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Abstract

Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are chromat-
ically equivalent, written G~H, if P(G)= P(H). A graph G is chromatically unique if for any
graph H, G~H implies that G is isomorphic with H. In this paper, we give the necessary and
sufficient conditions for a family of generalized polygon trees to be chromatically unique. (©)
2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The graphs that we consider are finite, undirected and simple. Let P(G) denote the
chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically
equivalent, and we write G~H, if P(G)=P(H). A graph G is chromatically unique if
G is isomorphic with H for any graph H such that G ~ H. A set of graphs % is called
a chromatic equivalence class if for any graph H, that is chromatically equivalent with
agraph G in &, He &Y.

A path in G is called a simple path if the degree of each interior vertex is two in
G. A generalized polygon tree is a graph defined recursively as follows. A cycle C),
(p=3) is a generalized polygon tree. Next, suppose H is a generalized polygon tree
containing a simple path Py, where k> 1. If G is a graph obtained from the union of
H and a cycle C,, where » > k, by identifying P; in H with a path of length k£ in
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Gi(a,byc,d)=Z,4 d

Fig. 1. GS(a,b;c.d), 5,1>0.

C,, then G is also a generalized polygon tree. Consider the generalized polygon tree
Gi(a,b; c,d) with three interior regions shown in Fig. 1. The integers a,b,c,d,s and
t represent the lengths of the respective paths between the vertices of degree three,
where s>0, t>0. Without loss of generality, assume that a<b and a<c<d. Thus,
min{ a,b,c,d } =a. Let r =5+ ¢t. We now form a family %,(a,b;c,d) of the graphs
Gi(a,b;c,d) where the values of a, b, ¢, d and r are fixed but the values of s and ¢
vary; that is

€.(a,b;c,d)={G;(a,b;c,d)|r=5s+1t, 5s=0, t=0}.

It is clear that the families %(a,b;c,d) and %1(a,b;c,d) are singletons.

In [1], Chao and Zhao studied the chromatic polynomials of the family & of con-
nected graphs with £ edges and (k —2) vertices each of whose degrees is at least two,
where £ is at least six. They first divided this family of graphs into three subfamilies
F1, ¥, and F3 according to their chromatic polynomials, and computed the chro-
matic polynomials for the graphs in each subfamily. Then they discussed the chromatic
equivalence of graphs in %, and proved many results. One of these results is Theorem
B which is stated at the end of this section. They also discussed the chromatic unique-
ness of graphs in %3 but they did not study the chromatic uniqueness of graphs in %,
which consists of graphs of types Zi», Z13 and Zj4. Note that the graph Gi(a,b;c,d)
is in & ,. In fact, Gg(a, b;c,d) = Zi», the graph Gj(a,b;c,d) shown in Fig. | is the
graph Z;4 where s +t = j; + j», and G?(a,b; c,d) with r>1 is exactly the graph Z;3,
where j =r. On the other hand %,(a,b;c,d) = 7>.

Xu et al. [5] gave the necessary and sufficient conditions for G)(a,b;c,d) to be
chromatically unique. In their paper, they called G{(a,b;c,d) a 4-bridge graph. In [2],
Peng showed that the graph G?(a,b; ¢,d) is chromatically unique if each of the a, b, c,
and d is at least four. Note that if >2, then G%(a,b; c,d) is not a chromatically unique
graph and it is clear that for each r > 1, the graph G(a, b; ¢,d) with min{a,b,c,d}=1 is
not chromatically unique. In this paper, we characterize the chromaticity of GY(a,b; c,d)
for a, b, ¢ or d less than four.

In the remaining of this section, we state some known results that will be used to
prove our main theorems. The girth of a graph G, denoted by g(G), is the length of
a shortest cycle of G.
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Theorem A (Whitney [4]). Let G and H be chromatically equivalent graphs. Then
(@) V(@) =V (H),
(b) [E(G)| = [E(H))|,

(c) 9(G) =g(H),
(d) G and H have the same number of shortest cycles.

Theorem B (Chao and Zhao [1], Peng et al. [3]). All the graphs in €,(a,b;c,d) are
chromatically equivalent.

By this theorem we only need to compute P(G%(a,b;c,d)) for computing the chro-
matic polynomial of Gf(a,b;c,d)

Theorem C (Peng [2]). If GY(a,b;c,d)and GY(a',b';c',d") are chromatically equivalent,
then they are isomorphic.

The next known result gives the chromatic polynomial of G;(a,b;c,d). In [1], Chao
and Zhao also determined the chromatic polynomial of this graph, but we shall use
the computed chromatic polynomial of Gj(a,b;c,d), s,¢=0 in [3] to prove our main
results.

Theorem D (Peng et al. [3]). Let the order of G/(a,b;c,d) be n (n=a+b+c+d+
r—2), and x=1— A. Then we have

1y
oG

P(Gi(a,b;c,d)) =

where

Q(G;(a, b, C,d)) — (xn+1 _ x(l+b+i‘ _ xc+d+r +xl‘+l _ x)
—(1+x+x) 4+ (x 4+ D 422 +x¢ +x9)

_(xa+c + xa+d + xb+c + xb+d).

2. Main results

In this section, we shall characterize the chromaticity of GY%(a,b;c,d) when
min{a,b,c,d} < 4. First, we consider the case when min{a, b,c,d} =2. In Theorem 2,
we consider the case when min{a,b,c,d} = 3.

Theorem 1. The graph G?(a,b; ¢,d) when min{a,b,c,d} =2 is chromatically unique
if and only if G%a,b;c,d) is not isomorphic with G%(2,3;3,5).

Proof. Let G:G‘l)(a, b;c,d) and H ~ G. By Lemma 4 and Theorem 2 in [1], we have
H= G‘;,/(a’, b';c',d"), where @', b’,c',d" are at least two. If ¥ =1 then by Theorem C,
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G = H. Now suppose that ' =2. We solve the equation O(G)=Q(H ). After cancelling
the terms x"*!, —x and —(1 +x + x?), we have 0,(G) = O,(H) where

01(G)=x> + (x + D)(x* 4+ x" + x¢ 4 x¥) — x!Tatb _ yIterd

O1(H) = + (x + 1)(x”/ +xb/ +x0' + xd') e

’ ’

’ / ’ / ’ ’ / / !
_xr+c+d _ x4 te _xa+d _xb+c _xb+d

and
a+b+c+d+1=d+b++d +7.

Without loss of generality, assume that a<b, a<c<d, and a' <V, a'<c'<d'. Tt is
easy to see that min{a, b, c,d,2}=min{d’,b’,c’,d’,¥’+1}. This means 2=min{a’,7'+1}.
If ¥ +1=2, then ' =1 and this contradicts our assumption; thus a’ =2. Also we have
2=a=min{a,b,c,d} =min{r' + 1,5',¢’,d’} and we know that ' + 1 # 2. Therefore,
b’ =2 or ¢’ =2. We now consider these two cases.

Case 1: Suppose b’ =2. Then from Q;(G) = Q,(H), after cancelling equal terms,
we have 0»(G) = Q,(H) where

QZ(G) — ()C + l)(xb +xc +Xd) o x3+b o x1+6+d

QZ(H):XV/+1 +(X+ 1)(xc/ —|—xd/)—|—x3 _xr/+4
_xr’+c’+d’ _ x2+c/ _ x2+d’ _ x2+c’ _ x2+d’
and
b+c+d=c+d +r +1; a=2<b, 2<c<d, d=b =2, 2<<d’.

Since o' =b' =2, g(G) = g(H) = 4. Therefore, b =2 or ¢ =d =2 because a = 2.

Subcase 1.1: Suppose b=2. Then x> € 0>(G) and x? cannot be cancelled in 0,(G).
So we must have x2 € Q,(H). Hence 7' +1=2 or ¢’ =2. But 7/ + 1 =2 contradicts
our assumption. Therefore we have ¢/ =2 and Q3(G) = Qs5(H ), where

QS(G) _ (X + 1)(xc +)Cd) . x5 o xl+C+d o 2x2+c o 2x2+d’

Q3(H):xr'+l +(x+ l)(xdl)+x3 fxr,+4fxr'+d/+272x4—2x2+d/
and
c+d=d ++ +1; a=b=2, 2<c<d, d=b=2 2=<d.

Since x> € Q3(H) and cannot be cancelled, we must have x*> € Q3(G). Thus ¢ =3 or
d=3orc+1=3ord+1=3.1f d=3, then we have c=2 or ¢=3 because d >c>2,
and similarly if d +1=3 (or d =2), then ¢ =2. Hence, it is sufficient to consider two
cases when ¢+ 1 =3 or ¢ =3.
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Subcase 1.1.1: Suppose ¢ = 3. Since x* € 03(G) and cannot be cancelled, and since
—2x* € O3(H), we must have 3x* € O3(H). But ¥ + 1 =d' =d’ + 1 = 4, which is
impossible.

Subcase 1.1.2: Suppose c¢+1=3 (or c=2). Then x> € 03(G) and cannot be cancelled.
Since ¥ + 1 # 2, we have d’ =2. This means H has two cycles of shortest length but
G has only one cycle of the shortest length because d =r' + 1 # 2.

The two subcases above show that b =2 is impossible.

Subcase 1.2: Suppose c=d =2 and b # 2. Then g(G)=4 and G has only one cycle
of the shortest length. By Theorem A, H must have only one cycle of the shortest
length; therefore d’ # 2. Then from Q,(G) = Q,(H), after cancelling equal terms, we
have Q4(G) = Q4(H), where

04(G) = (x + Ix? +2x% + 2x% — X3P — x5 — 2x* — 2x2*7,

O4(H) :xr/Jrl + (x + 1)()60/ +xd/) +x3— ' xr/Jrc/er' _ 2x2+c/ _ 2x2+d'
and
b+3=c+d ++; a=c=d=2, 2<b, d=b =2 2<<d.

Since 2x?> € 04(G) and cannot be cancelled, we must have 2x> € Q4(H). But this is
impossible because ' + 1 ## 2 and d’ #2. So we have no solution for O(G) = Q(H)
when b’ = 2.

Case 2: Suppose ¢’ =2. Then from Q|(G) = Q|(H), after cancelling equal terms,
we have Qs5(G) = Qs(H), where

QS(G) — (x + 1)(xb 4 x° +xd) _x3+b _x1+c+d _x2+c _ x2+d _ xb+c _xb+d,

Os(H) =x""" 4 (x + )" +x4) 4% —x/ 042

’ ! ! / ! ’
2 A 2vd (bvd b2

>

and
b+c+d=b+d +r+1; a=2<b, 2<c<d, d=2<b, 2=c<d.

Since @’ = ¢/, without loss of generality, we assume b’ <d’. From Case 1, b’ # 2;
therefore g(G) = g(H) > 4 and h>3. Since x> € Os(H) and cannot be cancelled, we
must have x* € Qs5(G) and thus b =3 or ¢ =3. The case ¢ =2 and the case d =2 are
impossible because x*> ¢ Qs(H). (r' +1#2, b’ # 2 and b’ <d’.) Also the case d =3
implies that ¢ =2 or ¢ =3. We now consider cases when » =3 and ¢ =3.

Subcase 2.1: Suppose b=3. Then ¢g(G) = g(H) = 5. Therefore, b’ = 3 because
g(H)=d + b =2+ b". Now we have Q¢(G) = Qs(H ), where

Qé(G) _ (x 4 1)(xc +xd) —.X6 _x1+C+d _ x2+c _x2+d _ x3+c _x3+d,

O¢(H) — + (x + 1)de +x3— S 2 4 2d 5 34d]
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and
c+d=d +r+1;, a=2, b=3, 3<c<d, d =2,
=3 =2 3<d.

Since x* € Qs(H ) and cannot be cancelled, x* € Og(G) and so we have ¢ =3. We now
have 07(G) = Q7(H), where

0:(G) = (x + D 4 x* —x6 — x4 _ x5 24 _ 6 \3+d

0:(H) — ! + (x + l)xd’ LS 2 4 2vd (5 (3]
and

2+d=d +7.

Since 3 =c<d, d # 2 and thus x* in 0;(G) cannot be cancelled. So we must have
2x* € 07(G) because —x* € Q7(H ). This means we have either /=3 and d’=4 or ' =3
and d’ =3. If the former holds, then d =5 and we get one solution for Q(G)= Q(H),
that is a=2,b=c=3 and d =5; also ¢’ =2,b' =3,c’ =2,d' =4 and ' =3. With
these values we have G?(2,3; 3,5) ~ G§(2,3; 2,4) but G?(2,3; 3,5)2 Gg(2,3; 2,4).
If the latter holds, then d =4 and we have QOg(G) = QOg(H ), where

O3(G)=x* —x® —x® —x6 —xb — &7,
Os(H)=x> —x8—x® —x> — x> —x8

and it is a contradiction.

Subcase 2.2: Suppose ¢ =3 and b # 3. Then g(G) =6 = g(H). Since b' <d’, we
have ' =2 or b’ =4. If the former holds, then from Qs(G)= Qs(H), after cancelling
equal terms, we have Qo(G) = Qy(H ) where

00(G) = (x + 1)(x? +x9) 4 x* — 3+ —x¥+d 35 324 (3+b  ybid,
Oo(H) S (x + 1)(xb, + xd’) A ad A4 24d (Wd b2
and
b+d=b+d; a=2<bh, 3=c<d, =2, d=24<b,
=2 4<d.

Now x3 € Qy(H ) and cannot be cancelled. Therefore, x> € Qo(G); hence, d =3 because
b # 3. With this we have 2x* € Qy(G) and cannot be cancelled. Since —x* € Qy(H ), we
must have 3x* € Qy(H), and this is impossible. If the latter holds, then from Qs(G)=
Os(H), after cancelling equal terms, we have 0,0(G) = Q10(H ), where

QIO(G) _ ()C + l)(xb +)Cd) _ x3+b _ x4+d _ )CS . x2+d _ x3+b _ berd,

’ ’ ’ v ’ ’ ’
Q]()(H):xr+1+(x+l)xd _|_x5_xl’+6_xi +d+2_x4_x2+d _x4+d _x6
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and
b+d=d +r +2; a=2<b, 3=c<d, d =2, b=4 =2, 4<d

Now x> € Q19(H) and cannot be cancelled. Since —x> € Qo(G), we must have 2x° €
010(G). If b=d=5, then 2x° € 019(G) and cannot be cancelled, and since —x% € Qo(H)
we must have 3x° € Q1o(H); and this is impossible. If b =d = 4, then 2x* € 0;o(G)
cannot be cancelled and since —x* € Q;o(H ), we must have 3x* € Q;o(H), and this is
impossible. If 5=4 and d =35, then x° € Q14(G) and cannot be cancelled and since —x*
and —x°® are in Q1o(H), we must have 2x* and 2x® in Q,o(H) which is impossible. If
b=5 and d =4, then we have Q,(G) = 0;1(H) where

01(G)=x* —x® =% —x% — ¥,

On(H) = x" 1 4 (x + D — x7/ 46 _yr/d/2 _ (4 2d' _ aid' 6
and

T=d +r; 4<d".

Since —x* and —x% are in Q;;(H) but they are not in Q1;(G) and since x* € 0;(G)
cannot be cancelled in 0;(G), we must have 2x* and x® in O;;(H), but this is
impossible. Therefore O(G) = Q(H) has no other solution when ¢’ =2. 0

The next main result is for the case when min{a,b,c,d} = 3. The proof is similar
to that of Theorem 1. The detailed proof can be obtained by e-mail from the second
author or view at http://www.fsas.upm.edu.my/~yhpeng/publish/prooft2.pdf

Theorem 2. The graph G‘l)(a, b; ¢,d) when min{a,b,c,d} = 3 is chromatically
unique if and only if G)(a,b; c¢,d) is not isomorphic with G%(3,b; b+ 1,b+ 3) and
GY(3,c+3; ¢,c+ 1) and G(3,3; ¢,c +2) and G¥(3,b; 3,b+2) and G¥(3,5; 5,8).

The following theorem follows from the proof of Theorems 1 and 2.

Theorem 3. Each of the following families is a chromatic equivalence class.

(a) €:1(2,3; 3,5)U%5(2,3; 2,4).

(b) €1(3,5; 5,8)U%5(2,6; 4,5).

(c) €1(3,b; b+ 1,b+3)U%B3(2,b+ 1; b,b+2) for any b=3.
(d) €13,6+3; b,b+1)U%B3(2,b+2; b,b+ 1) for any b=3.
(e) 61(3,3; b,b+2)U%p_1(2,4; 3,b+ 1) for any b=3.

(f) €1(3,b; 3,b+2)U%,_1(2,b+ 1; 3,4) for any b=3.

Remark. Note that if »=2 in the graphs (c) and (d), then we get the graph (a).
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Corollary. Each of the following families of graphs is not a chromatic equivalence
class.

(a) €s5(2,6; 4,5).

(b) €3(2,b+1; bb+2) (b=2).
() €3(2,b+2; bb+1) (b=2).
(d) 6,(2,4; 3,7 +2) (r=2).

() G(2,r +2; 3,4) (r=2).

Combining Theorem 3 in [2] and Theorems 1 and 2 above, we have the following
characterization theorem.

Theorem 4. The graph G?(a,b; ¢,d) with min{a,b,c,d} > 1 is chromatically unique
if and only if G)(a,b; c,d) is not isomorphic with any one of the following graphs.

(a) GY(2.3; 3,5),

(b) GY(3,5; 5,8),

(c) GY(3,b; b+ 1,b+3) for any b>3,
(d) GY3,c+3; ,c,c+ 1) for any c=3,
(e) GV(3,3; c,c+2) for any ¢=3,

(f) GY(3,b; 3,b+2) for any b=3.

Remark. Note that if » =2 in the graph (c) and if ¢ =2 in the graph (d), then we
get the graph (a).

We also discover that the conjecture in [3] is only true for » = 1. For each r>=2,
we provide two counter examples as follows:

e Gor +2,b; b+ 1,b+r+2) ~ G9+2(r +1L,b+1; b,b+r+ 1) for b=4 but
GlLo(r+ Lb+1; bb+r+1)€ 6 (r+2,b; b+ 1,b+r+2).

e G'r+2,c+r+2cc+1) ~ G9+2(r + l,c+7r+1; c,ec+ 1) for c=4 but
G9+2(r+l,c+r+l; e+ 1) e E.(r+2,c+r+2; c,e+1).

We discuss the chromatic equivalence of graphs in €,(a,b; c,d) (r=2) in another
article.
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