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A B S T R A C T

Routing methods for optimal distribution of traffic in data networks that can

also provide quality of service (QoS) for users is one of the challenges in recent

years’ research on next generation networks. The major QoS requirement in

most cases is an upper bound on end-to-end path delay. In multipath virtual

circuit switched networks each session distributes its traffic among a set of

available paths. If all possible paths are considered available, then the source’s

decision on its traffic distribution can be considered as routing. A model of

the routing function as a mathematical problem which distributes the input

traffic over possible paths for each session is proposed here. A distributed and

iterative algorithm which will keep the average end-to-end delay for individual

paths below a required bound is introduced. This algorithm minimizes the total

average delay of all packets in the network. The convergence of the algorithm

is illustrated.

c© 2014 JComSec. All rights reserved.

1 Introduction

Computer networks have evolved into a new genera-
tion where a wide range of new services are provided
to various network users [1]. For many of these new
services, such as VOIP, IPTV, Network Games, etc, it
is not sufficient just to transfer the information to the
destination, but for the users’ satisfaction it is neces-
sary to guarantee their required QoS as well. In this
manner, the new services with arbitrary QoS require-
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ments can be deployed in the network. Providing the
QoS must be achieved by utilizing the least possible
resources of the network such that the network can be
optimized in terms of resource utilization [2]. Network
optimization algorithms determine traffic distribution
for a given traffic demand so that the optimum re-
source utilization can be achieved. But the research
results so far show that providing QoS in cases where
routing is performed without paying attention to the
QoS requirements is difficult. Therefore, considering
the required QoS in the optimization algorithms and
determining the routes accordingly is one of the chal-
lenges of the next generation networks [3].

Recently several new services have become popular
in the internet qualities of which depend on the end-to-
end delay experienced by the packets in the network
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[4–8]. For an acceptable QoS it is required that the end-
to-end delay is kept under a threshold level. Providing
QoS is not an easy task in datagram networks. In new
generation networks, virtual circuit switched networks
such as MPLS is used to provide a better framework
to implement QoS.

Most of the QoS provisioning algorithms in the
literature exploit certain mechanisms to guarantee
the delay for a given path. Nen Jin, et.al show that
for providing QoS in a DiffServ network, the price
per unit of traffic rate for each traffic class can be
adjusted. They assume a given path for a user. The
satisfaction of the user is modeled through a convex
function of the traffic passing through that given path
and the QoS level of the assigned traffic class [9]. In
[5] QoS is proposed to be provided by adjusting the
capacity allocated to each DiffServ class. The QoS
measure is the exact proportion of the average delay
of two different traffic classes. Each user’s traffic is
routed through a predetermined path and depending
on the amount of traffic of each class, the traffic over
this path experiences a delay which is considered as
its cost. In [6] a dynamic method is used to adjust the
users’ traffic rate in a manner that a minimum rate
and a maximum delay threshold are guaranteed. A
predetermined path used for routing the traffic and its
rate is determined by solving a convex optimization
problem which satisfies the user’s delay requirements.

Most of the articles that study the traffic distribu-
tion in virtual circuit switched networks assume a set
of known paths for each source-destination pair. To
simplify the problem, usually, a small set of paths is
selected from all possible paths beforehand [10, 11].
In the articles that find routes based on QoS require-
ments, the QoS is mostly measured based on m pa-
rameters. Each QoS parameter for a path is sum of
the QoS parameters of its links. The links are modeled
by an m-dimensional weight vector W = (w1, ..., wm)
the components of which represent the QoS parame-
ters of links. Paths with QoS parameters lower than
the threshold levels will satisfy the required QoS and
can be selected. In this manner the QoS-based routing
problem is modeled as a multi-constraint (optimal)
problem. Since these problems are NP-hard, in most
cases heuristic methods are adopted in solving them
[3].

Here the objective is to introduce a scalable method
in terms of the number of sessions, in order to dis-
tribute the network’s traffic over available paths in
a virtual circuit switched network that would min-
imize the average delay for all packets as the total
cost of the network, while guaranteeing a bounded
end-to-end path delay as the users’ QoS requirement.
The proposed method in this article is based on the

analysis of the traffic distribution problem with delay
constraints. As a result, this problem is modeled as
a constrained convex optimization problem and the
routing algorithm is provided in accordance to the
analytical solution of this problem.

In Section 2 an analytical model for distributing traf-
fic is introduced where the traffic distribution is mod-
eled as a constrained convex optimization problem. In
Section 3 the Lagrangian dual method is adopted for
solving this problem. An algorithm that can be real-
ized in a data network based on the dual method is
proposed here. In Subsection 3.1 the implementation
method of the proposed algorithm in real networks
is explained. In section 4 the simulation results are
provided expressing that this proposed method con-
verges and can achieve its objective in an effective
manner. This article will be concluded in Section 5.
The analysis of the proposed model is provided in the
Appendix A.

2 Traffic Distribution Model

The objective in common for all the routing algorithms
is to determine the appropriate paths for carrying the
users’ traffic from source to destination. All or part
of each user’s traffic is assigned to each selected path;
therefore, a direct output of a routing algorithm is
the amount of traffic allocated to each path. In fact,
routing can be modeled as a mathematical problem
which determines the distribution of all sessions’ traffic
over the network graph.

In this article source-destination pairs are assumed
to be known and are presented by the set W . Each
source-destination pair w ∈ W is considered as a
session and its average input traffic is presented by rw.
A data network is modeled as a stationary and directed
graph G(A, V ). The graph nodes, represented by set
V model the network routers or gateways and graph
links represented by set A, model the physical links
between the routers. Some of the nodes of the graph
are source or destination of the sessions in the network
(Figure 1). A session path is a set of links that connects
the source of the session to its destination. The set
of the paths of each session is called Pw. Thus the
routing problem is similar to finding the distribution
of each session’s traffic over its paths.

The parameters and notations which are used in
the rest of this article are introduced in the following
Nomenclature:

• W : The set of all existing sessions, where NW

shows the total number of these sessions
• P : The set of available paths of all sessions w ∈
W in G(A, V ),where NP shows the total number
of these paths

• Pw: The set of available paths of session w
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Figure 1. A network graph with three sessions

• rw: Average traffic rate of session w
• xp: Traffic assigned to path p ∈ P
• X: A vector of NP components whose pth com-

ponent is the assigned traffic to path p, xp
• λp: The lagrangian multiplier according to the

delay constraint of path p
• Λ: A vector of NP components whose pth com-

ponent is the λp
• thp: The threshold level of average delay of pack-

ets in path p
• Th : A vector of NP components whose pth com-

ponent is thp
• fij : The flow crossing from link (i, j) of G(A, V )
• hp(X): The cost function associated with path p
• H(X): A vector of Np components whose pth

component is hp(X)
• Dij(fij): The cost function associated with link

(i, j)

Based on the above definitions the following rela-
tions hold:

xp ≥ 0 ∀p ∈ P (1)∑
p∈Pw

xp = rw ∀w ∈W, ∀p ∈ Pw (2)

fij =
∑

p|(i,j)∈p

xp ∀(i, j) ∈ A (3)

hp(X) =
∑

(i,j)∈p

Dij(fij) ∀p ∈ P (4)

If the average delay of the packets over a link is
considered as the link’s cost function, Dij(fij), and
the messages are delayed only by the links of the
network, then (5) expresses the expected delay for all
packets over the network [12]. Equation (5) indicates
the average time that packets remain in the network
and use network resources; thus, it can be considered
as the overall system cost.

D =
∑

(i,j)∈A

Dij(fij) (5)

Even in a virtual circuit network minimizing (5)
can be a good objective for traffic distribution since it
can improve network resource utilization [13, 14]. In
the virtual circuit switched networks, each session’s
traffic is distributed among the available paths. By
assuming a stable network and assuming that the
traffic of the sessions is stationary, this problem is
modeled and analyzed as the problem of distributing
the average input traffic of each session rw, over the set
of session’s paths Pw, which will result in the sessions’
path flows xp, for all sessions. Thus, fij , the total flow
of link (i, j), can be expressed by the different path
flows. As a result fij equals the sum of all path flows
traversing link (i, j), (3). Here each session represents
a customer. The expectation of each customer from
the network is defined based on the customer’s traffic’s
delay tolerance. In this case the customer will be
satisfied if the average delay is bounded to a certain
threshold. Therefore, considering the delay of each
link as its cost is deemed to be appropriate. In this
model the sum of the cost function of the links which
compose a path, is considered as the path cost, hp(X),
which is equal to the sum of the costs of the path’s links
(4). Considering (5) as the overall cost function of the
network and (4) as the customer cost, the limitation
of which is required by the customers, the routing in
the network can be modeled as Problem 1.

Problem 1.

minimize D(X) =
∑

(i,j)∈A

Dij(
∑

p|ij∈p)

xp) (6)

∑
p∈Pw

xp = rw ∀w ∈W, ∀p ∈ Pw (7)

xp ≥ 0 ∀p ∈ P (8)

hp(X) ≤ thp ∀p ∈ P (9)

In this problem, the path flows xp, are the vari-
ables. The objective function D(X) is considered as
the overall system cost. The purpose of this problem
is to find the distribution of the traffic among the
available paths in order to minimize the overall sys-
tem cost while the constraints (7) to (9) are satisfied.
Constraints (7) and (8) guarantee the acceptable al-
location of the traffic over the session’s paths, and
constraint (9) guarantees the delay limitation or users’
expectation. If constraint (9) is ignored, Problem 1 is
converted to Problem 2. Problem 2 is known as opti-
mal routing problem introduced in [15] and improved
in [14, 16–18].
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Problem 2.

minimizeD(X) =
∑

(i,j)∈A

Dij(
∑

p|ij∈p

xp)

∑
p∈Pw

xp = rw ∀w ∈W, ∀p ∈ Pw

xp ≥ 0 ∀p ∈ P

3 Solving The Problem

Usually the cost function Dij(fij) is expressed as a
convex, non-decreasing, continuous and differentiable
function; therefore, the path cost will have the above
characteristics. Since the cost functions hp(X) are con-
vex, Problem 1 is a constrained convex optimization
problem [19, 20], which can be solved using any of the
existing methods, such as Projected Gradient, Interior
Point, etc. But here the objective is to find a solu-
tion that can also be implemented in real networks.
In this regard the Lagrange dual problem is formu-
lated and solved. In other words, since Problem 1 is
a convex optimization problem the duality theorem
is adopted in solving it. The fact that strong duality
holds is presented in Proposition 1. Since there is a
practical solution to solve Problem 2 [15], the dual
problem is described using the Lagrange multipliers
related to (9). Thus the Lagrangian is (10) where only
constraint (9) is relaxed by introducing Lagrange mul-
tiplier λp for each path p ∈ P . The resultant partial
dual function is Problem 3 [19].

L(X,Λ) = D(X) +
∑
p∈P

λp.(hp(X)− thp) ∀Λ ≥ 0

(10)

Problem 3.

q(Λ) = minimizeL(X,Λ)∑
p∈Pw

xp = rw ∀w ∈W, ∀p ∈ Pw

xp ≥ 0 ∀p ∈ P

Considering Problem 3 as the dual function of Prob-
lem 1, the dual problem will be Problem 4.

Problem 4.
maximize q(Λ)

λp ≥ 0 ∀p ∈ P

As mentioned in Proposition 2, the −q(Λ) is a con-
vex function which is not necessarily differentiable in
general, but it is sub-differentiable at all points. There-
fore, Problem 4 can be solved iteratively by adopting
the subgradient method [21]. In this method an initial

value is given to variable Λ, (Λ0), and in each itera-
tion according to (11) a new value is calculated which
will be closer to the optimum value.

Λk+1 = [Λk + αk.gk]+ (11)

To calculate the new value of Λ in the kth iteration,
first a subgradient of function −q(Λ) called −gk is
calculated at Λk, and then Λk+1 is calculated by using
(11) where, αk is a positive step size and ”+” denotes
projection on the set R+. As result-4 indicates, in
order to find a vector gk the traffic must be distributed
based on Problem 3 solution according to Λ = Λk,
denoted by X∗(Λk). In this case the deviation of the
cost of a path from its threshold thp, is equal to the
associated component of gk, (12).

gk = hp(X∗(Λk))− thp (12)

Eventually, the iterative algorithm finds Λ∗ which
is the best solution for Problem 4. Obviously in this
iteration the input traffic is distributed similar to that
of the path flows which are the solution of Problem 3
for the amount of Λ = Λ∗. Since the conditions for
strong duality exists according to Proposition 1, this
distribution will be the optimum solution of Problem 1
as well. In the following section the proposed algorithm
is explained. The convergence proof of this problem is
presented in the Appendix A.

Algorithm Steps:

Step1: A feasible value is given to Λ. Since in Prob-
lem 4 every Λ ≥ 0 is acceptable, the Λ0 = 0 is used as
the initial value. In this step, the initial value of qbest

is 0.

Step2: In iteration k, Problem 3 must be solved
based on the value of Λk, leading to the optimum
value q(Λk) and the optimum point X∗(Λk). The com-
ponents of this vector are represented by x∗p(Λk). In
other words a mechanism must be used to determine
path flows, for the optimal routing problem when (13)
is considered as the cost function of each link. There-
fore the Lagrange multipliers can be interpreted as
the bottleneck indicators of the paths.

Dk
ij = (1 +

∑
p|ij∈p

λkp).Dij(
∑

p|ij∈p

x∗p(Λk)) (13)

Step3: In iteration k with respect to the value of
X∗(Λk) which is calculated in step2, the deviation of
each path’s cost from the threshold level of the same
path is calculated. Considering the Proposition 3, the
negative of this value can be considered as the pth
component of the subgradient vector of−q(Λ) at Λk or
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Figure 2. The flowchart of flow distribution algorithm

−gkp. After calculating the deviation for all paths, the

value of Λ for next iteration or Λk+1 can be calculated
using (11).

Step4: The value of qbest = max{qbest, q(Λk)}is
calculated and k is increased by one. Then if the
condition of ending the algorithm is met, the algorithm
terminates, otherwise, it goes back to step2 for next
iteration.

Condition of ending the algorithm: In a simple case,
the condition which leads to the algorithm termination
can be the maximum number of iterations (Figure 2).

3.1 Matching the algorithm with real net-
works

As mentioned before, the main objective of this article
is to distribute the input traffic of a session over
its known paths. A session can be equivalent of a
source and destination pair in virtual circuit switched
networks such as ATM and MPLS, or in general in any
network that uses explicit routing or source routing.
Even a certain DiffServ class traversing the same LSP
in these networks can be considered as a session. In
practice this proposed algorithm is implemented for
each session iteratively and in parallel for all sessions.

Here each iteration of the algorithm is assumed to
be performed in one time slot. At the end of a time
slot, destination nodes calculate the deviation of the
average delay for each path from the required delay
bound. The bottleneck multiplier of the path is cal-
culated based on its cost deviation and is sent to the
source node. The average delay of packets in each it-
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Figure 3. Network simulation graph

eration can be determined by the destination either
using analytical modeling or just by measurement. In
a case where the path delay is estimated by using mea-
surement methods, based on the assumptions about
the link cost in this article, this proposed algorithm
will definitely converge according to the Proposition 4.
During each time slot the source nodes distribute the
input traffic according to the optimal point of Prob-
lem 3. In each iteration, the Problem 3 is an optimal
routing problem where the cost function of each link
is defined by (13). This problem can be solved by one
of the existing methods [13, 14, 16–18].

Each time slot can be in the order of the end-to-end
trip time in the network. The algorithm is scalable
because it is implemented independently for each ses-
sion. If the set of the paths for each session can be
assumed to include all possible paths for the session
based on the topology of the network, the algorithm
will practically select the routes; therefore, a separate
method for determining the possible routes will not
be necessary.

4 Simulation

The algorithm for two sessions is simulated over the
network graph in Figure 3. The algorithm is executed
independently for each session in an iterative and
synchronized manner. All possible paths for session 1
are P1(14a), P2(14b) and P3(14c) and for session 2
are P4(14d), P5(14e) and P6(14f).

P1 = {(1, 2), (2, 4)} (14a)

P2 = {(1, 2), (2, 3), (3, 4)} (14b)

P3 = {(1, 3), (3, 4)} (14c)

P4 = {(2, 3), (3, 4), (4, 5)} (14d)

P5 = {(2, 4), (4, 5)} (14e)

P6 = {(2, 5)} (14f)

In this simulation the average delay of the links is
modeled as (15) which is a convex, continuous, and
differentiable function of its average traffic. In this
equation Cij is the capacity of the link (i, j) and Kij

is a positive coefficient of the link. The domain of this
function covers the traffic flows between 0 andCij only
and as the flow gets closer to Cij the delay increases
exponentially. The function is undefined for values
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Table 1. Parameters of the Network links

Link(i,j) K(i,j) C(i,j)

(1,2) 2 44.7

(1,3) 4 16

(2,3) 3 44.7

(2,4) 1 44.7

(2,5) 8 44.7

(3,4) 4 44.7

(4,5) 2 16

equal to or above Cij . The coefficient and capacity of
the links of Figure 3 are proposed in Table 1.

Dij(fij) =
(Kij ∗ f2

ij)

(Cij − fij)
(15)

The constant input traffics are used in the simula-
tion as the expected values of the sessions’ traffics in
general. The average input traffic for each session is as-
sumed to be 20 Mbps. In this simulation the attempt
is made to clarify two important points: to show that
the iterative algorithm converges to the optimal point
of Problem 1 and that this algorithm achieves its ob-
jective in limiting the end-to-end delay of the paths in
addition to minimizing the total network delay. Since
the main objective of this proposed model is similar
to the optimal routing problem, the Problem 2, the
results of the proposed algorithm are compared with
the Problem 2, for the above scenario.

In the first step, the path flows for each session
are calculated based on solving the optimal routing
problem, the Problem 2, by applying CVX package
in MATLAB. In this case the end-to-end delay for
each path as well as the expected delay of packets are
calculated (see Table 2).

In the second step, the path flows for each session
are calculated based on the optimal routing problem
with end-to-end delay constraint, Problem 1. The
end-to-end delay bound for each path is assumed to
be 76 units in this simulation. The path flows are
calculate by solving Problem 1 applying CVX package
in MATLAB (see Table 3).

The total cost of the network in step 2 is slightly
higher than the optimum total cost in step 1. Yet in
step 1 the individual path cost, for paths 1 and 6,
is beyond the end-to-end delay bound. This means
that this proposed algorithm is able to limit the delay
with a minimum increase in the total cost. Also it can
be seen that based on the Complementary Slackness
condition, xp of paths 1 and 6 is decreased from the

optimum values of step 1, down to a point that their
average delays are decreased to the threshold level.
As such, the optimum dual variable, DV, of these
two paths is expected to be higher than zero while
DV of the other paths expected to be zero. It can be
interpreted that the marginal cost of the paths 1 and
6 should be lower compared to that of path 3 for the
calculated traffic.

In the final step, the proposed algorithm is simu-
lated through MATLAB. Here the step size is 0.008.
The simulation finishes after 1000 iterations. The fi-
nal results of the algorithm are presented in Table 4.
The stepwise results of the algorithm for Lagrange
multipliers and two of the link flows as a sample are
presented in Figure 4 and Figure 5.

The results in Table 4 are the same as the results in
Table 3. This means that the iterative algorithm con-
verges to the same results of the centralized solution.

Figure 4 shows that the path flows converge to
the same results as the results of the case where the
Problem 1 is solved in a central manner.

Figure 5 shows that the Lagrangian multipliers of
the distributed solution converge to the optimal dual
variable values obtained from the centralized solution
of the Problem 1.

5 Conculsion

In this article a new method is introduced for traffic
distribution in virtual circuit switched networks which
can be implemented in real networks. In this method
the input traffic of each session is distributed among
the possible paths, in a manner that the total system
cost is minimized at the same time as the average
cost for each path is kept bounded below a required
threshold level. This method is scalable as its operation
is per session. It is analytically proven in this article
that this algorithm converges under the assumptions
that are feasible in real networks. The simulation
results approve the effectiveness of the algorithm. The
results obtained from the simulation are in line with
the results obtained from analytical resolution of the
convex optimization problem.

Appendix A Mathematical Analysis

In this section the analysis of the proposed algorithm
is provided. First some parameters used in this section
are defined

• xp: Flow of the path p that is held in Assumption 1
• H(X): Cost vector of all sessions with NP com-

ponents where the pth component represents the
cost of the pth path

• A(X): Deviation vector with NP components
where the pth component represents the deviation
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Table 2. Simulation results of step1

a) Link Information b)Path Information

Link Flow Cost

(1,2) 17.92 47.96

(1,3) 2.08 4.98

(2,3) 0 0

(2,4) 25.47 33.73

(3,4) 2.08 6.50

(2,5) 12.45 76.91

(4,5) 7.55 26.97∑
Dij(fij) 197.05

Path Path Flow Dual Varaible(DV) E2E Delay

1 17.92 11.55 81.68

2 0 13.55 54.46

3 2.08 11.55 11.48

4 0 16.74 33.48

5 7.55 14.74 60.7

6 12.45 14.744 76.91

Table 3. Simulation results of step 2

a) Link Information b)Path Information

Link Flow Cost

(1,2) 17.39 44.28

(1,3) 2.61 8.16

(2,3) 0 0

(2,4) 25 31.72

(3,4) 2.61 10.38

(2,5) 12.39 76

(4,5) 7.61 27.62∑
Dij(fij) 198.16

Path Path Flow Marginal Cost Lag Multiplier E2E Delay

1 17.39 10.87 0.385 76

2 0 14.91 0 54.66

3 2.61 15.04 0 18.53

4 0 18.74 0 38

5 7.61 14.7 0 59.35

6 12.39 14.62 0.115 76

Table 4. Final results of Step3 for 1000 iterations and step size 0.008

a) Link Information b)Path Information

Link Flow Cost

(1,2) 17.39 44.28

(1,3) 2.61 8.16

(2,3) 0 0

(2,4) 25 31.72

(3,4) 2.61 10.38

(2,5) 12.39 76

(4,5) 7.61 27.62∑
Dij(fij) 198.16

Path Path Flow Marginal Cost Lag Multiplier E2E Delay

1 17.39 10.87 0.385 76

2 0 14.91 0 54.66

3 2.61 15.04 0 18.53

4 0 18.74 0 38

5 7.61 14.7 0 59.35

6 12.39 14.62 0.115 76
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of the pth path from its threshold
• Th: Threshold vector with NP components and

the pth component represents the maximum delay
bound of the path p

• Λ∗: Optimum solution of Problem 4 which is a
vector with NP components
• λ∗p: The pth component of the optimum vector

Λ∗, which is the optimum Lagrange multiplier of
the pth path

Assumption 1. The value of rw’s are such that Prob-
lem 1 has at least one strictly feasible point, in other
words (16) is held.

∃X|
∑
p∈Pw

xp = rw & xp ≥ 0 & hp(X) < thp

∀w ∈W, ∀p ∈ Pw (16)

Result-1: Since the feasible set of the Problem 1 is not
empty, this problem has at least one optimal point
[19, 20].
Proposition 1. The optimum solution of Problem 4
is equal to the optimum solution of Problem 2.

Proof. Since Problem 2 is a convex optimization
problem, if the Slater conditions apply then the
strong duality will also apply [19]. According to As-
sumption 1 the Slater condition is held; therefore
strong duality is held

Result-2: Assuming that the input traffic of sessions
w meet (16), a strong duality exists and the optimum
solution of Problem 4 is equal to the optimum solution
of Problem 2.

Result-3: Because of strong duality, (17) should hold
for the optimum points of Problem 2 and Problem 4
as follow:

λ∗p.(hp(x∗p)) = 0 ≡

 (hp(x∗p)− thp < 0⇒ λ∗p = 0

(hp(x∗p)− thp = 0⇒ λ∗p ≥ 0

(17)

According to (17), at the optimum point of Prob-
lem 4, the Lagrange Multiplier of the paths with lower
costs than that of the threshold level is 0, and for the
paths with Lagrange Multipliers greater than 0, the
final traffic amount assigned to them will be such that
the cost of these paths will be exactly equal to the
threshold level.
Proposition 2. A) The function −q(Λ) defined in
Problem 4 is a convex function of Λ.

B) This function has subgradient at all of the points
in its domain.

Proof. If
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C , {{(x1...xn)|
∑
p∈Pw

xp = rw, xp ≥ 0 ∀p ∈ Pw}}

Then

−q(Λ) = maximizeX∈C{−L(X,Λ)}

A) −q is a convex function: Defining vector A(X)
and function b(X) by (18) and (19), −L(X,Λ) can be
considered as a linear function of Λ for a given value
of vector X, as in (20)

A(X) ,Th−H(X) (18)

b(X) ,
∑
p∈P

hp(xp) (19)

−L(X,Λ) =(A(X)T .Λ + b(X)) (20)

Taking into account the definition given in (20)
for function L(X,Λ), −q(Λ) can be considered as the
point-wise maximum of the family of linear functions
at all points Λ according to (21); therefore −q(Λ) is
a convex function [19].

− q(Λ)|Λ1 = maxX∈C{(A(X)T .Λ + b(X))|Λ1} (21)

B)Function −q(Λ) has subgradient at all points Λ:

The −q(Λ) is differentiable at all points Λ where
only one X, X∗(Λ), maximizes (21), i.e. at these val-
ues of Λ, only one of the functions A(X)T .Λ + b(X))
is greater than the others; therefore at these points,
the subgradient of the function is unique and is equal
to its gradient which is calculated through (22).

∂−q(Λ)
∂Λ = ∇(−q(Λ)) = A(X∗(Λ)) = Th−H(X∗(Λ))

&

X∗(Λ) = arg(maxX∈C{(A(X)T .Λ + b(X))})
(22)

The −q(Λ) is not differentiable at the points Λ
where (21) is at its maximum at some points. At these
Λ some of the functions (A(X)T .Λ + b(X)) have the
greatest value at the same time. In this case, although
−q(Λ) is not differentiable, it has subgradient which
is calculated through (23).

∂−q(Λ)
∂Λ |Λ1 = ConvexhullXi{(−A(X∗i (Λ))

T }

&

X∗(Λ) = arg(maxX∈C{(A(X)T .Λ + b(X))})

(23)
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End 
Criterion 

݃௣௞ = (ℎ௣൫ݔ௣∗(݇)൯ −  (ℎ௣ݐ
Solve Problem-3: 

 ܺ∗൫ߣ௞൯  

௣௞ାଵߣ  = ௣௞ߣ] + .௞ߙ ݃௣௞]ା 

End k=k+1 

Figure 6. −q(λ) for one dimensional λ

According to Proposition 2, the function q(Λ) is the
point-wise infimum of a family of affine functions (21);
hence, it is concave and sub-differentiable at any point
(Figure 6). In Proposition 3 an equation is provided
to calculate one of the subgradient vectors of function
−q(Λ) that can be used in the algorithm in Figure 2.

Proposition 3. At each point Λ̂ (24) gives the sub-
gradient of −q(Λ) at that point

Proof. According to (22,23) for a given Λ̂, each opti-
mal solution of (21), X∗i ,−A(X∗i ), is one of the sub-

gradient vectors of −q(Λ) at point Λ̂. According to

(21), the optimal point of this equation at point Λ̂

can be obtained by solving Problem 3 based on Λ̂.

−g(Λ̂) = (Th−H(X∗)) ∈ ∂q(Λ)
∂Λ |Λ̂

&

X∗(Λ) = arg(maxX∈C{(A(X)T .Λ + b(X))})

(24)

In other words, X∗(Λ) is an optimal point of Prob-

lem 3 based on Λ̂.

Result-4: Considering (24) the number of compo-

nents of vector g(Λ̂) is equal to the total number of
paths of session w. The pth component of this vector
is equal to the deviation of the cost of path p from its
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threshold level. In this equation the path cost should
be calculated when the traffic is the optimum solution
of Problem 3 for vector Λ̂. To calculate the subgradi-
ent vector at point Λ̂, solving Problem 3 at vector Λ̂
and finding its optimum solutions suffices. Following
this, the cost of each path is calculated for this traffic
and its deviation from the threshold level is considered
as the component of the subgradient vector.
Proposition 4. The algorithm introduced in Section 3
converges:

Proof. As shown in Figure 2, this algorithm describes
the steps of the subgradient method in solving Prob-
lem 4. According to the proof given in [21], if the value
of the subgradient of function −q(Λ) in all points has
an upper bound such asG and if the distance from the
initial point of the algorithm and the optimum point
is less thanR, the subgradient method converges [21].
To prove the convergence of the algorithm, first, an
upper bound for the distance of the initial point of
this algorithm and the optimum point is introduced,
and then the upper bound for the value of the sub-
gradient vector of function −q(Λ) at all acceptable
points is calculated.

A) Upper bound for the distance between the initial
point Λ0 and optimal point Λ∗:

The initial point of the proposed algorithm in this
article is Λ0 = 0. Assume a component λ∗p is infinite.

Considering Assumption-1 the amount of L(X,Λ∗)
and also g(Λ∗) is−∞. The optimal value of Problem 3
will be−∞, while the optimal values of Problem 3
and Problem 1 were expected to be equal. considering
Assumption-1 the optimal value of Problem 1 is finite
(a contradiction); therefore all components of Λ∗ are
finite, hence |Λ∗ − Λ0| is bounded.

B) The norm of the subgradient vector in all itera-
tions is upper bounded:

In iteration k, the component p of the subgradient
vector is equal to the difference of hp(X∗(Λk)) with
thp. Considering Assumption-1, (X∗(Λk) is a finite
vector and since the optimal value of Problem 1 is fi-
nite then hp(X∗(Λk)) must be finite, hence, the norm
of the vector is finite. Based on the maximum distance
between the initial and the optimal points of the algo-
rithm and the upper bound calculated for the subgra-
dient at every step of the algorithm, the subgradient
method for solving this problem will converge.
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