
A Polynomial Time Algorithm to

Find the Star Chromatic Index of Trees

Behnaz Omoomi∗

Department of Mathematical Sciences
Isfahan University of Technology

Isfahan, Iran

bomoomi@iut.ac.ir

Elham Roshanbin
Department of Mathematical Sciences

Alzahra University
Tehran, Iran

e.roshanbin@alzahra.ac.ir

Marzieh Vahid Dastjerdi
Department of Mathematical Sciences

Isfahan University of Technology
Isfahan, Iran

m.vahiddastjerdi@math.iut.ac.ir

Submitted: Dec 7, 2019; Accepted: Dec 7, 2020; Published: Jan 15, 2021

©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A star edge coloring of a graph G is a proper edge coloring of G such that every
path and cycle of length four in G uses at least three different colors. The star
chromatic index of a graph G is the smallest integer k for which G admits a star
edge coloring with k colors. In this paper, we present a polynomial time algorithm
that finds an optimum star edge coloring for every tree. We also provide some tight
bounds on the star chromatic index of trees with diameter at most four, and using
these bounds we find a formula for the star chromatic index of certain families of
trees.

Mathematics Subject Classifications: 05C15, 05C05

1 Introduction

A proper vertex (edge coloring) of a graph G is an assignment of colors to the vertices
(edges) of G such that no two adjacent vertices (edges) receive the same color. Under
additional constraints on the proper vertex (edge) coloring of graphs, we get a variety of

∗Research is partially supported by the Iran National Science Foundation (INSF).

the electronic journal of combinatorics 28(1) (2021), #P1.6 https://doi.org/10.37236/9202

https://doi.org/10.37236/9202

colorings such as the star vertex and the star edge coloring. A star vertex coloring of G
is a proper vertex coloring such that no path or cycle on four vertices in G is bi-colored
(uses at most two colors) [3, 6].

In 2008, Liu and Deng [10] introduced the edge version of the star vertex coloring that
is defined as follows. A star edge coloring of G is a proper edge coloring of G such that
no path or cycle of length four (with four edges) in G is bi-colored. We call a star edge
coloring of G with k colors, a k-star edge coloring of G. The smallest integer k for which
G admits a k-star edge coloring is called the star chromatic index of G and is denoted
by χ′

s(G). Liu and Deng [10] presented an upper bound on the star chromatic index of
graphs with maximum degree ∆ > 7. In [4], Dvořák et al. obtained the lower bound
2∆(1 + o(1)) and the near-linear upper bound ∆.2O(1)

√
log∆ on the star chromatic index

of graphs with maximum degree ∆. They also presented some upper bounds and lower
bounds on the star chromatic index of complete graphs and subcubic graphs (graphs with
maximum degree at most 3). In [1], Bezegová et al. obtained some bounds on the star
chromatic index of subcubic outerplanar graphs, trees and outerplanar graphs (see also
[8, 9, 11, 12, 13]).

In this paper, by a polynomial time algorithm, we determine the star chromatic index
of every tree. For this purpose, we first define a Havel-Hakimi type problem. The Havel-
Hakimi problem is a problem in which we are asked to determine whether or not there
exists a simple graph with a given degree sequence (a sequence of the vertex degrees) [7].
In [5], Erdős et al. extended the Havel-Hakimi problem to the problem of existence of
simple digraphs (there are no two edges with the same direction between any two vertices,
but loops are allowed) possessing some prescribed bi-degree sequences (a sequence of the
vertex outdegrees and indegrees). In the Havel-Hakimi type problem that we define in
this paper, we determine whether it is possible to construct an oriented graph (a digraph
such that its underlying graph is simple) with a given outdegree sequence (a sequence of
vertex outdegrees) without caring about the indegrees. With a similar idea as in [5, 7],
we present an algorithm that finds a solution for this problem in polynomial time. Then,
we show that this Havel-Hakimi type problem is indeed polynomially equivalent to the
problem of existence of a star edge coloring of a tree with diameter at most four (or a
2H-tree for short), with specific number of colors. Using this equivalency, we present a
polynomial time algorithm that determines the star chromatic index of 2H-trees by finding
an optimum star edge coloring of them. We then give a polynomial time algorithm that
extends the optimum star edge coloring of 2H-trees to an optimum star edge coloring of
trees in general. Note that there might be other algorithms for finding an optimum star
edge coloring of a 2H-tree, but not all of them are necessarily extendable to obtain an
optimum star edge coloring of arbitrary trees.

This paper is organized as follows. In Section 2, we briefly introduce some graph
theory terminology and notations that we use in this paper. In Section 3, we define
a Havel-Hakimi type problem, and we give a greedy algorithm that finds a solution to
this problem. In Section 4, we give a polynomial time algorithm to determine the star
chromatic index of every 2H-tree. To do this, we first prove that the problem of existence
of a star edge coloring for 2H-trees is polynomially equivalent with the Havel-Hakimi type

the electronic journal of combinatorics 28(1) (2021), #P1.6 2

problem defined in Section 3. In Section 5, we show that finding the star chromatic index
of 2H-trees leads to determining the star chromatic index of every tree. Moreover, we
define a polynomial time algorithm that provides an optimum star edge coloring for every
tree. In Section 6, we present some tight bounds on the star chromatic index of 2H-trees.
Using these bounds we find a formula for the star chromatic index of certain 2H-trees and
the caterpillars (a caterpillar is a tree for which removing the leaves produces a path).

2 Preliminaries

In this section, we present the terminology and notations that we use in this paper. For
a vertex v of a graph G, we denote the degree of v by dG(v). In a digraph G, the number
of edges going into a vertex v, denoted by d−G(v), is known as the indegree of v and the
number of edges coming out of v, denoted by d+G(v), is known as the outdegree of v. The
set of in-neighbors and out-neighbors of v are denoted by N−

G (v) and N+
G (v), respectively.

When G is clear from the context, we simply write d(v), d−(v), d+(v), N−(v), and N+(v).
For every vertex u and v of digraph G, by −→uv, we mean a directed edge from u to v. For
further information on graph theory concepts and terminology we refer the reader to [2].

A finite sequence d+ = ((d+1 , v1), . . . , (d
+
n , vn)) of ordered pairs (d+i , vi), 1 6 i 6 n,

in which d+i is a non-negative integer and vi represents a vertex, is called an outdegree-

vertex sequence (or OVS for short). An OVS d+ is called an outdegree-vertex graphi-

cal sequence (or OVGS for short) if there exists an oriented graph G with vertex set
{v1, . . . , vn}, such that the outdegree of vertex vi is d+i , 1 6 i 6 n. In this case, we
say that G realizes d+, or G is a realization of d+. Note that the only condition on
the indegree sequence of G is that

∑

i d
+
i =

∑

i d
−
i . For example, a realization of OVS

d+ = ((2, v1), (3, v2), (3, v3), (0, v4), (0, v5)) is shown in Figure 1. Hence, d+ is an OVGS.

v4

v5

v1v2

v3

Figure 1: A realization of OVGS d+ = ((2, v1), (3, v2), (3, v3), (0, v4), (0, v5)).

Let X be a finite sequence of objects. We denote the length of X by |X| and the
i-th element of X by X [i], 1 6 i 6 |X|. For simplicity, we denote the subsequence
X [i], X [i+1], . . . , X [i+a] ofX byX [i..i+a], where 1 6 i 6 |X| and 0 6 a 6 |X|−i. If each
element of X is an ordered pair, then we denote the j-th coordinate of the i-th element of
X , by X [i][j], where 1 6 i 6 |X| and j ∈ {1, 2}. For a subset A = {X [i1][2], . . . , X [ik][2]}
of X2 = {X [i][2] : 1 6 i 6 |X|}, we denote the vector (i1, . . . , ik) by s(A), where

the electronic journal of combinatorics 28(1) (2021), #P1.6 3

i1 6 · · · 6 ik. For example, if X = ((a, w), (b, x), (c, y), (d, z)) and A = {w, y, z}, then
s(A) = (1, 3, 4).

We define a partial order “�” among k-element finite sequences of positive integers as
follows. We say a � b if for each i, 1 6 i 6 k, a[i] 6 b[i]. Let A and B be two subsets of
X2. We write

B 6 A if and only if s(B) � s(A)

and we say that B is to the left of A. For example, let

X = ((a, u), (b, v), (c, w), (d, x), (e, y), (f, z)), A = {v, x, z}, B = {v, w, y}.

Then, s(A) = (2, 4, 6), s(B) = (2, 3, 5), and s(B) � s(A). Thus, B is to the left of A.
A rooted tree is a tree in which one vertex has been designated as the root. The height

of a rooted tree T is the number of edges on the longest path between the root and a leaf.
The level of a vertex in T is the distance between the vertex and the root plus one. Note
that the level of the root is one. If v is a vertex at level ℓ > 1 of T and u is the parent of
v (its neighbor at level ℓ − 1), then we denote the set of edges incident to v, except uv,
by Ev.

If T is a tree with diameter at most four, then we say that T is a 2H-tree. In other
words, in T there exists a vertex u such that the height of T with root u is at most two.
Suppose that d(u) = t and u1, . . . , ut are the neighbors of u. For each i, 1 6 i 6 t, let ni

be the size of Eui
(i.e., d(ui) = ni + 1), then we denote the 2H-tree T by Tn1,...,nt

, where
n1 6 n2 6 · · · 6 nt. We call a 2H-tree in which all neighbors of the root are of the same
degree r > 0, an r-regular 2H-tree and denote by T(r,t).

3 Realization of outdegree-vertex sequences

In this section, we present a construction algorithm that determines whether a given
outdegree-vertex sequence (or OVS) is an outdegree-vertex graphical sequence (or an
OVGS) or not, and for an OVGS d+ provides an oriented graph that realizes d+.

We need the following notations and definitions to state the results of this section.
Suppose that d+ = ((d+1 , v1), . . . , (d

+
n , vn)) is an OVS and W is a proper subset of

V = {v1, . . . , vn}. Let GW be an oriented graph on V with the following outdegrees.

d+GW
(vi) =

{

d+i if vi ∈ W,

0 otherwise.

We say that d+ is normal if d+i 6 d+i+1, for every i, 1 6 i 6 n− 1. We also say that d+ is
GW -normal if it has the following properties.

• For every i, 1 6 i 6 |W |, vi ∈ W .

• For every i, |W | < i 6 n, d+i + d−GW
(vi) < d+i+1 + d−GW

(vi+1), or
d+i + d−GW

(vi) = d+i+1 + d−GW
(vi+1) and d+i 6 d+i+1.

the electronic journal of combinatorics 28(1) (2021), #P1.6 4

A possible out-neighbor (or PON) of vi ∈ V \W is a subset of V \(N−
GW

(vi)∪{vi}) with
d+i elements that is a candidate for being the subset of out-neighbors of vi in a realization
of d+. The leftmost PON of vi, denoted by LGW

(vi), is a PON of vi such that for every
PON A of vi, LGW

(vi) 6 A. Indeed, LGW
(v) is the subset of V \ (N−

GW
(vi) ∪ {vi}) that

contains d+i vertices with the smallest subscripts.

Theorem 1. Let d+ = ((d+1 , v1), . . . , (d
+
n , vn)) be an OVS and W be a proper subset of the

vertex set V = {v1, . . . , vn}. Suppose that for an oriented graph GW , d+ is GW -normal

and for some i, 1 6 i 6 n, there exists a vertex vi ∈ V \W with d+i > 0. The OVS d+

has realization G in which for every v ∈ W , N+
G (v) = N+

GW
(v) if and only if d+ has a

realization H in which for every v ∈ W , N+
H (v) = N+

GW
(v) and N+

H (vi) = LGW
(vi).

Proof. Let G be a realization of d+ and for every vertex v ∈ W , N+
G (v) = N+

GW
(v). If

N+
G (vi) = LGW

(vi), then we are done. Otherwise, we will present a sequence of changes
in the edges of G that preserve the out-neighbors of every vertex in W and convert G

into a graph H in which N+
H (vi) = LGW

(vi). There is an increasing bijective function
φ : s(N+

G (vi) \ LGW
(vi)) → s(LGW

(vi) \ N
+
G (vi)) because of |N+

G (vi)| = |LGW
(vi)|. Thus,

the function Ψ : N+
G (vi) \ LGW

(vi) → LGW
(vi) \ N+

G (vi), with Ψ(vj) = vφ(j), for every
vj ∈ N+

G (vi) \ LGW
(vi), is bijective such that φ(j) 6 j. The last inequality holds, since

LGW
(vi) is the leftmost PON of vi.
Now suppose that vj ∈ N+

G (vi) \ LGW
(vi), vk ∈ LGW

(vi) \ N+
G (vi), and Ψ(vj) = vk,

where Ψ is the function that we defined above. Let A = (N+
G (vi) \ {vj}) ∪ {vk}. We

construct another realization G′ of d+ such that N+
G′(vi) = A.

Since vj ∈ N+
G (vi) and vk 6∈ N+

G (vi), we have −−→vivj ∈ E(G) and −−→vivk 6∈ E(G). We have
two possibilities: either −−→vkvi is an edge of G or not. If −−→vkvi 6∈ E(G), then by adding edge
−−→vivk and removing edge −−→vivj , we achieve the desired realization. Now, we suppose that
−−→vkvi ∈ E(G). Thus, we conclude that vk ∈ V \W , since vk ∈ LGW

(vi). Also vj ∈ V \W ,
since d+ is GW -normal, and k < j. We again have two possibilities: either vk and vj
are connected by an edge or not. If there is no edge between vk and vj, then we create
the required graph by removing the edges −−→vkvi and

−−→vivj and adding the edges −−→vivk and
−−→vkvj . Now assume that one of the edges −−→vjvk or −−→vkvj belongs to E(G). If −−→vjvk ∈ E(G),
then we reverse the directions of the edges −−→vkvi,

−−→vivj , and −−→vjvk. Thus, suppose that
−−→vkvj ∈ E(G). If there exists a vertex vm such that there is no edge between vm and
vk, then we add edge −−→vkvm, reverse the direction of the edge −−→vkvi and remove edge −−→vivj .
Otherwise, there exist an edge between vk and every vertex in V \ {vk}. Note that, two
out-neighbors of vk and two in-neighbors of vj in V \W are determined. Thus, because
of d+k + |N−

GW
(vk)| 6 d+j + |N−

GW
(vj)|, there exists a vertex vm ∈ V \W such that edges

−−→vjvm and −−→vmvk belong to E(G). Therefore, it suffices to reverse the directions of the edges
−−→vkvi,

−−→vivj ,
−−→vjvm, and

−−→vmvk. Thus, in all cases we obtain the required realization.
We now apply this process for each vj ∈ N+

G (vi) \ LGW
(vi) to exchange vj with Ψ(vj)

such that at every step in the obtained graph Ψ(vj) ∈ N+(vi). After the last step, the
final graph is H and LGW

(vi) = N+
H(vi), as desired. The converse of the statement is

trivial.

the electronic journal of combinatorics 28(1) (2021), #P1.6 5

Using Theorem 1, we now present a construction algorithm that determines whether
a given OVS is an OVGS or not, and in the case that it is, it provides a realization of it.

Theorem 2. For every OVS d+, there is a polynomial time algorithm that determines

whether d+ is an OVGS or not, and if so finds a realization of it.

Proof. Let d+ = ((d+1 , v1), . . . , (d
+
n , vn)) be an OVS. The following algorithm determines

whether d+ is an OVGS or not. Moreover, if d+ is an OVGS, then the algorithm finds a
realization of d+ such that in each step, for every i, 1 6 i 6 n the set of out-neighbors of
vi is its leftmost PON.

Algorithm 1.Recognition and realization of the given OVS d+ = ((d+1 , v1), . . . , (d
+
n , vn)).

Step 1. Normalize the given OVS d+.

Step 2. Set i0 = 1 and W = ∅.

Step 3. While i0 6 n and d+[i0][1] = 0, set W = W ∪ {d+[i0][2]} and i0 = i0 + 1.

Step 4. Let GW be a graph with no edges on vertex set {v1, . . . , vn}.

Step 5. For i from i0 to n do the following steps.

Step 5.1. GW -normalize d+.

Step 5.2. Set Ai = {v1, . . . , vn} \ (N
−
GW

(d+[i][2]) ∪ {d+[i][2]}).

Step 5.3. If |Ai| < d+[i][1], then print “No” and stop.

Step 5.4. If |Ai| > d+[i][1], then call the set of d+[i][1] vertices in Ai with the
smallest subscripts in d+ as LGW

(d+[i][2]).

Step 5.5. For every v in LGW
(d+[i][2]), connect d+[i][2] to v.

Step 5.6. Set W = W ∪ {d+[i][2]}.

Step 6. Return the obtained oriented graph.

In Step 1 of the algorithm, we first arrange the elements of d+ such that for every
i, 1 6 i 6 n, d+[i][1] 6 d+[i+1][1] (normalizing d+). In Step 2, we define variable i0 with
initial value one and empty set W . In Step 3, we increase i0 to the smallest subscript
for which vertex d+[i0][2] has positive outdegree d+[i0][1]. Moreover, we add every vertex
with zero outdegree to W . In Step 4, we consider graph GW on vertex set {v1, . . . , vn}
without any edges. During the algorithm we extend GW to a realization of d+ (if possible)
by adding some edges such that the out-neighbors of vertices in W are preserved. Namely,
in Step 5, for i from i0 to n, we determine the out-neighbors of vertex d+[i][2], while the
out-neighbors of all vertices with subscripts less than i are already identified. In Step 5.1,
we rearrange d+ such that it is GW -normal, if necessary.

In Step 5.2, we obtain the set of allowed out-neighbors for d+[i][2], and we denote this
set by Ai. By Theorem 1, if d+ is an OVGS, then there exists a realizationG of it such that,
for every j, 1 6 j 6 i−1, N+

G (d
+[j][2]) = N+

GW
(d+[j][2]) andN+

G (d
+[i][2]) = LGW

(d+[i][2]).
Hence, according to the size of Ai, we implement Steps 5.3 and 5.4 as follows. In Step 5.3,
if size of Ai is less than d+[i][1], then we conclude that there is no realization for the given

the electronic journal of combinatorics 28(1) (2021), #P1.6 6

OVS d+. Thus, the algorithm prints “No” and stops the algorithm. Otherwise, in Step 5.4
we determine the elements of LGW

(d+[i][2]) as the leftmost PON of d+[i][2]. In Step 5.5,
we connect d+[i][2] to the vertices in LGW

(d+[i][2]). In Step 5.6, we add vertex d+[i][2] to
W . Finally, in Step 6, if d+ is an OVGS, then the algorithm returns the realization of d+.

We now prove that Algorithm 1 is a polynomial time algorithm. In Step 1, 5.1 and
5.4, we have to use merge sorting and therefore these steps are of order O(n logn). Step 3,
5.2 and 5.5 are single scans and therefore, the running time of these steps is O(n). The
running time of the other steps of the algorithm is O(1). Since Step 5, runs at most n

times, then the time complexity of the algorithm is O(n2 log n).

4 Star chromatic index of 2H-trees

In this section, using the results in Section 1, we give a polynomial time algorithm to
find the star chromatic index of 2H-trees. For this purpose, we first show the equivalency
between the following two problems.

Problem 3.

Given: a 2H-tree, Tn1,...,nt
.

Find: minimum integer k for which there is a star edge coloring of Tn1,...,nt
with t + k

colors.

Problem 4.

Given: an OVS d+ = ((n1, v1), . . . , (nt, vt)).
Find: minimum integer k for which D+

k = ((0, vt+1), . . . , (0, vt+k), (n1, v1), . . . , (nt, vt)) is
an OVGS.

Note that, since the root of 2H-tree Tn1,...,nt
is of degree t, we have χ′

s(Tn1,...,nt
) > t.

Hence, without loss of generality we can assume that χ′
s(Tn1,...,nt

) = t+k, for some integer
k > 0. Thus, finding the star chromatic index of Tn1,...,nt

is in fact equivalent to finding
the minimum k for which there is a (t+ k)-star edge coloring of Tn1,...,nt

. In the following
theorem, we prove that finding the minimum desired k is polynomially equivalent to
finding the minimum k for which OVS D+

k = ((0, vt+1), . . . , (0, vt+k), (n1, v1), . . . , (nt, vt))
is an OVGS.

Theorem 5. Problem 3 and Problem 4 are polynomially equivalent.

Proof. First assume that c is a star edge coloring of 2H-tree Tn1,...,nt
, with color set

C = {1, . . . , t + k}. Let vertex u be the root of Tn1,...,nt
and u1, . . . , ut be the neigh-

bors of u. Up to renaming colors, we can assume that c(uui) = i, for every i, 1 6 i 6 t.
We now construct a digraph G with the following vertex set and edge set.

V (G) = {vi : 1 6 i 6 t+ k}, (corresponding to colors in C)

E(G) = {−−→vivj : i 6= j, 1 6 i 6 t, 1 6 j 6 k+ t, and there is an edge with color j in Eui
}.

the electronic journal of combinatorics 28(1) (2021), #P1.6 7

Since c is a proper edge coloring, for every i, 1 6 i 6 t, c uses ni (the size of Eui
)

different colors from C \{i} for coloring the edges in Eui
. Therefore, for every i, 1 6 i 6 t,

d+(vi) = ni and the rest of the vertices in G have zero outdegree. Moreover, there are
no loops and no two edges with the same direction between any two vertices in G. Also,
since c is a star edge coloring, for every i and j in {1, . . . , t}, if color j appears in Eui

,
then color i cannot appear in Euj

, while each color in {t + 1, . . . , t + k} can be used in
every Eui

. Therefore, for every i and j, where i 6= j and 1 6 i, j 6 t + k, G contains at
most one of the edges −−→vivj and

−−→vjvi. Hence, G is a realization of D+
k .

Conversely, assume that G is a realization of D+
k . Then, for each i, 1 6 i 6 t,

vertex vi has ni different out-neighbors. Moreover, if for some j ∈ C, −−→vivj ∈ E(G), then
−−→vjvi 6∈ E(G). Now we construct an edge coloring c for Tn1,...,nt

as follows. For every
i, 1 6 i 6 t, we define c(uui) = i and color the edges of Eui

with different elements of
{j : −−→vivj ∈ E(G)}. This edge coloring is a star edge coloring of Tn1,...,nt

, because if there
exists a bi-colored path, say xuiuujy, then c(xui) = c(uuj) = j and c(yuj) = c(uui) = i.
Therefore, by definition of c, both edges −−→vivj and −−→vjvi must belong to E(G), which is a
contradiction. Thus, c is a star edge coloring of Tn1,...,nt

. It is easy to see that the above
argument provides a polynomial time reduction from Problem 3 to Problem 4 and vice
versa.

By proof of Theorem 5, given D+
k = ((0, vt+1), . . . , (0, vt+k), (n1, v1), . . . , (nt, vt)) with

realization G, we can find a star edge coloring of Tn1,...,nt
(with root u) in which for every

i, 1 6 i 6 t, the color of uui is i and the color set of the edges in Eui
corresponds to

N+
G (vi). For example, assume that k = 2 and D+

2 = ((0, v4), (0, v5), (2, v1), (3, v2), (3, v3))
is an OVGS with realization G, shown in Figure 1. Then, n1 = 2 and n2 = n3 = 3. By
proof of Theorem 5, if for every i, 1 6 i 6 3, we color edge uui in T2,3,3 with i, and color
an edge in Eui

with color j, wherever −−→vivj is an edge in G, then the obtained coloring is
a star edge coloring of T2,3,3, as demonstrated in Figure 2.

1
2

3

5

5
4

5 1 1 4
4

u

u1

u2

u3

Figure 2: A star edge coloring of T2,3,3 corresponding to the graph shown in Figure 1.

Now using Theorem 1, 2, and 5, we are ready to propose a polynomial time algorithm
to solve Problem 3.

Theorem 6. There is a polynomial time algorithm for computing the star chromatic index

of every 2H-tree and presenting an optimum star edge coloring of it.

Proof. In the following algorithm, we present an optimum star edge coloring for the given
2H-tree Tn1,...,nt

.

the electronic journal of combinatorics 28(1) (2021), #P1.6 8

Algorithm 2. An optimum star edge coloring of the given Tn1,...,nt
with root u.

Step 1. Set k = 0 and D+
k = ((n1, v1), . . . , (nt, vt)).

Step 2. While Algorithm 1 returns “No” for the given OVS D+
k ,

set k = k + 1 and D+
k = ((0, vt+k), D

+
k−1[1..k + t− 1]).

Step 3. Let G be the realization of D+
k obtained in the last implement of Step 2.

For i from 1 to t do the following steps.

Step 3.1. Color edge uui of Tn1,...,nt
with i.

Step 3.2. Color the edges of Eui
with different subscripts of the vertices in N+

G (vi).

Step 4. Return the value of k and the obtained edge coloring as a star edge coloring
of Tn1,...,nt

with t+ k colors.

In Step 1 and 2 of Algorithm 2, we find the minimum k for which D+
k is an OVGS. In

Step 1 of Algorithm 2, we define OVS D+
k and variable k (with initial value zero) that its

final value in the algorithm is the answer to Problem 3. The value of k, only changes if in
Step 2 Algorithm 1 does not return a realization of D+

k . In such a case, we increase k by
one, and we add the ordered pair (0, vt+k) to OVS D+

k−1. In Step 3, we take the realization
G of Dk (obtained in the previous step for the final value of k), and by Theorem 5 we use
the subscripts of the out-neighbors of each vertex in G to define a star edge coloring for
Tn1,...,nt

. In Step 4, Algorithm 2 returns the final value of k and an optimum star edge
coloring of Tn1,...,nt

Note that only Step 2 and 3 of the algorithm require more than O(1) computational
operations. If ∆ is the maximum degree of Tn1,...nt

, then its star chromatic index is at most
⌊3∆

2
⌋ (see Theorem 4 in [1]). Therefore, in Step 2, Algorithm 1 runs at most O(∆) times

and the time complexity of this step is O(∆3 log∆). Step 3 of Algorithm 2 is transforming
a solution of Problem 4 to a solution of Problem 3 and its time complexity is O(∆). Thus,
the time complexity of the algorithm is O(∆3 log∆).

5 Star chromatic index of trees

In this section, our goal is to find the star chromatic index of every tree and to present
a polynomial time algorithm that provides an optimum star edge coloring of it. For this
purpose, we extend the result of Section 4 (for 2H-trees) to every tree, as follows.

Let T be a tree and v be a vertex of it. The induced subgraph of T on the vertices
with distance at most two from v is a 2H-tree with root v, that is denoted by Tv. Clearly,

χ′
s(T) > max{χ′

s(Tv) : v ∈ V (T)}.

In the following theorem, we show that in fact the equality holds for every tree.

Theorem 7. For every tree T , we have

χ′
s(T) = max{χ′

s(Tv) : v ∈ V (T)}.

the electronic journal of combinatorics 28(1) (2021), #P1.6 9

Moreover, there is a polynomial time algorithm to find a star edge coloring of T with

χ′
s(T) colors.

Proof. Let m = max{χ′
s(Tv) : v ∈ V (T)}. Since χ′

s(T) > m, to show the equality, it
suffices to present a star edge coloring of T with m colors. To see that, in Algorithm 3,
we present a star edge coloring of T with m colors. The main idea of this algorithm is
that for every vertex v of T , it defines an OVGS of length m that corresponds to Tv and
obtains a realization for it. Then, using the arguments in Theorem 5, the algorithm colors
the edges of Tv with m colors.

We use the following assumptions and notations in Algorithm 3. Let T be a rooted
tree with root u. We denote the neighbors of every vertex v in T , by f1(v), . . . , fd(v)(v).
If v 6= u is a vertex at level ℓ, then we assume that f1(v) is the parent of v. Moreover,
we assume that d(f2(v)) 6 d(f3(v)) 6 · · · 6 d(fd(v)(v)). If v = u, then we also have
d(f1(v)) 6 d(f2(v)). For each vertex v in T , by C(v) we mean the set of colors of the
edges incident to v.

Algorithm 3. An optimum star edge coloring of the given tree T .

Step 1. For every vertex v of T , run Algorithm 2 to determine χ′
s(Tv).

Step 2. Set m = max{χ′
s(Tv) : v ∈ T}, and C = {1, . . . , m}.

Step 3. Consider an arbitrary vertex u of T as the root.

Step 4. For i from 1 to d(u) color edge ufi(u) with i.

Step 5. Set ℓ = 2.

Step 6. While there exist an uncolored edges in T do the following steps.

Step 6.1. If there is no uncolored edge between vertices at level ℓ and ℓ+ 1, then
set ℓ = ℓ+ 1.

Step 6.2. Choose a vertex v at level ℓ that has uncolored incident edges.

Step 6.3. Set u′ = f1(v), t = d(u′), C ′ = C \ C(u′), k = |C ′|.

Step 6.4. For i from 1 to t, let ni = |Efi(u′)| and qi be the color of edge u′fi(u
′).

Step 6.5. Set D+
k = ((0, vp1), . . . , (0, vpk), (n1, vq1), . . . , (nt, vqt)),

where C ′ = {p1, . . . , pk}.

Step 6.6. If ℓ = 2, then set i0 = 1 and W = {vp1, . . . , vpk}.
Otherwise, set i0 = 2 and W = {vp1, . . . , vpk , vq1}.

Step 6.7. While i0 6 t and ni0 = 0, set i0 = i0 + 1 and W = W ∪ {vqi0}.

Step 6.8. Let GW be the graph with no edges on vertex set {v1, . . . , vm}.

Step 6.9. If ℓ > 2, then add the edges {−−→vq1vc : c ∈ C(f1(u
′)) \ {q1}} to GW .

Step 6.10. For i from i0 to t do the following steps.

Step 6.10.1. GW -normalize D+
k .

Step 6.10.2. Set Ai = {v1, . . . , vm} \ (N
−
GW

(vqi)∪ {vqi}), and add edges from vqi
to ni vertices in Ai with the smallest possible subscripts in D+

k .

the electronic journal of combinatorics 28(1) (2021), #P1.6 10

Step 6.10.3. Color the edges of Efi(u′) with different subscripts of vertices in
N+

GW
(vqi) such that the color set of the last k edges of Efi(u′) is C

′.

Step 6.10.4. Set W = W ∪ {vqi}.

Step 7. Return the obtained edge coloring of T .

The performance of Algorithm 3 is as follows. In Step 1, for every vertex v of T , we
apply Algorithm 2 to determine χ′

s(Tv). In Step 2, we define m = max{χ′
s(Tv) : v ∈ T}

and color set C = {1, . . . , m}. In Step 3, we consider an arbitrary vertex u as the root
of T . Then in Step 4, we color the edges incident to u. In the rest of the algorithm, we
consider the set of edges incident to vertices at levels ℓ and ℓ + 1 (ℓ > 2). If there is an
uncolored edge in this set, we extend the current coloring to a coloring in which the edges
in this set are colored as follows. In Step 5, we define the variable ℓ with initial value 2
that indicates the smallest integer for which there is an uncolored edge incident to the
vertices at level ℓ, during the algorithm. While the edge coloring of T is not completed,
in every iteration of Step 6, if there is no uncolored edge incident to the vertices at level
ℓ, then we increase the value of ℓ one unit in Step 6.1. Otherwise, in Step 6.2, we choose
a vertex v at level ℓ with uncolored incident edges. To color the edges incident to v,
we consider 2H-tree Tu′, where u′ is the parent of v (u′ = f1(v)). In Step 6.3 to 6.5,
by Theorem 5, we define the OVGS D+

k = ((0, vp1), . . . , (0, vpk), (n1, vq1), . . . , (nt, vqt)) of
order m that corresponds to Tv. Note that C

′ = {p1, . . . , pk} is the set of colors that have
been not used for coloring the edges incident to u′.

In Step 6.6 to 6.10.2, using the similar arguments as in Algorithm 1, we find a realiza-
tion of D+

k . More precisely, in Step 6.6, we define variable i0 that indicates the smallest
index of the neighbors of u′ with positive number of uncolored incident edges. The final
value of i0 is determined in Step 6.7. Moreover, in Step 6.6 and 6.7, we define the subset
W of {v1, . . . , vm} that contains the vertices with indices in C ′∪{qi : |C(fi(u

′))| = ni+1}.
In Step 6.8, we construct graph GW on vertex set {v1, . . . , vm}. In Step 6.9, if the chosen
vertex is at level ℓ > 2, then we add edges from vq1 to the vertices with subscripts in
C(f1(u

′)) \ {q1}. In Step 6.10.1, we first rearrange the elements of D+
k , if necessary, to

make it GW -normal. In Step 6.10.2, for every qi ∈ C(u′) we determine the vertices of the
leftmost PON of vqi and add edges from vqi to them.

In Step 6.10.3, we color the uncolored edges incident to fi(u
′) by the out-neighbors of

vqi and then in Step 6.10.4 we add vqi to W . Note that we color the last edges in Efi(u′)

with colors from C ′. After completing the edge coloring of Tu′, we repeat Step 6 of the
algorithm, if needed. When all edges in T are colored, Algorithm 3 returns a star edge
coloring of T in Step 7.

We now prove that Algorithm 3 provides an optimum star edge coloring of T . In
this algorithm, if ℓ = 2, then the edge coloring of Tu is obtained in the same way as in
Algorithm 2. Thus, assume that v is a vertex at level l > 2, u′ = f1(v), f2(u

′) = v.
Clearly, Tu′ contains all colored edges within distance at most two from v. Therefore, if
we color the uncolored edges incident to v in such a way that no bi-colored path of length
four is created in Tu′, then we guarantee that up to this step there is no bi-colored path
of length four in T . We show that the algorithm provides a star edge coloring of Tu′ with

the electronic journal of combinatorics 28(1) (2021), #P1.6 11

m colors, as follows. We define OVS D+
k = ((0, vp1), . . . , (0, vpk), (n1, vq1), . . . , (nt, vqt))

(corresponding to Tu′ in Step 6.5). Note that in Tu′ only the edges incident to u′ and
f1(u

′) have been colored. Let W0 = {vp1, . . . , vpt}, GW0
is the graph with no edges on

vertex set {v1, . . . , vm}, and for every i, 1 6 i 6 t, Wi = Wi−1 ∪ {vqi}. Since for
every i, 2 6 i 6 t, we color the edges of Efi(u′) in Tu′ with the leftmost PON of vqi
in GWi−1

, by Theorem 1, to prove that in Step 6.10 we achieve a realization of D+
k , it

suffices to show that LGW0
(vq1) = {−−→vq1vc : c ∈ C(f1(u

′)) \ {q1}} (see Step 6.9). Obviously,
LGW0

(vq1) = {vp1 , . . . , vpk , vq2, . . . , vqt−j
}, where j = m − n1 − 1 and j 6 t (if j > t, then

LGW0
(vq1) contains m− j elements of {vp1, . . . , vpk}). Note that the color set of the edges

in Eu′ has been identified in the edge coloring of Tf1(u′) and in Step 6.10.3, we color the
last j edges of Eu′ with {qt−j+1, . . . , qt} ⊆ C \ C(f1(u

′)). Hence, C(f1(u
′)) contains the

indices of the vertices in LGW0
(vq1), as desired.

Finally, we prove that Algorithm 3 is a polynomial time algorithm. Let n be the
number of vertices of T . In Step 1, Algorithm 2 runs n times to determine the value of
m. The running time of this process is O(n4 log n). Since the other steps are similar to
the process in Algorithm 2, their time complexity is at most O(n3 log n). Therefore, the
running time of Algorithm 3 is of order O(n4 logn).

6 Star chromatic index of certain trees

In this section, we provide some tight bounds on the star chromatic index of 2H-trees.
Using these bounds we find a formula for the star chromatic index of regular 2H-trees and
the caterpillars. In [1], Bezegová et al. presented an algorithm that obtains a ⌊3∆

2
⌋-star

edge coloring of every tree T with maximum degree ∆. If we restrict their algorithm to
the special case where T is the t-regular 2H-tree T(t,t), then we will have the following
algorithm.

Algorithm 4. [1] Star edge coloring c of T(t,t) with root u.

Step 1. For i from 0 to t− 1, set c(uui+1) = i+ 1.

Step 2. For i from 0 to t− 1 do the following steps.

Step 2.1. For j from 1 to ⌊ t
2
⌋ set c(ui+1ft−j+1(ui+1)) = t+ j.

Step 2.2. For j from 1 to ⌈ t
2
⌉ − 1 do the following steps.

Step 2.2.1. Set a = (i+ j (mod t)) + 1.

Step 2.2.2. Color edge ui+1fj+1(ui+1) with c(ufa(u)).

Step 3. Return the edge coloring c of T(t,t).

Algorithm 4 does not always provide an optimum star edge coloring of an arbitrary
tree. In this algorithm, if we take M = max{t, nt + 1}, then we get χ′

s(Tn1,...,nt
) 6 ⌊3M

2
⌋.

In the following lemma and theorem, we give more precise bounds for the star chromatic
index of Tn1,...,nt

.

the electronic journal of combinatorics 28(1) (2021), #P1.6 12

Lemma 8. If T(r,t) is an r-regular 2H-tree, then

χ′
s(T(r,t)) 6

r +

⌊

t

2

⌋

if t 6 2r − 1,

t if t > 2r.

Proof. Let u1, . . . , ut be the neighbors of the root u in T(r,t). To obtain the upper bounds,
we present a star edge coloring for T(r,t) with the number of colors equals to the bound in
each case. To obtain such colorings we use Algorithm 4. Let c be the star edge coloring
of T(t,t) provided by Algorithm 4. We have two possibilities for r and t: either r > t, or
r < t. In each case, we transform the coloring c of T(t,t) to a coloring c′ of T(r,t) as follows.

If r > t, then we color the subgraph T(t,t) of T(r,t) with coloring c using t+ ⌊ t
2
⌋ colors.

We now have (r − t) uncolored edges in each Eui
. We use (r − t) new colors for the

remaining edges to extend coloring c into an edge coloring c′ for T(r,t) using

t+

⌊

t

2

⌋

+ (r − t) = r +

⌊

t

2

⌋

colors. Note that using the new (r − t) colors in Eui
’s, 1 6 i 6 t, does not create a

bi-colored path of length four. Therefore, c′ is a star edge coloring of T(r,t).
If r < t, then again we have two cases: either t 6 2r− 1, or t > 2r. In both cases, we

remove (t−r) edges in each Eui
, 1 6 i 6 t, from T(t,t) as follows. Note that in Algorithm 4

the color set of the last ⌊ t
2
⌋ edges of each Eui

is Y = {t + 1, . . . , t + ⌊ t
2
⌋} (consisting of

⌊ t
2
⌋ colors). Moreover, note that the colors of Y are not used for coloring any edge uui,

1 6 i 6 t. If t 6 2r − 1 or equivalently ⌊ t
2
⌋ > (t− r), then assume that A is fixed subset

of (t − r) colors from Y . Since the color set of every Eui
contains the colors in A, if we

delete all of the edges with colors in A from Eui
, then we obtain a star coloring c′ of T(r,t)

using

t+

⌊

t

2

⌋

− (t− r) = r +

⌊

t

2

⌋

colors. If t > 2r or equivalently ⌊ t
2
⌋ < (t− r), then we delete the (t− r) edges with the

largest colors from each Eui
, 1 6 i 6 t. Note that this way, all of the edges with colors in

Y are deleted from each Eui
, 1 6 i 6 t, since colors in Y are the largest colors used in c.

Hence, we obtain a star edge coloring c′ of T(r,t) using at most

t +

⌊

t

2

⌋

−

⌊

t

2

⌋

= t

colors and the proof is complete.

Theorem 9. If Tn1,...,nt
is a 2H-tree and σt =

∑t

i=1 ni, then

σt

t
+

⌈

t+ 1

2

⌉

6 χ′
s(Tn1,...,nt

) 6

nt + 1 +

⌊

t

2

⌋

if t 6 2nt + 1,

t if t > 2nt + 2.

the electronic journal of combinatorics 28(1) (2021), #P1.6 13

Proof. Let u1, . . . , ut be the neighbors of the root u in Tn1,...,nt
. As we mentioned in

Section 5, we know that χ′
s(Tn1,...,nt

) = t + k, for some non-negative integer k. We now
find a lower bound on k as follows.

As we know Tn1,...,nt
is a tree of height at most two, and therefore it has three levels.

Let A denote the set of edges in Tn1,...,nt
incident to u, and B denote the set of edges in

Tn1,...,nt
incident to vertices at level 3. Clearly, A ∩B = ∅ and E(Tn1,...,nt

) = A ∪B; that
is, {A,B} is a partition for the edge set of Tn1,...,nt

.
Now assume that c is a star edge coloring for Tn1,...,nt

with t+k colors, where the colors
are taken from set {1, . . . , t+k}. Note that set A consists of exactly t edges that all meet
vertex u. Therefore, c(A) must contain t distinct colors. Without loss of generality assume
that c(A) = {1, . . . , t} and c(uui) = i, for 1 6 i 6 t. Also, note that every edge in B

receives a color either from {1, . . . , t}, or from {t+1, . . . , t+k}. Let B1 denote the subset
of edges in B that receive a color from {1, . . . , t}, and B2 denote the subset of edges in B

that receive a color from {t+ 1, . . . , t+ k}. Clearly,

|B1|+ |B2| = |B| =
t

∑

i=1

(d(ui)− 1) =
t

∑

i=1

ni = σt. (1)

For every i and j, 1 6 i, j 6 t, let Sc be the set of ordered pairs (Eui
, j) that color j is

used for an edge in Eui
. It is easy to see that there is a bijection between Sc and B1, and

therefore, |Sc| = |B1|. Moreover, since c is a star edge coloring of Tn1,...,nt
, for every i and

j, 1 6 i, j 6 t, only one of the pairs (Eui
, j) and (Euj

, i) may belong to Sc. Thus, we

conclude that |B1| = |Sc| 6
t(t−1)

2
. On the other hand, every color j ∈ {t + 1, . . . , t + k}

could have been used for coloring an edge in every Eui
, for 1 6 i 6 t. Therefore, |B2| 6 tk.

Hence, by (1), we have

t(t− 1)

2
+ tk > |B1|+ |B2| = |B| = σt.

Therefore, we conclude that

χ′
s(Tn1,...,nt

) = t+ k >
σt

t
+

t + 1

2
.

Moreover, Tn1,...,nt
is a subgraph of 2H-tree T(nt,t). Hence by Lemma 8, the upper

bound for the star chromatic index of Tn1,...,nt
is clearly established.

By Lemma 8 and Theorem 9, we have the following corollary, that shows both bounds
in Theorem 9 are tight. Note that when t > 2r, the maximum degree of T(r,t) is t. Hence,
in this case χ′

s(T(r,t)) = t.

Corollary 10. If T(r,t) is an r-regular 2H-tree, then

χ′
s(T(r,t)) =

r +

⌊

t

2

⌋

if t 6 2r − 1,

t if t > 2r.

the electronic journal of combinatorics 28(1) (2021), #P1.6 14

Our goal in the rest of this section is to find the star chromatic index of the caterpillars.
For this purpose, first we prove the following theorem. Note that if Tn1,...,nt

is a 2H-tree
with t = 1, then Tn1,...,nt

is a star and clearly, χ′
s(Tn1,...,nt

) = nt + 1 = ∆.

Theorem 11. If in a 2H-tree Tn1,...,nt
(t > 2) with root u and maximum degree ∆, we

have n1 = · · · = nt−2 = 0, then

∆ 6 χ′
s(Tn1,...,nt

) 6 ∆+ 1.

Moreover, χ′
s(Tn1,...,nt

) = ∆ + 1 if and only if d(ut−1) = d(ut) = ∆.

Proof. Clearly, χ′
s(Tn1,...,nt

) > ∆ (as it holds for every graph with maximum degree ∆).
To prove the upper bound note that Tnt−1,nt

is a subtree of Tn1,...,nt
. Also, by Theorem 9,

we have
χ′
s(Tnt−1,nt

) 6 nt + 2 6 ∆+ 1.

This means that there is a star edge coloring c of Tnt−1,nt
with at most ∆ + 1 colors

{1, . . . ,∆ + 1}. We now use coloring c to present a star edge coloring of Tn1,...,nt
with

∆ + 1 colors as follows. We first color the edges of the subtree Tnt−1,nt
of Tn1,...,nt

with
coloring c. It remains to color the edges uui, 1 6 i 6 t−2. Note that d(u) = t 6 ∆. Hence,
by assigning different colors of {1, . . . ,∆+ 1} \ {c(uut−1), c(uut)} to uui’s, 1 6 i 6 t− 2,
we make sure that the edges incident to u receive distinct colors. Also, since ni = 0,
1 6 i 6 t− 2, clearly we have no bi-colored path of length four. Therefore, the obtained
coloring is a star edge coloring of Tn1,...,nt

, and the upper bound is proved.
Now if d(ut−1) = d(ut) = ∆, then by Corollary 10 and the above argument, we have

∆ + 1 > χ′
s(Tn1,...,nt

) > χ′
s(Tnt−1,nt

) = ∆ + 1.

Thus, we conclude that in such a case, χ′
s(Tn1,...,nt

) = ∆ + 1.
To prove the converse direction, suppose that at least one of ut−1 and ut has degree

less than ∆. We claim that in this case, χ′
s(Tn1,...,nt

) = ∆. By monotonicity of the star
chromatic index over the subgraphs of a graph, it suffices to prove the claim for the case
where root u is of degree ∆, n1 = · · · = nt−2 = 0, nt−1 = ∆− 2, and nt = ∆− 1. For this
purpose, we define an edge coloring c for Tn1,...,nt

in which c(uui) = i, for 1 6 i 6 ∆ (note
that here, t = ∆), {1, . . . ,∆− 1} is the set of colors used for coloring the edges incident
to ut−1 and {1, . . . ,∆} is the set of colors used for coloring edges incident to ut. It is easy
to check that c is a ∆-star edge coloring of Tn1,...,nt

. Therefore, χ′
s(Tn1,...,nt

) = ∆ in such
a case. Hence, χ′

s(Tn1,...,nt
) = ∆ + 1 if and only if both ut−1 and ut are of degree ∆.

We now use Theorem 7 and 11 to find a characterization of the star chromatic index
of the caterpillars in terms of their maximum degree.

Theorem 12. If T is a caterpillar with maximum degree ∆, then

∆ 6 χ′
s(T) 6 ∆+ 1.

Moreover, χ′
s(T) = ∆ + 1 if and only if T contains two vertices u and v of degree ∆ at

distance two.

the electronic journal of combinatorics 28(1) (2021), #P1.6 15

Proof. By Theorem 7, we know that χ′
s(T) = max{χ′

s(Tv) : v ∈ V (T)}. It is easy to see
that by definition of the caterpillars, for every v ∈ V (T), Tv is a 2H-tree in which the
root v has at most two neighbors of degree at least two. Hence, Theorem 11 implies that

∆ 6 max{χ′
s(Tv) : v ∈ V (T)} 6 ∆+ 1.

Therefore, we conclude that ∆ 6 χ′
s(T) 6 ∆+ 1. Moreover, χ′

s(T) = ∆+ 1 if and only if
χ′
s(Tv) = ∆+1, for some v ∈ V (T). By Theorem 11, we can easily see that χ′

s(Tv) = ∆+1,
for some v ∈ V (T) if and only if there are two vertices of degree ∆ at distance two in
T .

References

[1] L. Bezegová, B. Lužar, M. Mockovčiaková, R. Soták and R. Škrekovski. Star edge
coloring of some classes of graphs. J. Graph Theory, 81(1):73–82, 2016.

[2] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Vol. 290. Macmil-

lan London, 2008.

[3] T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices and graph
coloring blems. SIAM J. Numer. Anal., 20(1):187–209, 1983.

[4] Z. Dvořák, B. Mohar and R. Šámal. Star chromatic index. J. Graph Theory,
72(3):313–326, 2013.

[5] P. L. Erdős, I. Miklós and Z. Toroczkai. A simple Havel-Hakimi type algorithm
to realize graphical degree sequences of directed graphs. Electron. J. Combin.,
17(1):#R66, 2010.

[6] G. Fertin, A. Raspaud and B. Reed. Star coloring of graphs. J. Graph Theory,
47(3):163–182, 2004.

[7] V. Havel. A remark on the existence of finite graphs. Casopis Pest. Mat., 80:477–480,
1955.

[8] S. Kerdjoudj, K. Pradeep and A. Raspaud. List star chromatic index of sparse graphs.
Discrete Math., 341(7):1835–1849, 2018.

[9] H. Lei, Y. Shi, Z.-X. Song and T. Wang. Star 5-edge-colorings of subcubic multi-
graphs. Discrete Math., 341(4):950–956, 2018.

[10] X. S. Liu and K. Deng. An upper bound for the star chromatic index of graphs with
∆ > 7. J. Lanzhou Univ., 44(2):98–99, 2008.

[11] B. Lužar, M. Mockovčiaková and R. Soták. On a star chromatic index of subcubic
graphs. Electron. Notes Discrete Math., 61:835–839, 2017.

[12] K. Pradeep and V. Vijayalakshmi. Star chromatic index of subcubic graphs. Electron.
Notes Discrete Math., 53:155–164, 2016.

[13] Y. Wang, W. Wang and Y. Wang. Edge-partition and star chromatic index. Appl.

Math. Comput., 333:480–489. 2018.

the electronic journal of combinatorics 28(1) (2021), #P1.6 16

	Introduction
	Preliminaries
	Realization of outdegree-vertex sequences
	Star chromatic index of 2H-trees
	Star chromatic index of trees
	Star chromatic index of certain trees

