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Abstract

A proper coloring of the vertices of a graph G is called a star
coloring if any path of length three in G is not 2-colored. The star
chromatic number of G is the minimum number of colors required to
obtain a star coloring of G. In this paper, we give the exact value of
the star chromatic number of the Kneser graph KG(n, 2). Moreover,
we obtain a lower bound and an upper bound for the tree-width of
these graphs.
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1 Introduction

Throughout this paper, all graphs are finite and simple. We use u ∼ v and
u ≁ v to respectively denote the adjacency and non-adjacency relations
between vertices u and v. We denote a path and a cycle on n vertices by
Pn and Cn, respectively. We refer the reader to [12] for graph-theoretic
notation and terminology not described in this paper.

A proper vertex coloring of a graph G is an assignment of colors to the
vertices of G such that no two adjacent vertices receive the same color.
Given a proper coloring c of graph G and any subset A ⊆ V (G), we let
c(A) denote the set of all colors used to color vertices in A. A proper vertex
coloring of a graph G is called a star coloring if any path of length three in
G is not 2-colored; equivalently, the union of every two color classes in G
induces a forest whose components are stars. The star chromatic number of
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G, denoted by χs(G), is the minimum number of colors required to obtain a
star coloring of G. Star colorings of graphs were introduced by Grünbaum
in 1973 [4] (see also [1, 3, 9]).

The Kneser graph KG(n, k), n ≥ 2k, is a graph whose vertices are the
k-element subsets of an n-element set, where two vertices are adjacent if
and only if the two corresponding sets are disjoint. In this paper, vertices
of KG(n, 2) are the 2-element subsets {i, j}, 1 ≤ i < j ≤ n, which we
denote ij.

Kneser graphs have many interesting properties and have been the sub-
ject of much research. It was conjectured by Kneser in 1955 [7] and proved
by Lovász in 1978 [8] that χ(KG(n, k)) = n − 2k + 2. Since then several
types of colorings of Kneser graphs have been considered. For example,
the circular chromatic number, the b-chromatic number and the multi-
chromatic number of Kneser graphs were investigated in [5], [6] and [11],
respectively.

The concept of tree-width of a graph introduced by Robertson and
Seymour in 1984 [10] to measure how tree-like a graph behaves. Fertin et
al. [3] gave the bound

(
t+2
2

)
on the star chromatic number of graphs with

tree-width t.

In this paper, we obtain the exact value of the star chromatic number
of the Kneser graph KG(n, 2), for n ≥ 5. We also give a lower bound and
an upper bound on the tree-width of KG(n, 2).

2 Main results

In this section, we show that χs(KG(n, 2)) =
(
n−1
2

)
, for n ≥ 6 and

χs(KG(5, 2)) = 5. First, we prove the following proposition.

Proposition 1. Let G = (X,Y ) be a bipartite graph, such that |X| = |Y | =
n, and each vertex in G has degree n − 1. Then, χs(G) = n. Moreover,
there are only two types of optimum star colorings of G.

Proof. Let c be a star coloring of G. If the vertices of X or Y all receive
different colors, then the number of colors used in c is at least n.

Otherwise, there are vertices u1, u2 ∈ X and v1, v2 ∈ Y , where c(u1) =
c(u2) and c(v1) = c(v2). Since there is no 2-colored P4 and G is (n − 1)-
regular, neither u1 nor u2 is adjacent to both vertices v1 and v2. Say
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u1 ≁ v1 and u2 ≁ v2. Therefore, there are no other pairs of vertices with
the same color in the same part (except u1, u2 and v1, v2), because all
vertices in Y (similarly in X), except v1 (u1), are adjacent to u1 (v1), and
(G, c) does not have a 2-colored P4. Hence, in such a star coloring of G,
at least 2 + (n− 2) = n colors are needed. Thus, χs(G) ≥ n. In Figure 1,
two possible types of optimum star colorings of G with n colors are shown.
Hence, χs(G) = n. ■

Figure 1: Two optimum star colorings of G.

Note that, for every n ≥ 6, the vertex set of the Kneser graph KG(n, 2)
can be decomposed into three subsets {12}, A and B; where A and B are
the sets of all vertices adjacent and non-adjacent to vertex 12, respectively.
It is easy to see that, |A| =

(
n−2
2

)
, and the induced subgraph on B is a

bipartite graph with parts X := {1i : 3 ≤ i ≤ n} and Y := {2i : 3 ≤ i ≤ n}.

By Proposition 1, χs(B) = n− 2. Thus, we can give a color assignment
to the vertices of B, the same as the first star coloring given in the proposi-
tion above (Figure 1). Then, we assign

(
n−2
2

)
new colors to the vertices of

A, and, finally, give one of the colors of the vertices of B, to the vertex 12.
It can be easily checked that, this coloring is a star coloring of KG(n, 2)
with

(
n−2
2

)
+ n − 2 =

(
n−1
2

)
colors. Thus, χs(KG(n, 2)) ≤

(
n−1
2

)
. Fur-

ther, since KG(n, 2) has
(
n
2

)
vertices, in a given optimum star coloring c of

KG(n, 2), there are at least two vertices with a same color. Without loss of
generality (after a renaming if necessary), suppose that c(13) = c(23) = a.

To prove the main result of this section, we need the following lemmas,
which will make use of the above notation. Specifically, A, B, X, Y , and c
continue to be used throughout this section.

Lemma 1. Let A′ := {kl : 4 ≤ k < l ≤ n} together with A′′ := {3l :
4 ≤ l ≤ n} be a partition of A. In the optimum star coloring c of graph
KG(n, 2) we have

(I) c(B) ∩ c(A′) = ∅.
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(II) |c(A′)| =
(
n−3
2

)
.

Proof. (I) The color of any vertex in X ∪ Y can not be the same as any
vertex in A′, otherwise there would be a 2-colored P4 containing 13 and 23,
which is a contradiction.

(II) Since all vertices in A′ are adjacent to 13 and 23, there are no two
vertices in A′ with the same color, otherwise there would be a 2-colored P4

containing 13 and 23, which contradicts that c is a star coloring. ■

Let t be the number of pairs (1i, 2i), i ≥ 4, of vertices in B, such that
c(1i) = c(2i). Then we have the following lemma.

Lemma 2. If t ≥ 1, or equivalently there is some i, 4 ≤ i ≤ n, such that
c(1i) = c(2i), then we have the following facts.

(I) All vertices in A′′\{3i} must have different colors. In other words, only
for one l ≥ 4, l ̸= i, it is possible that c(3l) = c(3i), i.e., a repeated color
in A′′.

(II) If c(A′)∩ c(A′′) ̸= ∅, then c(3l) = c(il) or c(3i) = c(li), for some l ≥ 4.

(III) If c(A′′) ∩ c(B) ̸= ∅, then either c(3i) = c(1i) = c(2i) or c(3i) =
c(13) = c(23) = a.

(IV) If c(A′) ∩ c(A′′) ̸= ∅ and there exists l ≥ 4, such that c(3l) = c(il),
then c(12) ̸∈ {a, c(1i)}.

Proof. (I) Otherwise, there are k, k′ ̸= i (noting that n ≥ 6), such that
c(3k) = c(3k′) and the path 3k 1i 3k′ 2i is 2-colored.

(II) Otherwise, if there exists k and l, with l, k ̸= i and c(3l) = c(kl), then
the path 3l 1i kl 2i is 2-colored.

(III) Otherwise, suppose that there is l ̸= i, and c(3l) = c(1l) (similarly
c(3l) = c(2l)). Then 1i 3l 2i 1l is 2-colored (2i 3l 1i 2l is 2-colored). If
there exists l ̸= i, and c(3l) = c(13) = c(23) = a, then the path 13 2i 3l 1i
is 2-colored.

(IV) If there exists l ≥ 4, such that c(3l) = c(il) and c(12) ∈ {a, c(1i)},
then the path 13 il 12 3l or the path 1i 3l 12 il is 2-colored. ■

Now we are ready to prove our main theorem, the proof of which uses
the above notation.
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Theorem 1. For n ≥ 6, χs(KG(n, 2)) =
(
n−1
2

)
, and χs(KG(5, 2)) = 5.

Proof. Let n ≥ 6. We have already shown that χs(KG(n, 2)) ≤
(
n−1
2

)
.

To prove the equality we need to show that every (optimum) star coloring
of KG(n, 2) requires at least

(
n−1
2

)
colors. We consider the following two

possibilities.

Case 1. In the optimum star coloring c, there are no two vertices with a
same color in the same part of B.

If t = 0, then by Lemma 1 (I) and (II), we conclude that

|c(KG(n, 2))| ≥ |c(B)|+ |c(A′)|

= (2(n− 3) + 1) +

(
n− 3

2

)
=

(
n− 1

2

)
.

If t = 1, and c(1i) = c(2i) = b, 4 ≤ i ≤ n, then there are two possibili-
ties.

If c(A′′) ∩ c(B) ̸= ∅. Then, by Lemma 2 (III), we have either c(3i) =
c(1i) = c(2i) = b or c(3i) = c(13) = c(23) = a. Now, if for some k ≥ 4,
k ̸= i, c(12) = c(1k) (similarly, c(12) = c(2k)), then, in the former case,
the path 2i 1k 3i 12 (similarly, 1i 2k 3i 12) is 2-colored, and, in the latter
case, the path 23 1k 3i 12 (similarly, 13 2k 3i 12) is 2-colored. Therefore,
c(12) ∩ c(B) ⊂ {a, b}. On the other hand, by Lemma 2 (II) and (IV), if
c(12) ∈ {a, b} then c(A′) ∩ (c(A′′)\c(3i)) = ∅. Thus, we have

|c(KG(n, 2))| ≥ |c(A′)|+ |c(B)|+ |c(A′′\{3i})\c(B)|

≥
(
n− 3

2

)
+ (2(n− 4) + 2) + (n− 4)

=

(
n− 1

2

)
+ n− 5 >

(
n− 1

2

)
(n ≥ 6).

This contradicts the assumption that c is an optimum star coloring.
Hence, c(12)∩ c(B) = ∅ and consequently c(12)∩ c(B ∪A) = ∅, so we have

|c(KG(n, 2))| ≥ |c(A′)|+ |c(B)|+ |c(12)|

=

(
n− 3

2

)
+ (2(n− 4) + 2) + 1

=

(
n− 1

2

)
.
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If c(A′′) ∩ c(B) = ∅, then either there is a vertex in A′′ which has a
different color to the vertices in A′, and we have

|c(KG(n, 2))| ≥ |c(A′)|+ |c(B)|+ |c(A′′)\c(A′)|

≥
(
n− 3

2

)
+ (2(n− 4) + 2) + 1

=

(
n− 1

2

)

or, for each l ≥ 4, c(3l) = c(il) (by Lemma 2 (II)). We will now show that
c(12) ∩ c(B) = ∅. By Lemma 2 (IV), c(12) ̸∈ {a, b}. If for some k ≥ 4,
k ̸= i, c(12) = c(1k) (similarly c(12) = c(2k)), then since n ≥ 6, there
exists k′ ≥ 4, k′ ̸∈ {i, k}, such that the path 3k′ 12 ik′ 1k is 2-colored.
Thus, we have

|c(KG(n, 2))| ≥ |c(A′)|+ |c(B)|+ |c(12)|

≥
(
n− 3

2

)
+ (2(n− 4) + 2) + 1

=

(
n− 1

2

)
.

If t = 2, and there exist i, j ≥ 4, i ̸= j, such that c(1i) = c(2i) = b
and c(1j) = c(2j) = c, then by Lemma 2 (I) and (II), only the vertices
3i, 3j, and ij may receive the same color in A. Also, by Lemma 2 (III),
we can easily deduce that c(A′′) ∩ c(B) = ∅. Now, there are the following
possibilities.

If c(ij) = c(3i) = c(3j), then c(12)∩c(B) = ∅. Since, by Lemma 2 (IV),
c(12) ̸∈ {a, b, c}. Also, if for some k ≥ 4, k ̸= i, j, c(12) = c(1k) (similarly,
c(12) = c(2k)), then the path 1k 3i 12 ij is 2-colored (similarly, 2k 3i 12 ij
is 2-colored). Therefore, the color of 12 is distinct from c(A) and c(B), and
we have

|c(KG(n, 2))| ≥ |c(A)|+ |c(B)|+ |c(12)|

≥
((

n− 2

2

)
− 2

)
+ (2(n− 5) + 3) + 1

=

(
n− 1

2

)
+ n− 6 ≥

(
n− 1

2

)
(n ≥ 6).
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If c(ij), c(3i), and c(3j) are not pairwise equal, then

|c(KG(n, 2))| ≥ |c(A)|+ |c(B)|

≥
((

n− 2

2

)
− 1

)
+ (2(n− 5) + 3)

=

(
n− 1

2

)
+ n− 6 ≥

(
n− 1

2

)
(n ≥ 6).

If t ≥ 3, then by Lemma 2 (I), (II), and (III), we deduce that all vertices
in A must have different colors and c(A) ∩ c(B) = ∅. Thus

|c(KG(n, 2))| ≥ |c(A)|+ |c(B)|

≥
(
n− 2

2

)
+ n− 2

=

(
n− 1

2

)
.

Case 2. In the optimum star coloring c of KG(n, 2), there are two vertices
in the same part of B with the same color. Without loss of generality,
assume that c(14) = c(15) = b.

Now, we consider a new decomposition (A′
1, A

′′
1 , B

′, {45}) for KG(n, 2),
which is isomorphic to (A′, A′′, B, {12}), where A′

1 := {kl : 6 ≤ k < l ≤
n}∪(Y \{24, 25})∪{3k : k ≥ 6} (corresponding to A′), A′′

1 := (X\{14, 15})∪
{12} (corresponding to A′′), and B′ := {4k : 1 ≤ k ≤ n, k ̸= 4} ∪ {5k : 1 ≤
k ≤ n, k ̸= 5} (corresponding to B). In other words, A′

1 ∪ A′′
1 and B′ are

the sets of all vertices adjacent and non-adjacent to vertex 45, respectively.
Further, the induced subgraph on B′ is a bipartite graph with parts X ′ :=
{4i : 1 ≤ i ≤ n, i ̸= 4} and Y ′ := {5i : 1 ≤ i ≤ n, i ̸= 5}.

We need the following lemma.

Lemma 3. If in the star coloring c of KG(n, 2), c(14) = c(15) = b, then
we have

(I) c(36) ̸∈ c(A′
1 ∪B′ ∪ {45, 12}).

(II) If c(34) and c(35) are not repeated in X ′ and Y ′ respectively, then
|c(KG(n, 2))| ≥

(
n−1
2

)
.

(III) If c(34) and c(35) are repeated in X ′ and Y ′ respectively, then c(45)
is not repeated in KG(n, 2).

(IV) |c(B′)| = 2(n−5)+|{b, c(24), c(25)}|+|c({c(34), c(35)})\c(B′−{c(34),
c(35)})|.
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Proof. (I) Otherwise, if for some k ≥ 6, c(36) = c(2k), then the path
2k 14 36 15 is 2-colored. If c(36) = a, then the path 23 14 36 15 is 2-colored.
If for some k, l ≥ 6, c(36) = c(kl), then the path kl 14 36 15 is 2-colored.
If for some k > 6, c(36) = c(3k), then the path 3k 14 36 15 is 2-colored.
By definition of a Kneser graph, c(36) ̸∈ {b, c(24), c(25)}. If c(36) = c(34)
or c(36) = c(35), then the path 34 15 36 14 or 35 14 36 15, respectively, is
a 2-colored P4. If for some k ≥ 6, c(36) = c(4k) or c(36) = c(5k), then the
path 4k 15 36 14 or 5k 14 36 15, respectively, is a 2-colored P4. Finally, 36
is adjacent to both 12 and 45. Therefore, c(36) ̸∈ c(A′

1 ∪B′ ∪ {45, 12}).

(II) By assumption and by Lemma 1 (I) and (II), for such a decomposition,
all the vertices in B′∩A′ (⊂ A′) have different colors which are distinct from
{b, c(24), c(25), c(34), c(35)}. This implies that there are no two vertices in
the same part of B′ which have the same color. Therefore, by renaming
the vertices, it is an instance of Case 1 which already proved.

(III) Note that 45 ∈ A′ and by Lemma 1 (II), all the vertices in A′ have
different colors. Therefore, c(45) ∩ c(B′\B) ⊂ {c(34), c(35)}. Now, either
c(4k) = c(34) for some k ≥ 6, or c(24) = c(34). Similarly, either c(5l) =
c(35) for some l ≥ 6, or c(25) = c(35). But, 4k, 5l, 45 ∈ A′ and 24, 25 ∈ B.
Thus, by Lemma 1 (I) and (II), in all cases, c(45) ∩ c(B′\B) = ∅. Also,
45 is adjacent to 12 and to all the vertices in A\(B′\B). Moreover, since
45 ∈ A′, by Lemma 1 (I), c(45)∩ c(B) = ∅. Hence, c(45) is not repeated in
KG(n, 2).

(IV) By Lemma 1 (I) and (II), all the vertices in B′\(B ∪ {34, 35}) (⊂ A′)
have different colors and {b, c(24), c(25)} ∩ c(B′\(B ∪ {34, 35})) = ∅. Also,
c({34, 35})∩c(B′\{34, 35}) ̸= ∅ occurs only when for some k, l ≥ 6, c(4k) =
c(34), or c(5l) = c(35), or c(24) = c(34), or c(25) = c(35). ■

Now, we have two possibilities c(34) = c(35) or c(34) ̸= c(35).

If c(34) = c(35) = d, then d can not be repeated in B′, and therefore,
by Lemma 3 (II), we have |c(KG(n, 2))| ≥

(
n−1
2

)
.

If c(34) = e ̸= f = c(35) and both e and f are not repeated in B′, then
by Lemma 3 (II), |c(KG(n, 2))| ≥

(
n−1
2

)
. If at least one of e or f is repeated

in B′, then we have two possibilities; either c(24) = c(25) or c(24) ̸= c(25).

If c(24) = c(25) = c, then we can have c({34, 35}) ∩ c(B′\{34, 35}) ̸= ∅
only possibly when for some l, l′ ≥ 6, c(4l) = c(34) or c(5l′) = c(35). Now,
we can see that c(12) ̸∈ c(A′

1)∪c(B′)∪{c(45)}. Otherwise, if c(12) = a, then
13 4l 12 34 or 13 5l′ 12 35 is a 2-colored P4. If c(12) = b, then 4l 12 34 15
or 5l′ 12 35 14 is a 2-colored P4 (similarly, c(12) ̸= c). If c(12) = c(2k), for
some k ≥ 6, then 4l 12 34 2k or 5l′ 12 35 2k is a 2-colored P4.
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Thus, by Lemma 1 (II), and using Lemma 3 (I), (III), and (IV), we
conclude that

|c(KG(n, 2))| ≥ |c(A′
1)|+ |c(B′) ∪ {c(45)}|+ |{c(36), c(12)}|

≥
(
n− 3

2

)
+ (2(n− 5) + 3) + 2

=

(
n− 1

2

)
(n ≥ 6).

If c(24) = c ̸= d = c(25), then by Lemma 1 (II) and Lemma 3 (I), (III),
and (IV), we have

|c(KG(n, 2))| ≥ |c(A′
1)|+ |c(B′) ∪ {c(45)}|+ |c(36)|

≥
(
n− 3

2

)
+ (2(n− 5) + 4) + 1

=

(
n− 1

2

)
(n ≥ 6).

Finally, we consider KG(5, 2), which is the well-known Petersen graph.
Note that, Petersen graph contains C5. According to a proposition by
Fertin et al. ([3], Proposition 3.2), χs(C5) = 4. Thus, χs(KG(5, 2)) ≥ 4.
By inspection, we find that χs(KG(5, 2)) ̸= 4. In Figure 2, we present a
star coloring of KG(5, 2) with 5 colors. Hence, χs(KG(5, 2)) = 5. ■

Figure 2: An optimum star coloring of Petersen graph.

3 Tree-width of KG(n, 2)

In this section, we obtain a lower bound and an upper bound for the tree-
width of KG(n, 2).
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We denote the tree-width of a graph G with tw(G). A chordal graph is
a graph without induced cycles of order more than 3. The clique number
of a graph G, denoted by ω(G), is the order of maximum clique of G. It is
well known (see [2], Corollary 12.3.9) that the tree-width of a graph G can
be expressed as

tw(G) = min{ω(H)− 1 : E(G) ⊆ E(H) and H is chordal}. (1)

We also know the following theorem by Albertson et al. [1] and Fertin et
al. [3].

Theorem 2. If a graph G is of tree-width at most t, then χs(G) ≤
(
t+2
2

)
.

The following corollary gives a lower bound for the tree-width ofKG(n, 2).

Corollary 1. For each integer n ≥ 6, we have tw(KG(n, 2)) ≥ n− 3.

Proof. Let tw(KG(n, 2)) = t, for n ≥ 6. By Theorems 1 and 2, we have
χs(KG(n, 2)) =

(
n−1
2

)
≤

(
t+2
2

)
. Thus t + 2 ≥ n − 1, and consequently

t ≥ n− 3. ■

Using the decomposition of the vertices of KG(n, 2), as mentioned in
the proof of Theorem 1, we find an upper bound for the tree-width of
KG(n, 2), as follows.

Theorem 3. For each integer n ≥ 5, we have tw(KG(n, 2)) ≤
(
n−1
2

)
− 1.

Proof. By (1), it suffices to find a chordal graph with clique number(
n−1
2

)
, which contains KG(n, 2). We obtain such a chordal graph H, by

the given vertex partition in the proof of Theorem 1 as follows. Suppose
that A and B are the sets of all vertices adjacent and non-adjacent to
vertex 12, respectively. Thus, B = (X,Y ) with X = {1j : 3 ≤ j ≤ n} and
Y = {2j : 3 ≤ j ≤ n}.

Let V (H) = V (KG(n, 2)) and E(H) = E(KG(n, 2)) ∪ {uv : u, v ∈
A ∪X}. Now, it can be easily checked that

ω(H) = |A|+ |X| =

(
n− 2

2

)
+ (n− 2)

=

(
n− 1

2

)
.
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Moreover, every cycle of order more than 3 in H contains at least two
non-successive vertices in A∪X, and hence is not an induced cycle. Thus,
H is a chordal graph. ■

We use the software for computing the tree-width of graphs at http:
//treewidth.com to observe that the equality holds in Theorem 3 for 6 ≤
n ≤ 14.

n
(
n−1
2

)
− 1 tw(KG(n, 2))

5 5 4
6 9 9
7 14 14
8 20 20
9 27 27
10 35 35
11 44 44
12 54 54
13 65 65
14 77 77
15 90 89

References

[1] M. O. Albertson, G. G. Chappell, H. A. Kierstead, A. Kündgen, and
R. Ramamurthi, Coloring with no 2-colored P4’s. Electron. J. Com-
bin., 11(1): Research Paper 26, 13 pp. (electronic), 2004.

[2] R. Diestel, Graph theory, volume 173 of Graduate Texts in Mathemat-
ics. Springer-Verlag, Berlin, third edition, 2005.

[3] G. Fertin, A. Raspaud, and B. Reed, Star coloring of graphs. J. Graph
Theory, 47(3): 163-182, 2004.
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