Star Coloring and Tree-width of the Kneser
 Graph $K G(n, 2)$

Behnaz Omoomi and Elham Roshanbin
Department of Mathematical Sciences
Isfahan University of Technology
84156-83111, Isfahan, Iran

Abstract

A proper coloring of the vertices of a graph G is called a star coloring if any path of length three in G is not 2 -colored. The star chromatic number of G is the minimum number of colors required to obtain a star coloring of G. In this paper, we give the exact value of the star chromatic number of the Kneser graph $K G(n, 2)$. Moreover, we obtain a lower bound and an upper bound for the tree-width of these graphs.

Keywords: Star coloring; Tree-width; Kneser graph.

1 Introduction

Throughout this paper, all graphs are finite and simple. We use $u \sim v$ and $u \nsim v$ to respectively denote the adjacency and non-adjacency relations between vertices u and v. We denote a path and a cycle on n vertices by P_{n} and C_{n}, respectively. We refer the reader to [12] for graph-theoretic notation and terminology not described in this paper.

A proper vertex coloring of a graph G is an assignment of colors to the vertices of G such that no two adjacent vertices receive the same color. Given a proper coloring c of graph G and any subset $A \subseteq V(G)$, we let $c(A)$ denote the set of all colors used to color vertices in A. A proper vertex coloring of a graph G is called a star coloring if any path of length three in G is not 2-colored; equivalently, the union of every two color classes in G induces a forest whose components are stars. The star chromatic number of
G, denoted by $\chi_{s}(G)$, is the minimum number of colors required to obtain a star coloring of G. Star colorings of graphs were introduced by Grünbaum in 1973 [4] (see also [1, 3, 9]).

The Kneser graph $K G(n, k), n \geq 2 k$, is a graph whose vertices are the k-element subsets of an n-element set, where two vertices are adjacent if and only if the two corresponding sets are disjoint. In this paper, vertices of $K G(n, 2)$ are the 2 -element subsets $\{i, j\}, 1 \leq i<j \leq n$, which we denote $i j$.

Kneser graphs have many interesting properties and have been the subject of much research. It was conjectured by Kneser in 1955 [7] and proved by Lovász in 1978 [8] that $\chi(K G(n, k))=n-2 k+2$. Since then several types of colorings of Kneser graphs have been considered. For example, the circular chromatic number, the b-chromatic number and the multichromatic number of Kneser graphs were investigated in [5], [6] and [11], respectively.

The concept of tree-width of a graph introduced by Robertson and Seymour in 1984 [10] to measure how tree-like a graph behaves. Fertin et al. [3] gave the bound $\binom{t+2}{2}$ on the star chromatic number of graphs with tree-width t.

In this paper, we obtain the exact value of the star chromatic number of the Kneser graph $K G(n, 2)$, for $n \geq 5$. We also give a lower bound and an upper bound on the tree-width of $K G(n, 2)$.

2 Main results

In this section, we show that $\chi_{s}(K G(n, 2))=\binom{n-1}{2}$, for $n \geq 6$ and $\chi_{s}(K G(5,2))=5$. First, we prove the following proposition.

Proposition 1. Let $G=(X, Y)$ be a bipartite graph, such that $|X|=|Y|=$ n, and each vertex in G has degree $n-1$. Then, $\chi_{s}(G)=n$. Moreover, there are only two types of optimum star colorings of G.

Proof. Let c be a star coloring of G. If the vertices of X or Y all receive different colors, then the number of colors used in c is at least n.

Otherwise, there are vertices $u_{1}, u_{2} \in X$ and $v_{1}, v_{2} \in Y$, where $c\left(u_{1}\right)=$ $c\left(u_{2}\right)$ and $c\left(v_{1}\right)=c\left(v_{2}\right)$. Since there is no 2-colored P_{4} and G is $(n-1)$ regular, neither u_{1} nor u_{2} is adjacent to both vertices v_{1} and v_{2}. Say
$u_{1} \nsim v_{1}$ and $u_{2} \nsim v_{2}$. Therefore, there are no other pairs of vertices with the same color in the same part (except u_{1}, u_{2} and v_{1}, v_{2}), because all vertices in Y (similarly in X), except $v_{1}\left(u_{1}\right)$, are adjacent to $u_{1}\left(v_{1}\right)$, and (G, c) does not have a 2 -colored P_{4}. Hence, in such a star coloring of G, at least $2+(n-2)=n$ colors are needed. Thus, $\chi_{s}(G) \geq n$. In Figure 1, two possible types of optimum star colorings of G with n colors are shown. Hence, $\chi_{s}(G)=n$.

Figure 1: Two optimum star colorings of G.
Note that, for every $n \geq 6$, the vertex set of the Kneser graph $K G(n, 2)$ can be decomposed into three subsets $\{12\}, A$ and B; where A and B are the sets of all vertices adjacent and non-adjacent to vertex 12 , respectively. It is easy to see that, $|A|=\binom{n-2}{2}$, and the induced subgraph on B is a bipartite graph with parts $X:=\{1 i: 3 \leq i \leq n\}$ and $Y:=\{2 i: 3 \leq i \leq n\}$.

By Proposition 1, $\chi_{s}(B)=n-2$. Thus, we can give a color assignment to the vertices of B, the same as the first star coloring given in the proposition above (Figure 1). Then, we assign $\binom{n-2}{2}$ new colors to the vertices of A, and, finally, give one of the colors of the vertices of B, to the vertex 12 . It can be easily checked that, this coloring is a star coloring of $\operatorname{KG}(n, 2)$ with $\binom{n-2}{2}+n-2=\binom{n-1}{2}$ colors. Thus, $\chi_{s}(K G(n, 2)) \leq\binom{ n-1}{2}$. Further, since $K G(n, 2)$ has $\binom{n}{2}$ vertices, in a given optimum star coloring c of $K G(n, 2)$, there are at least two vertices with a same color. Without loss of generality (after a renaming if necessary), suppose that $c(13)=c(23)=a$.

To prove the main result of this section, we need the following lemmas, which will make use of the above notation. Specifically, A, B, X, Y, and c continue to be used throughout this section.

Lemma 1. Let $A^{\prime}:=\{k l: 4 \leq k<l \leq n\}$ together with $A^{\prime \prime}:=\{3 l:$ $4 \leq l \leq n\}$ be a partition of A. In the optimum star coloring c of graph $K G(n, 2)$ we have
(I) $c(B) \cap c\left(A^{\prime}\right)=\emptyset$.
(II) $\left|c\left(A^{\prime}\right)\right|=\binom{n-3}{2}$.

Proof. (I) The color of any vertex in $X \cup Y$ can not be the same as any vertex in A^{\prime}, otherwise there would be a 2-colored P_{4} containing 13 and 23, which is a contradiction.
(II) Since all vertices in A^{\prime} are adjacent to 13 and 23 , there are no two vertices in A^{\prime} with the same color, otherwise there would be a 2-colored P_{4} containing 13 and 23 , which contradicts that c is a star coloring.

Let t be the number of pairs $(1 i, 2 i), i \geq 4$, of vertices in B, such that $c(1 i)=c(2 i)$. Then we have the following lemma.

Lemma 2. If $t \geq 1$, or equivalently there is some $i, 4 \leq i \leq n$, such that $c(1 i)=c(2 i)$, then we have the following facts.
(I) All vertices in $A^{\prime \prime} \backslash\{3 i\}$ must have different colors. In other words, only for one $l \geq 4, l \neq i$, it is possible that $c(3 l)=c(3 i)$, i.e., a repeated color in $A^{\prime \prime}$.
(II) If $c\left(A^{\prime}\right) \cap c\left(A^{\prime \prime}\right) \neq \emptyset$, then $c(3 l)=c(i l)$ or $c(3 i)=c(l i)$, for some $l \geq 4$.
(III) If $c\left(A^{\prime \prime}\right) \cap c(B) \neq \emptyset$, then either $c(3 i)=c(1 i)=c(2 i)$ or $c(3 i)=$ $c(13)=c(23)=a$.
(IV) If $c\left(A^{\prime}\right) \cap c\left(A^{\prime \prime}\right) \neq \emptyset$ and there exists $l \geq 4$, such that $c(3 l)=c(i l)$, then $c(12) \notin\{a, c(1 i)\}$.

Proof. (I) Otherwise, there are $k, k^{\prime} \neq i$ (noting that $n \geq 6$), such that $c(3 k)=c\left(3 k^{\prime}\right)$ and the path $3 k 1 i 3 k^{\prime} 2 i$ is 2 -colored.
(II) Otherwise, if there exists k and l, with $l, k \neq i$ and $c(3 l)=c(k l)$, then the path $3 l 1 i k l 2 i$ is 2-colored.
(III) Otherwise, suppose that there is $l \neq i$, and $c(3 l)=c(1 l)$ (similarly $c(3 l)=c(2 l)$). Then $1 i 3 l 2 i 1 l$ is 2 -colored ($2 i 3 l 1 i 2 l$ is 2 -colored). If there exists $l \neq i$, and $c(3 l)=c(13)=c(23)=a$, then the path $132 i 3 l 1 i$ is 2 -colored.
(IV) If there exists $l \geq 4$, such that $c(3 l)=c(i l)$ and $c(12) \in\{a, c(1 i)\}$, then the path $13 i l 123 l$ or the path $1 i 3 l 12 i l$ is 2-colored.

Now we are ready to prove our main theorem, the proof of which uses the above notation.

Theorem 1. For $n \geq 6, \chi_{s}(K G(n, 2))=\binom{n-1}{2}$, and $\chi_{s}(K G(5,2))=5$.
Proof. Let $n \geq 6$. We have already shown that $\chi_{s}(K G(n, 2)) \leq\binom{ n-1}{2}$. To prove the equality we need to show that every (optimum) star coloring of $K G(n, 2)$ requires at least $\binom{n-1}{2}$ colors. We consider the following two possibilities.
Case 1. In the optimum star coloring c, there are no two vertices with a same color in the same part of B.

If $t=0$, then by Lemma 1 (I) and (II), we conclude that

$$
\begin{aligned}
|c(K G(n, 2))| & \geq|c(B)|+\left|c\left(A^{\prime}\right)\right| \\
& =(2(n-3)+1)+\binom{n-3}{2} \\
& =\binom{n-1}{2}
\end{aligned}
$$

If $t=1$, and $c(1 i)=c(2 i)=b, 4 \leq i \leq n$, then there are two possibilities.

If $c\left(A^{\prime \prime}\right) \cap c(B) \neq \emptyset$. Then, by Lemma 2 (III), we have either $c(3 i)=$ $c(1 i)=c(2 i)=b$ or $c(3 i)=c(13)=c(23)=a$. Now, if for some $k \geq 4$, $k \neq i, c(12)=c(1 k)$ (similarly, $c(12)=c(2 k)$), then, in the former case, the path $2 i 1 k 3 i 12$ (similarly, $1 i 2 k 3 i 12$) is 2 -colored, and, in the latter case, the path $231 k 3 i 12$ (similarly, $132 k 3 i 12$) is 2-colored. Therefore, $c(12) \cap c(B) \subset\{a, b\}$. On the other hand, by Lemma 2 (II) and (IV), if $c(12) \in\{a, b\}$ then $c\left(A^{\prime}\right) \cap\left(c\left(A^{\prime \prime}\right) \backslash c(3 i)\right)=\emptyset$. Thus, we have

$$
\begin{aligned}
|c(K G(n, 2))| & \geq\left|c\left(A^{\prime}\right)\right|+|c(B)|+\left|c\left(A^{\prime \prime} \backslash\{3 i\}\right) \backslash c(B)\right| \\
& \geq\binom{ n-3}{2}+(2(n-4)+2)+(n-4) \\
& =\binom{n-1}{2}+n-5>\binom{n-1}{2} \quad(n \geq 6) .
\end{aligned}
$$

This contradicts the assumption that c is an optimum star coloring. Hence, $c(12) \cap c(B)=\emptyset$ and consequently $c(12) \cap c(B \cup A)=\emptyset$, so we have

$$
\begin{aligned}
|c(K G(n, 2))| & \geq\left|c\left(A^{\prime}\right)\right|+|c(B)|+|c(12)| \\
& =\binom{n-3}{2}+(2(n-4)+2)+1 \\
& =\binom{n-1}{2}
\end{aligned}
$$

If $c\left(A^{\prime \prime}\right) \cap c(B)=\emptyset$, then either there is a vertex in $A^{\prime \prime}$ which has a different color to the vertices in A^{\prime}, and we have

$$
\begin{aligned}
|c(K G(n, 2))| & \geq\left|c\left(A^{\prime}\right)\right|+|c(B)|+\left|c\left(A^{\prime \prime}\right) \backslash c\left(A^{\prime}\right)\right| \\
& \geq\binom{ n-3}{2}+(2(n-4)+2)+1 \\
& =\binom{n-1}{2}
\end{aligned}
$$

or, for each $l \geq 4, c(3 l)=c(i l)$ (by Lemma 2 (II)). We will now show that $c(12) \cap c(B)=\emptyset$. By Lemma 2 (IV), $c(12) \notin\{a, b\}$. If for some $k \geq 4$, $k \neq i, c(12)=c(1 k)$ (similarly $c(12)=c(2 k)$), then since $n \geq 6$, there exists $k^{\prime} \geq 4, k^{\prime} \notin\{i, k\}$, such that the path $3 k^{\prime} 12 i k^{\prime} 1 k$ is 2-colored. Thus, we have

$$
\begin{aligned}
|c(K G(n, 2))| & \geq\left|c\left(A^{\prime}\right)\right|+|c(B)|+|c(12)| \\
& \geq\binom{ n-3}{2}+(2(n-4)+2)+1 \\
& =\binom{n-1}{2}
\end{aligned}
$$

If $t=2$, and there exist $i, j \geq 4, i \neq j$, such that $c(1 i)=c(2 i)=b$ and $c(1 j)=c(2 j)=c$, then by Lemma 2 (I) and (II), only the vertices $3 i, 3 j$, and $i j$ may receive the same color in A. Also, by Lemma 2 (III), we can easily deduce that $c\left(A^{\prime \prime}\right) \cap c(B)=\emptyset$. Now, there are the following possibilities.

If $c(i j)=c(3 i)=c(3 j)$, then $c(12) \cap c(B)=\emptyset$. Since, by Lemma 2 (IV), $c(12) \notin\{a, b, c\}$. Also, if for some $k \geq 4, k \neq i, j, c(12)=c(1 k)$ (similarly, $c(12)=c(2 k)$), then the path $1 k 3 i 12 i j$ is 2-colored (similarly, $2 k 3 i 12 i j$ is 2-colored). Therefore, the color of 12 is distinct from $c(A)$ and $c(B)$, and we have

$$
\begin{aligned}
|c(K G(n, 2))| & \geq|c(A)|+|c(B)|+|c(12)| \\
& \geq\left(\binom{n-2}{2}-2\right)+(2(n-5)+3)+1 \\
& =\binom{n-1}{2}+n-6 \geq\binom{ n-1}{2} \quad(n \geq 6)
\end{aligned}
$$

If $c(i j), c(3 i)$, and $c(3 j)$ are not pairwise equal, then

$$
\begin{aligned}
|c(K G(n, 2))| & \geq|c(A)|+|c(B)| \\
& \geq\left(\binom{n-2}{2}-1\right)+(2(n-5)+3) \\
& =\binom{n-1}{2}+n-6 \geq\binom{ n-1}{2} \quad(n \geq 6)
\end{aligned}
$$

If $t \geq 3$, then by Lemma 2 (I), (II), and (III), we deduce that all vertices in A must have different colors and $c(A) \cap c(B)=\emptyset$. Thus

$$
\begin{aligned}
|c(K G(n, 2))| & \geq|c(A)|+|c(B)| \\
& \geq\binom{ n-2}{2}+n-2 \\
& =\binom{n-1}{2}
\end{aligned}
$$

Case 2. In the optimum star coloring c of $K G(n, 2)$, there are two vertices in the same part of B with the same color. Without loss of generality, assume that $c(14)=c(15)=b$.

Now, we consider a new decomposition $\left(A_{1}^{\prime}, A_{1}^{\prime \prime}, B^{\prime},\{45\}\right)$ for $K G(n, 2)$, which is isomorphic to $\left(A^{\prime}, A^{\prime \prime}, B,\{12\}\right)$, where $A_{1}^{\prime}:=\{k l: 6 \leq k<l \leq$ $n\} \cup(Y \backslash\{24,25\}) \cup\{3 k: k \geq 6\}$ (corresponding to $\left.A^{\prime}\right), A_{1}^{\prime \prime}:=(X \backslash\{14,15\}) \cup$ $\{12\}$ (corresponding to $A^{\prime \prime}$), and $B^{\prime}:=\{4 k: 1 \leq k \leq n, k \neq 4\} \cup\{5 k: 1 \leq$ $k \leq n, k \neq 5\}$ (corresponding to B). In other words, $A_{1}^{\prime} \cup A_{1}^{\prime \prime}$ and B^{\prime} are the sets of all vertices adjacent and non-adjacent to vertex 45 , respectively. Further, the induced subgraph on B^{\prime} is a bipartite graph with parts $X^{\prime}:=$ $\{4 i: 1 \leq i \leq n, i \neq 4\}$ and $Y^{\prime}:=\{5 i: 1 \leq i \leq n, i \neq 5\}$.

We need the following lemma.
Lemma 3. If in the star coloring c of $K G(n, 2), c(14)=c(15)=b$, then we have
(I) $c(36) \notin c\left(A_{1}^{\prime} \cup B^{\prime} \cup\{45,12\}\right)$.
(II) If $c(34)$ and $c(35)$ are not repeated in X^{\prime} and Y^{\prime} respectively, then $|c(K G(n, 2))| \geq\binom{ n-1}{2}$.
(III) If $c(34)$ and $c(35)$ are repeated in X^{\prime} and Y^{\prime} respectively, then $c(45)$ is not repeated in $K G(n, 2)$.
$(\mathrm{IV})\left|c\left(B^{\prime}\right)\right|=2(n-5)+|\{b, c(24), c(25)\}|+\mid c(\{c(34), c(35)\}) \backslash c\left(B^{\prime}-\{c(34)\right.$, $c(35)\}) \mid$.

Proof. (I) Otherwise, if for some $k \geq 6, c(36)=c(2 k)$, then the path $2 k 143615$ is 2-colored. If $c(36)=a$, then the path 23143615 is 2-colored. If for some $k, l \geq 6, c(36)=c(k l)$, then the path $k l 143615$ is 2-colored. If for some $k>6, c(36)=c(3 k)$, then the path $3 k 143615$ is 2 -colored. By definition of a Kneser graph, $c(36) \notin\{b, c(24), c(25)\}$. If $c(36)=c(34)$ or $c(36)=c(35)$, then the path 34153614 or 35143615 , respectively, is a 2 -colored P_{4}. If for some $k \geq 6, c(36)=c(4 k)$ or $c(36)=c(5 k)$, then the path $4 k 153614$ or $5 k 143615$, respectively, is a 2 -colored P_{4}. Finally, 36 is adjacent to both 12 and 45 . Therefore, $c(36) \notin c\left(A_{1}^{\prime} \cup B^{\prime} \cup\{45,12\}\right)$.
(II) By assumption and by Lemma 1 (I) and (II), for such a decomposition, all the vertices in $B^{\prime} \cap A^{\prime}\left(\subset A^{\prime}\right)$ have different colors which are distinct from $\{b, c(24), c(25), c(34), c(35)\}$. This implies that there are no two vertices in the same part of B^{\prime} which have the same color. Therefore, by renaming the vertices, it is an instance of Case 1 which already proved.
(III) Note that $45 \in A^{\prime}$ and by Lemma 1 (II), all the vertices in A^{\prime} have different colors. Therefore, $c(45) \cap c\left(B^{\prime} \backslash B\right) \subset\{c(34), c(35)\}$. Now, either $c(4 k)=c(34)$ for some $k \geq 6$, or $c(24)=c(34)$. Similarly, either $c(5 l)=$ $c(35)$ for some $l \geq 6$, or $c(25)=c(35)$. But, $4 k, 5 l, 45 \in A^{\prime}$ and $24,25 \in B$. Thus, by Lemma 1 (I) and (II), in all cases, $c(45) \cap c\left(B^{\prime} \backslash B\right)=\emptyset$. Also, 45 is adjacent to 12 and to all the vertices in $A \backslash\left(B^{\prime} \backslash B\right)$. Moreover, since $45 \in A^{\prime}$, by Lemma $1(\mathrm{I}), c(45) \cap c(B)=\emptyset$. Hence, $c(45)$ is not repeated in $K G(n, 2)$.
(IV) By Lemma 1 (I) and (II), all the vertices in $B^{\prime} \backslash(B \cup\{34,35\})\left(\subset A^{\prime}\right)$ have different colors and $\{b, c(24), c(25)\} \cap c\left(B^{\prime} \backslash(B \cup\{34,35\})\right)=\emptyset$. Also, $c(\{34,35\}) \cap c\left(B^{\prime} \backslash\{34,35\}\right) \neq \emptyset$ occurs only when for some $k, l \geq 6, c(4 k)=$ $c(34)$, or $c(5 l)=c(35)$, or $c(24)=c(34)$, or $c(25)=c(35)$.

Now, we have two possibilities $c(34)=c(35)$ or $c(34) \neq c(35)$.
If $c(34)=c(35)=d$, then d can not be repeated in B^{\prime}, and therefore, by Lemma 3 (II), we have $|c(K G(n, 2))| \geq\binom{ n-1}{2}$.

If $c(34)=e \neq f=c(35)$ and both e and f are not repeated in B^{\prime}, then by Lemma 3 (II), $|c(K G(n, 2))| \geq\binom{ n-1}{2}$. If at least one of e or f is repeated in B^{\prime}, then we have two possibilities; either $c(24)=c(25)$ or $c(24) \neq c(25)$.

If $c(24)=c(25)=c$, then we can have $c(\{34,35\}) \cap c\left(B^{\prime} \backslash\{34,35\}\right) \neq \emptyset$ only possibly when for some $l, l^{\prime} \geq 6, c(4 l)=c(34)$ or $c\left(5 l^{\prime}\right)=c(35)$. Now, we can see that $c(12) \notin c\left(A_{1}^{\prime}\right) \cup c\left(B^{\prime}\right) \cup\{c(45)\}$. Otherwise, if $c(12)=a$, then $134 l 1234$ or $135 l^{\prime} 1235$ is a 2 -colored P_{4}. If $c(12)=b$, then $4 l 123415$ or $5 l^{\prime} 123514$ is a 2 -colored P_{4} (similarly, $c(12) \neq c$). If $c(12)=c(2 k)$, for some $k \geq 6$, then $4 l 12342 k$ or $5 l^{\prime} 12352 k$ is a 2 -colored P_{4}.

Thus, by Lemma 1 (II), and using Lemma 3 (I), (III), and (IV), we conclude that

$$
\begin{aligned}
|c(K G(n, 2))| & \geq\left|c\left(A_{1}^{\prime}\right)\right|+\left|c\left(B^{\prime}\right) \cup\{c(45)\}\right|+|\{c(36), c(12)\}| \\
& \geq\binom{ n-3}{2}+(2(n-5)+3)+2 \\
& =\binom{n-1}{2} \quad(n \geq 6) .
\end{aligned}
$$

If $c(24)=c \neq d=c(25)$, then by Lemma 1 (II) and Lemma 3 (I), (III), and (IV), we have

$$
\begin{aligned}
|c(K G(n, 2))| & \geq\left|c\left(A_{1}^{\prime}\right)\right|+\left|c\left(B^{\prime}\right) \cup\{c(45)\}\right|+|c(36)| \\
& \geq\binom{ n-3}{2}+(2(n-5)+4)+1 \\
& =\binom{n-1}{2} \quad(n \geq 6) .
\end{aligned}
$$

Finally, we consider $K G(5,2)$, which is the well-known Petersen graph. Note that, Petersen graph contains C_{5}. According to a proposition by Fertin et al. ([3], Proposition 3.2), $\chi_{s}\left(C_{5}\right)=4$. Thus, $\chi_{s}(K G(5,2)) \geq 4$. By inspection, we find that $\chi_{s}(K G(5,2)) \neq 4$. In Figure 2, we present a star coloring of $K G(5,2)$ with 5 colors. Hence, $\chi_{s}(K G(5,2))=5$.

Figure 2: An optimum star coloring of Petersen graph.

3 Tree-width of $K G(n, 2)$

In this section, we obtain a lower bound and an upper bound for the treewidth of $K G(n, 2)$.

We denote the tree-width of a graph G with $\operatorname{tw}(G)$. A chordal graph is a graph without induced cycles of order more than 3 . The clique number of a graph G, denoted by $\omega(G)$, is the order of maximum clique of G. It is well known (see [2], Corollary 12.3.9) that the tree-width of a graph G can be expressed as

$$
\begin{equation*}
\operatorname{tw}(G)=\min \{\omega(H)-1: E(G) \subseteq E(H) \text { and } H \text { is chordal }\} . \tag{1}
\end{equation*}
$$

We also know the following theorem by Albertson et al. [1] and Fertin et al. [3].

Theorem 2. If a graph G is of tree-width at most t, then $\chi_{s}(G) \leq\binom{ t+2}{2}$.

The following corollary gives a lower bound for the tree-width of $K G(n, 2)$.

Corollary 1. For each integer $n \geq 6$, we have $\operatorname{tw}(K G(n, 2)) \geq n-3$.

Proof. Let $\operatorname{tw}(K G(n, 2))=t$, for $n \geq 6$. By Theorems 1 and 2 , we have $\chi_{s}(K G(n, 2))=\binom{n-1}{2} \leq\binom{ t+2}{2}$. Thus $t+2 \geq n-1$, and consequently $t \geq n-3$.

Using the decomposition of the vertices of $K G(n, 2)$, as mentioned in the proof of Theorem 1, we find an upper bound for the tree-width of $K G(n, 2)$, as follows.

Theorem 3. For each integer $n \geq 5$, we have $\operatorname{tw}(K G(n, 2)) \leq\binom{ n-1}{2}-1$.

Proof. By (1), it suffices to find a chordal graph with clique number $\binom{n-1}{2}$, which contains $K G(n, 2)$. We obtain such a chordal graph H, by the given vertex partition in the proof of Theorem 1 as follows. Suppose that A and B are the sets of all vertices adjacent and non-adjacent to vertex 12 , respectively. Thus, $B=(X, Y)$ with $X=\{1 j: 3 \leq j \leq n\}$ and $Y=\{2 j: 3 \leq j \leq n\}$.

Let $V(H)=V(K G(n, 2))$ and $E(H)=E(K G(n, 2)) \cup\{u v: u, v \in$ $A \cup X\}$. Now, it can be easily checked that

$$
\begin{aligned}
\omega(H)=|A|+|X| & =\binom{n-2}{2}+(n-2) \\
& =\binom{n-1}{2}
\end{aligned}
$$

Moreover, every cycle of order more than 3 in H contains at least two non-successive vertices in $A \cup X$, and hence is not an induced cycle. Thus, H is a chordal graph.

We use the software for computing the tree-width of graphs at http: //treewidth.com to observe that the equality holds in Theorem 3 for $6 \leq$ $n \leq 14$.

n	$\binom{n-1}{2}-1$	$\operatorname{tw}(K G(n, 2))$
5	5	4
6	9	9
7	14	14
8	20	20
9	27	27
10	35	35
11	44	44
12	54	54
13	65	65
14	77	77
15	90	89

References

[1] M. O. Albertson, G. G. Chappell, H. A. Kierstead, A. Kündgen, and R. Ramamurthi, Coloring with no 2-colored P_{4} 's. Electron. J. Combin., 11(1): Research Paper 26, 13 pp. (electronic), 2004.
[2] R. Diestel, Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, third edition, 2005.
[3] G. Fertin, A. Raspaud, and B. Reed, Star coloring of graphs. J. Graph Theory, 47(3): 163-182, 2004.
[4] B. Grünbaum, Acyclic colorings of planar graphs. Israel J. Math., 14: 390-408, 1973.
[5] H. Hajiabolhassan, and X. Zhu, Circular chromatic number of Kneser graphs, J. Combin. Theory B, 88: 299-303, 2003.
[6] R. Javadi, and B. Omoomi, On b-coloring of the Kneser graphs, Discrete Math., 309: 4399-4408, 2009.
[7] M. Kneser. "Aufgabe 360". Jahresbericht der Deutschen Mathematiker-Vereinigung, 2. Abteilung, 58: 27, 1955.
[8] L. Lovász, Kneser's conjecture, chromatic number, and homotopy, J. Combin. Theory A, 25: 319-324, 1978.
[9] J. Nešetřil, and P. Ossona de Mendez, Colorings and homomorphisms of minor closed classes. In Discrete and computational geometry, volume 25 of Algorithms Combin., pages 651-664. Springer, Berlin, 2003.
[10] N. Robertson, and P. D. Seymour, Graph minors III: Planar treewidth, J. Combin. Theory B, 41(1): 92-114, 1984.
[11] S. Stahl, The multi-chromatic numbers of some Kneser graphs, Discrete Math., 185: 287-291, 1998.
[12] D. B. West, Introduction to graph theory, Prentice Hall Inc. Upper Saddle River, NJ 07458, Second Edition, 2001.

