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Abstract

Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are chromat-
ically equivalent, written G∼H , if P(G) = P(H). A graph G is chromatically unique if for any
graph H , G∼H implies that G is isomorphic with H . In this paper, we give the necessary and
su:cient conditions for a family of generalized polygon trees to be chromatically unique. c©
2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The graphs that we consider are ?nite, undirected and simple. Let P(G) denote the
chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically
equivalent, and we write G∼H , if P(G)=P(H). A graph G is chromatically unique if
G is isomorphic with H for any graph H such that G ∼ H . A set of graphs S is called
a chromatic equivalence class if for any graph H , that is chromatically equivalent with
a graph G in S, H ∈S.
A path in G is called a simple path if the degree of each interior vertex is two in

G. A generalized polygon tree is a graph de?ned recursively as follows. A cycle Cp
(p¿3) is a generalized polygon tree. Next, suppose H is a generalized polygon tree
containing a simple path Pk , where k¿1. If G is a graph obtained from the union of
H and a cycle Cr , where r ¿k, by identifying Pk in H with a path of length k in
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Fig. 1. Gst (a; b; c; d); s; t¿0.

Cr , then G is also a generalized polygon tree. Consider the generalized polygon tree
Gst (a; b; c; d) with three interior regions shown in Fig. 1. The integers a; b; c; d; s and
t represent the lengths of the respective paths between the vertices of degree three,
where s¿0, t¿0. Without loss of generality, assume that a6b and a6c6d. Thus,
min{ a; b; c; d } = a. Let r = s + t. We now form a family Cr(a; b; c; d) of the graphs
Gst (a; b; c; d) where the values of a, b, c, d and r are ?xed but the values of s and t
vary; that is

Cr(a; b; c; d) = {Gst (a; b; c; d) | r = s+ t; s¿0; t¿0}:

It is clear that the families C0(a; b; c; d) and C1(a; b; c; d) are singletons.
In [1], Chao and Zhao studied the chromatic polynomials of the family F of con-

nected graphs with k edges and (k− 2) vertices each of whose degrees is at least two,
where k is at least six. They ?rst divided this family of graphs into three subfamilies
F1, F2 and F3 according to their chromatic polynomials, and computed the chro-
matic polynomials for the graphs in each subfamily. Then they discussed the chromatic
equivalence of graphs in F, and proved many results. One of these results is Theorem
B which is stated at the end of this section. They also discussed the chromatic unique-
ness of graphs in F3 but they did not study the chromatic uniqueness of graphs in F2

which consists of graphs of types Z12, Z13 and Z14. Note that the graph Gst (a; b; c; d)
is in F2. In fact, G0

0(a; b; c; d) = Z12, the graph Gst (a; b; c; d) shown in Fig. 1 is the
graph Z14 where s+ t = j1 + j2, and G0

r (a; b; c; d) with r¿1 is exactly the graph Z13,
where j = r. On the other hand Cr(a; b; c; d) =F2.
Xu et al. [5] gave the necessary and su:cient conditions for G0

0(a; b; c; d) to be
chromatically unique. In their paper, they called G0

0(a; b; c; d) a 4-bridge graph. In [2],
Peng showed that the graph G0

1(a; b; c; d) is chromatically unique if each of the a, b, c,
and d is at least four. Note that if r¿2, then G0

r (a; b; c; d) is not a chromatically unique
graph and it is clear that for each r¿1, the graph G0

r (a; b; c; d) with min{a; b; c; d}=1 is
not chromatically unique. In this paper, we characterize the chromaticity of G0

1(a; b; c; d)
for a, b, c or d less than four.
In the remaining of this section, we state some known results that will be used to

prove our main theorems. The girth of a graph G, denoted by g(G), is the length of
a shortest cycle of G.
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Theorem A (Whitney [4]). Let G and H be chromatically equivalent graphs. Then

(a) |V (G)|= |V (H)|;
(b) |E(G)|= |E(H)|;
(c) g(G) = g(H);
(d) G and H have the same number of shortest cycles.

Theorem B (Chao and Zhao [1], Peng et al. [3]). All the graphs in Cr(a; b; c; d) are
chromatically equivalent.

By this theorem we only need to compute P(G0
r (a; b; c; d)) for computing the chro-

matic polynomial of Gst (a; b; c; d)

Theorem C (Peng [2]). IfG0
1(a; b; c; d) andG0

1(a
′; b′; c′; d′) are chromatically equivalent;

then they are isomorphic.

The next known result gives the chromatic polynomial of Gst (a; b; c; d). In [1], Chao
and Zhao also determined the chromatic polynomial of this graph, but we shall use
the computed chromatic polynomial of Gst (a; b; c; d); s; t¿0 in [3] to prove our main
results.

Theorem D (Peng et al. [3]). Let the order of Gst (a; b; c; d) be n (n= a+ b+ c+d+
r − 2); and x = 1− �. Then we have

P(Gst (a; b; c; d)) =
(−1)nx
(x − 1)2

· Q(Gst (a; b; c; d));
where

Q(Gst (a; b; c; d)) = (xn+1 − xa+b+r − xc+d+r + xr+1 − x)

−(1 + x + x2) + (x + 1)(xa + xb + xc + xd)

−(xa+c + xa+d + xb+c + xb+d):

2. Main results

In this section, we shall characterize the chromaticity of G0
1(a; b; c; d) when

min{a; b; c; d}¡ 4. First, we consider the case when min{a; b; c; d}=2. In Theorem 2,
we consider the case when min{a; b; c; d}= 3.

Theorem 1. The graph G0
1(a; b; c; d) when min{a; b; c; d}= 2 is chromatically unique

if and only if G0
1(a; b; c; d) is not isomorphic with G0

1(2; 3; 3; 5).

Proof: Let G=G0
1(a; b; c; d) and H ∼ G. By Lemma 4 and Theorem 2 in [1], we have

H =Gs
′
t′ (a

′; b′; c′; d′); where a′; b′; c′; d′ are at least two. If r′ = 1 then by Theorem C,
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G ∼= H . Now suppose that r′¿2. We solve the equation Q(G)=Q(H). After cancelling
the terms xn+1, −x and −(1 + x + x2), we have Q1(G) = Q1(H) where

Q1(G) = x2 + (x + 1)(xa + xb + xc + xd)− x1+a+b − x1+c+d

−xa+c − xa+d − xb+c − xb+d;

Q1(H) = xr
′+1 + (x + 1)(xa

′
+ xb

′
+ xc

′
+ xd

′
)− xr′+a′+b′

−xr′+c′+d′ − xa′+c′ − xa′+d′ − xb′+c′ − xb′+d′

and

a+ b+ c + d+ 1 = a′ + b′ + c′ + d′ + r′:

Without loss of generality, assume that a6b, a6c6d, and a′6b′, a′6c′6d′. It is
easy to see that min{a; b; c; d; 2}=min{a′; b′; c′; d′; r′+1}. This means 2=min{a′; r′+1}.
If r′+1=2, then r′=1 and this contradicts our assumption; thus a′=2. Also we have
2 = a=min{a; b; c; d}=min{r′ +1; b′; c′; d′} and we know that r′ +1 �= 2. Therefore,
b′ = 2 or c′ = 2. We now consider these two cases.

Case 1: Suppose b′ =2. Then from Q1(G) = Q1(H), after cancelling equal terms,
we have Q2(G) = Q2(H) where

Q2(G) = (x + 1)(xb + xc + xd)− x3+b − x1+c+d

−x2+c − x2+d − xb+c − xb+d;

Q2(H) = xr
′+1 + (x + 1)(xc

′
+ xd

′
) + x3 − xr′+4

−xr′+c′+d′ − x2+c′ − x2+d′ − x2+c′ − x2+d′

and

b+ c + d= c′ + d′ + r′ + 1; a= 26b; 26c6d; a′ = b′ = 2; 26c′6d′:

Since a′ = b′ = 2, g(G) = g(H) = 4. Therefore, b= 2 or c = d= 2 because a= 2.
Subcase 1.1: Suppose b=2. Then x2 ∈Q2(G) and x2 cannot be cancelled in Q2(G).

So we must have x2 ∈Q2(H). Hence r′ + 1 = 2 or c′ = 2. But r′ + 1 = 2 contradicts
our assumption. Therefore we have c′ = 2 and Q3(G) = Q3(H), where

Q3(G) = (x + 1)(xc + xd)− x5 − x1+c+d − 2x2+c − 2x2+d;

Q3(H) = xr
′+1 + (x + 1)(xd

′
) + x3 − xr′+4 − xr′+d′+2 − 2x4 − 2x2+d

′

and

c + d= d′ + r′ + 1; a= b= 2; 26c6d; a′ = b′ = 2; 2 = c′6d′:

Since x3 ∈Q3(H) and cannot be cancelled, we must have x3 ∈Q3(G). Thus c = 3 or
d=3 or c+1=3 or d+1=3. If d=3, then we have c=2 or c=3 because d¿c¿2,
and similarly if d+1=3 (or d=2), then c=2. Hence, it is su:cient to consider two
cases when c + 1 = 3 or c = 3.
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Subcase 1.1.1: Suppose c= 3. Since x4 ∈Q3(G) and cannot be cancelled, and since
−2x4 ∈Q3(H), we must have 3x4 ∈Q3(H). But r′ + 1 = d′ = d′ + 1 = 4, which is
impossible.

Subcase 1.1.2: Suppose c+1=3 (or c=2). Then x2 ∈Q3(G) and cannot be cancelled.
Since r′ +1 �= 2, we have d′ =2. This means H has two cycles of shortest length but
G has only one cycle of the shortest length because d= r′ + 1 �= 2.
The two subcases above show that b= 2 is impossible.
Subcase 1.2: Suppose c=d=2 and b �= 2. Then g(G)=4 and G has only one cycle

of the shortest length. By Theorem A, H must have only one cycle of the shortest
length; therefore d′ �= 2. Then from Q2(G) = Q2(H), after cancelling equal terms, we
have Q4(G) = Q4(H), where

Q4(G) = (x + 1)xb + 2x2 + 2x3 − x3+b − x5 − 2x4 − 2x2+b;

Q4(H) = xr
′+1 + (x + 1)(xc

′
+ xd

′
) + x3 − xr′+4 − xr′+c′+d′ − 2x2+c

′ − 2x2+d
′

and

b+ 3 = c′ + d′ + r′; a= c = d= 2; 26b; a′ = b′ = 2; 26c′6d′:

Since 2x2 ∈Q4(G) and cannot be cancelled, we must have 2x2 ∈Q4(H). But this is
impossible because r′ + 1 �= 2 and d′ �=2. So we have no solution for Q(G) = Q(H)
when b′ = 2.

Case 2: Suppose c′ = 2. Then from Q1(G) = Q1(H), after cancelling equal terms,
we have Q5(G) = Q5(H), where

Q5(G) = (x + 1)(xb + xc + xd)− x3+b − x1+c+d − x2+c − x2+d − xb+c − xb+d;

Q5(H) = xr
′+1 + (x + 1)(xb

′
+ xd

′
) + x3 − xr′+b′+2

−xr′+d′+2 − x4 − x2+d′ − xb′+d′ − xb′+2;

and

b+ c + d= b′ + d′ + r′ + 1; a= 26b; 26c6d; a′ = 26b′; 2 = c′6d′:

Since a′ = c′, without loss of generality, we assume b′6d′. From Case 1, b′ �= 2;
therefore g(G) = g(H)¿ 4 and b¿3. Since x3 ∈Q5(H) and cannot be cancelled, we
must have x3 ∈Q5(G) and thus b= 3 or c= 3. The case c= 2 and the case d= 2 are
impossible because x2 �∈ Q5(H). (r′ + 1 �= 2; b′ �= 2 and b′6d′.) Also the case d= 3
implies that c = 2 or c = 3. We now consider cases when b= 3 and c = 3.

Subcase 2.1: Suppose b=3. Then g(G) = g(H) = 5. Therefore, b′ = 3 because
g(H) = a′ + b′ = 2 + b′. Now we have Q6(G) = Q6(H), where

Q6(G) = (x + 1)(xc + xd)− x6 − x1+c+d − x2+c − x2+d − x3+c − x3+d;

Q6(H) = xr
′+1 + (x + 1)xd

′
+ x3 − xr′+5 − xr′+d′+2 − x4 − x2+d′ − x5 − x3+d′
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and

c + d= d′ + r′ + 1; a= 2; b= 3; 36c6d; a′ = 2;

b′ = 3; c′ = 2; 36d′:

Since x3 ∈Q6(H) and cannot be cancelled, x3 ∈Q6(G) and so we have c=3. We now
have Q7(G) = Q7(H), where

Q7(G) = (x + 1)xd + x4 − x6 − x4+d − x5 − x2+d − x6 − x3+d;

Q7(H) = xr
′+1 + (x + 1)xd

′ − xr′+5 − xr′+d′+2 − x4 − x2+d′ − x5 − x3+d′

and

2 + d= d′ + r′:

Since 3 = c6d, d �= 2 and thus x4 in Q7(G) cannot be cancelled. So we must have
2x4 ∈Q7(G) because −x4 ∈Q7(H). This means we have either r′=3 and d′=4 or r′=3
and d′ =3. If the former holds, then d=5 and we get one solution for Q(G)=Q(H),
that is a = 2; b = c = 3 and d = 5; also a′ = 2; b′ = 3; c′ = 2; d′ = 4 and r′ = 3. With
these values we have G0

1(2; 3; 3; 5) ∼ G0
3(2; 3; 2; 4) but G0

1(2; 3; 3; 5) �∼= G0
3(2; 3; 2; 4).

If the latter holds, then d= 4 and we have Q8(G) = Q8(H), where

Q8(G) = x4 − x6 − x8 − x6 − x6 − x7;

Q8(H) = x3 − x8 − x8 − x5 − x5 − x6

and it is a contradiction.
Subcase 2.2: Suppose c = 3 and b �= 3. Then g(G) = 6 = g(H). Since b′6d′, we

have r′ = 2 or b′ = 4. If the former holds, then from Q5(G) =Q5(H), after cancelling
equal terms, we have Q9(G) = Q9(H) where

Q9(G) = (x + 1)(xb + xd) + x4 − x3+b − x4+d − x5 − x2+d − x3+b − xb+d;

Q9(H) = x3 + (x + 1)(xb
′
+ xd

′
)− x4+b′ − x4+d′ − x4 − x2+d′ − xb′+d′ − xb′+2

and

b+ d= b′ + d′; a= 26b; 3 = c6d; r′ = 2; a′ = 2; 46b′;

c′ = 2; 46d′:

Now x3 ∈Q9(H) and cannot be cancelled. Therefore, x3 ∈Q9(G); hence, d=3 because
b �= 3. With this we have 2x4 ∈Q9(G) and cannot be cancelled. Since −x4 ∈Q9(H), we
must have 3x4 ∈Q9(H), and this is impossible. If the latter holds, then from Q5(G) =
Q5(H), after cancelling equal terms, we have Q10(G) = Q10(H), where

Q10(G) = (x + 1)(xb + xd)− x3+b − x4+d − x5 − x2+d − x3+b − xb+d;

Q10(H) = xr
′+1 + (x + 1)xd

′
+ x5 − xr′+6 − xr′+d′+2 − x4 − x2+d′ − x4+d′ − x6
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and

b+ d= d′ + r′ + 2; a= 26b; 3 = c6d; a′ = 2; b′ = 4; c′ = 2; 46d′:

Now x5 ∈Q10(H) and cannot be cancelled. Since −x5 ∈Q10(G), we must have 2x5 ∈
Q10(G). If b=d=5, then 2x6 ∈Q10(G) and cannot be cancelled, and since −x6 ∈Q10(H)
we must have 3x6 ∈Q10(H); and this is impossible. If b = d = 4, then 2x4 ∈Q10(G)
cannot be cancelled and since −x4 ∈Q10(H), we must have 3x4 ∈Q10(H), and this is
impossible. If b=4 and d=5, then x6 ∈Q10(G) and cannot be cancelled and since −x4
and −x6 are in Q10(H), we must have 2x4 and 2x6 in Q10(H) which is impossible. If
b= 5 and d= 4, then we have Q11(G) = Q11(H) where

Q11(G) = x4 − x8 − x8 − x8 − x9;

Q11(H) = xr
′+1 + (x + 1)xd

′ − xr′+6 − xr′+d′+2 − x4 − x2+d′ − x4+d′ − x6

and

7 = d′ + r′; 46d′:

Since −x4 and −x6 are in Q11(H) but they are not in Q11(G) and since x4 ∈Q11(G)
cannot be cancelled in Q11(G), we must have 2x4 and x6 in Q11(H), but this is
impossible. Therefore Q(G) = Q(H) has no other solution when c′ = 2.

The next main result is for the case when min{a; b; c; d} = 3. The proof is similar
to that of Theorem 1. The detailed proof can be obtained by e-mail from the second
author or view at http:==www.fsas.upm.edu.my=∼yhpeng=publish=prooft2.pdf

Theorem 2. The graph G0
1(a; b; c; d) when min{a; b; c; d} = 3 is chromatically

unique if and only if G0
1(a; b; c; d) is not isomorphic with G0

1(3; b; b+ 1; b+ 3) and
G0

1(3; c+ 3; c; c+ 1) and G0
1(3; 3; c; c+ 2) and G0

1(3; b; 3; b+ 2) and G0
1(3; 5; 5; 8).

The following theorem follows from the proof of Theorems 1 and 2.

Theorem 3. Each of the following families is a chromatic equivalence class.

(a) C1(2; 3; 3; 5) ∪ C3(2; 3; 2; 4).
(b) C1(3; 5; 5; 8) ∪ C5(2; 6; 4; 5).
(c) C1(3; b; b+ 1; b+ 3) ∪ C3(2; b+ 1; b; b+ 2) for any b¿3.
(d) C1(3; b+ 3; b; b+ 1) ∪ C3(2; b+ 2; b; b+ 1) for any b¿3.
(e) C1(3; 3; b; b+ 2) ∪ Cb−1(2; 4; 3; b+ 1) for any b¿3.
(f ) C1(3; b; 3; b+ 2) ∪ Cb−1(2; b+ 1; 3; 4) for any b¿3.

Remark: Note that if b= 2 in the graphs (c) and (d), then we get the graph (a).
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Corollary: Each of the following families of graphs is not a chromatic equivalence
class.

(a) C5(2; 6; 4; 5).
(b) C3(2; b+ 1; b; b+ 2) (b¿2).
(c) C3(2; b+ 2; b; b+ 1) (b¿2).
(d) Cr(2; 4; 3; r + 2) (r¿2).
(e) Cr(2; r + 2; 3; 4) (r¿2).

Combining Theorem 3 in [2] and Theorems 1 and 2 above, we have the following
characterization theorem.

Theorem 4. The graph G0
1(a; b; c; d) with min{a; b; c; d}¿ 1 is chromatically unique

if and only if G0
1(a; b; c; d) is not isomorphic with any one of the following graphs.

(a) G0
1(2; 3; 3; 5);

(b) G0
1(3; 5; 5; 8);

(c) G0
1(3; b; b+ 1; b+ 3) for any b¿3;

(d) G0
1(3; c + 3; ; c; c + 1) for any c¿3;

(e) G0
1(3; 3; c; c + 2) for any c¿3;

(f ) G0
1(3; b; 3; b+ 2) for any b¿3.

Remark: Note that if b = 2 in the graph (c) and if c = 2 in the graph (d), then we
get the graph (a).

We also discover that the conjecture in [3] is only true for r = 1. For each r¿2,
we provide two counter examples as follows:

• G0
r (r + 2; b; b + 1; b + r + 2) ∼ G0

r+2(r + 1; b + 1; b; b + r + 1) for b¿4 but
G0
r+2(r + 1; b+ 1; b; b+ r + 1) �∈ Cr(r + 2; b; b+ 1; b+ r + 2).

• G0
r (r + 2; c + r + 2; c; c + 1) ∼ G0

r+2(r + 1; c + r + 1; c; c + 1) for c¿4 but
G0
r+2(r + 1; c + r + 1; c; c + 1) �∈ Cr(r + 2; c + r + 2; c; c + 1).

We discuss the chromatic equivalence of graphs in Cr(a; b; c; d) (r¿2) in another
article.
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