(u_{j-1}, w_{1}, u_{j+1}\right)$, and C_{2}^{j} includes directed path $\left(v_{j+1}, w_{2}, v_{j-1}\right)$, where subscripts are reduced modulo $3, j=$ $1,2,3$. Let $P_{i}^{j}=C_{i}^{j} \backslash w_{i}, i=1,2, j=1,2,3$. Define $C^{j}=P_{1}^{j} \cup P_{2}^{j} \cup\left\{u_{j-1} v_{j-1}, v_{j+1} u_{j+1}\right\}$, $\mathcal{C}^{\prime}=\left\{C^{j}: j=1,2,3\right\}$, and $\mathcal{C}^{\prime \prime}=\left\{C_{i}^{j}: i=1,2, j=1,2,3\right\}$. Thus, $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \mathcal{C}^{\prime} \backslash \mathcal{C}^{\prime \prime}$ is an OCDC of G, where $|\mathcal{C}|=\left|\mathcal{C}_{1}\right|+\left|\mathcal{C}_{2}\right|-3$. Note that every OCDC of K_{4} has 4 cycles, therefore, in both cases $|\mathcal{C}| \leq|V(G)|-1$, which is a contradiction.
(II) $G=G_{1} \cup G_{2} \cup\left\{u_{1} v_{1}, u_{1} v_{2}, u_{2} v_{3}\right\}$, where $G_{1} \cap G_{2}=\emptyset$, the vertices u_{1} and u_{2} are distinct vertices of G_{1}, and the vertices v_{i} are distinct vertices of $G_{2}, i=1,2,3$.

Denote by H_{i} the graph obtained by contracting the subgraph G_{i+1} to a single vertex $w_{i}, i=1,2$, and removing the multiple edge in H_{1}, where subscripts are reduced modulo 2. Since $\operatorname{deg}\left(w_{i}\right)=2$ or $3, H_{1} \neq K_{4}$ and $H_{i} \neq K_{6}, i=1,2$. By the minimality of G, H_{i} has an SOCDC or $H_{2}=K_{4}$. Therefore, H_{i} has an OCDC, $\mathcal{C}_{i}, i=1,2$. Let C_{1}^{1} and C_{1}^{2} be two directed cycles in \mathcal{C}_{1} which include w_{1}, where without loss of generality, we assume that C_{1}^{j} includes directed path $\left(u_{j}, w_{1}, u_{j+1}\right)$, where subscripts are reduced modulo $2, j=1,2$, and $C_{2}^{k}, k=1,2,3$, be the three directed cycles in \mathcal{C}_{2} which include w_{2}, where without loss of generality, we assume that C_{2}^{k} includes directed path (v_{k}, w_{2}, v_{k-1}), where subscripts are reduced modulo $3, k=1,2,3$. Let $P_{1}^{j}=C_{1}^{j} \backslash w_{1}, j=1,2$, and $P_{2}^{k}=C_{2}^{k} \backslash w_{2}, k=1,2,3$. Define $C^{1}=P_{1}^{1} \cup P_{2}^{3} \cup\left\{u_{1} v_{2}, v_{3} u_{2}\right\}, C^{2}=P_{1}^{2} \cup P_{2}^{1} \cup\left\{u_{2} v_{3}, v_{1} u_{1}\right\}$, and $C^{3}=P_{2}^{2} \cup\left\{u_{1} v_{1}, v_{2} u_{1}\right\}$. Let $\mathcal{C}^{\prime}=\left\{C^{1}, C^{2}, C^{3}\right\}$, and $\mathcal{C}^{\prime \prime}=\left\{C_{1}^{1}, C_{1}^{2}, C_{2}^{1}, C_{2}^{2}, C_{2}^{3}\right\}$. Thus, $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \mathcal{C}^{\prime} \backslash \mathcal{C}^{\prime \prime}$ is an OCDC of G, where $|\mathcal{C}|=\left|\mathcal{C}_{1}\right|+\left|\mathcal{C}_{2}\right|-2$. Note that every OCDC of K_{4} has 4 cycles, therefore, in both cases $|\mathcal{C}| \leq|V(G)|-1$, which is a contradiction.
(III) $G=G_{1} \cup G_{2} \cup\left\{u_{1} v_{1}, u_{1} v_{2}, u_{2} v_{2}\right\}$, where $G_{1} \cap G_{2}=\emptyset$, the vertices u_{1} and u_{2} are distinct vertices of G_{1}, and the vertices v_{1} and v_{2} are distinct vertices of G_{2}.

Denote by H_{i} the graph obtained by contracting the subgraph G_{i+1} to a single vertex $w_{i}, i=1,2$, and removing the multiple edges, where subscripts are reduced modulo 2 . Since $\operatorname{deg}\left(w_{i}\right)=2, H_{i} \neq K_{4}$ or $K_{6}, i=1,2$. By the minimality of G, H_{i} has an SOCDC, $\mathcal{C}_{i}, i=1,2$.

Let $C_{i}^{j}, j=1,2$, be the two directed cycles in \mathcal{C}_{i} which include $w_{i}, i=1,2$, where without loss of generality, we assume that C_{1}^{j} includes directed path $\left(u_{j}, w_{1}, u_{j+1}\right)$, and C_{2}^{j} includes directed path $\left(v_{j}, w_{2}, v_{j+1}\right)$, where subscripts are reduced modulo $2, j=1,2$. Let $P_{i}^{j}=C_{i}^{j} \backslash w_{i}, i=1,2, j=1,2$. Define $C^{1}=P_{1}^{1} \cup P_{2}^{2} \cup\left\{u_{1} v_{1}, v_{2} u_{2}\right\}, C^{2}=P_{1}^{2} \cup\left\{u_{2} v_{2}, v_{2} u_{1}\right\}$, and $C^{3}=P_{2}^{1} \cup\left\{u_{1} v_{2}, v_{1} u_{1}\right\}$. Let $\mathcal{C}^{\prime}=\left\{C^{1}, C^{2}, C^{3}\right\}$, and $\mathcal{C}^{\prime \prime}=\left\{C_{1}^{1}, C_{1}^{2}, C_{2}^{1}, C_{2}^{2}\right\}$. Thus, $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \mathcal{C}^{\prime} \backslash \mathcal{C}^{\prime \prime}$ is an OCDC of G, where $|\mathcal{C}|=\left|\mathcal{C}_{1}\right|+\left|\mathcal{C}_{2}\right|-1$. Therefore, $|\mathcal{C}| \leq|V(G)|-1$, which is a contradiction.

Acknowledgments

The authors thank Professor C.Q. Zhang for reading the manuscript and for his helpful suggestions.

References

[1] B. Bagheri Gh. and B. Omoomi, On the oriented perfect path double cover conjecture, arXiv:1207.1961v1.
[2] J.A. Bondy, Small cycle double covers of graphs, In: Cycles and Rays, (G. Hahn, G. Sabidussi, and R. Woodrow (Eds.), NATO ASI ser. C, Kluwer Academic Publishers, Dordrecht, (1990) 21-40.
[3] G. Fan and B. Xu, Hajós' Conjecture and projective graphs, Discrete Math. 252 (2002) 91-101.
[4] O. Favaron and M. Kouider, Path partitions and cycle partitions of Eulerian graphs of maximum degree 4, Studia Sci. Math. Hungar. 23 (1988) 237-244.
[5] F. Jaeger, A survey of the cycle double cover conjecture, Ann. Discrete Math. 27 (1985) 1-12.
[6] F. Jaeger, Nowhere-zero flow problems, In: L.W. Beineke, R.J. Wilson (Eds.), Selected Topics in Graph Theory 3, Academic Press, London, (1988) 71-95.
[7] H.J. Lai, X. Yu and C.Q. Zhang, Small circuit double covers of cubic multigraphs, J. Combin. Theory Ser. B 60(2) (1994) 177-194.
[8] H. Li, Perfect path double covers in every simple graph, J. Graph Theory 14 (1990) 645-650.
[9] J. Maxová and J. Nešetřil, On covers of graphs, 6th International Conference on Graph Theory, Discrete Math. 276(1-3) (2004) 287-294.
[10] J. Maxová and J. Nešetřil, On oriented path double covers, Discrete Math. 233 (2001) 371-380.
[11] R.J. Nowakowski and K. Seyffarth, Small cycle double covers of products I: lexicographic product with paths and cycles, J. Graph Theory 57 (2008) 99-123.
[12] K. Seyffarth, Hajós' conjecture and small cycle double covers, Discrete Math. 101 (1992) 291-306.
[13] P.D. Seymour, Sums of circuits, In: J.A. Bondy, U.S.R. Murty (Eds.), Graph Theory and Related Topics, Academic Press, New York, (1979) 341-355.
[14] D.B. West, Introduction to graph theory. Prentice Hall Inc., (1996).
[15] C.Q. Zhang, Integer Flows and Cycle Covers of Graphs. Monographs and Textbooks in Pure and Applied Mathematics, Vol. 205, Marcel Dekker, New York (1997).

