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Abstract

A clique-coloring of a given graph G is a coloring of the vertices of G such that no
maximal clique of size at least two is monocolored. The clique-chromatic number of
G is the least number of colors for which G admits a clique-coloring. It has been
proved that every planar graph is 3-clique colorable and every claw-free planar graph,
different from an odd cycle, is 2-clique colorable. In this paper, we generalize these
results to K3 3-minor free (K3 3-subdivision free) graphs.

Keywords Clique-coloring - Clique chromatic number - K3 3-Minor free graphs -
Claw-free graphs
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1 Introduction

Graphs considered in this paper are all simple and undirected. Let G be a graph with
vertex set V(G) and edge set E(G). The number of vertices of G is called the order
of G. The set of vertices adjacent to a vertex v is denoted by Ng (v), and the size of
Ng(v) is called the degree of v and is denoted by dg (v). A vertex with degree zero
is called an isolated vertex. The maximum degree of G is denoted by A(G). For a
subset S € V(G), the subgraph induced by § is denoted by G[S]. An independent set
is a set of vertices in graph that does not induce any edge and the size of maximum
independent set in G is written by «(G).

As usual, the complete bipartite graph with parts of cardinality m andn (m, n € N) is
indicated by K, ,. The graph K 3 is called a claw. The complete graph with n vertices
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{vi, ..., vy} is denoted by K, or [vy, ..., v,]. The graph G is the complement of G
with the same vertex set as G, and uv is an edge in G if and only if it is not an edge
in G. The path and the cycle of order n are denoted by P, and C,,, respectively. The
length of a path and a cycle is the number of its edges. A path with end vertices u and
v is denoted by (u, v)-path.

Edge e is called an edge cut in connected graph G if G /{e} is disconnected. A block
in G is a maximal 2-connected subgraph of G. A chord of a cycle C is an edge notin C
whose end vertices lie in C. A hole is a chordless cycle of length greater than three. A
hole is said to be odd if its length is odd; otherwise, it is said to be even. Given a graph
F,agraph G is called F-free if G does not contain any induced subgraph isomorphic
with F. A graph G is a (Fy, ..., Fy)-free graph if it is F;-free foralli € {1, ..., k}.
A graph G is claw-free (resp. triangle-free) if it does not contain K 3 (resp. K3) as
an induced subgraph.

By asubdivision of anedge e = uv, we mean replacing the edge e with a (u, v)-path.
Any graph derived from graph F by a sequence of subdivisions is called a subdivision
of F or an F-subdivision. The contraction of an edge e with endpoints « and v is the
replacement of u and v with a vertex such that edges incident to the new vertex are
the edges that were incident with either u or v except e; the obtained graph is denoted
by G - e. Graph F is called a minor of G (G is called F-minor graph) if F can be
obtained from G by a sequence of vertex and edge deletions and edge contractions.
Given a graph F, graph G is F-minor free if F is not a minor of G. Obviously, any
graph G which contains an F'-subdivision also has an F'-minor. Thus an F-minor free
graph is necessarily F-subdivision free, although in general the converse is not true.
However, if F is a graph of the maximum degree at most three, any graph which has
an F-minor also contains an F-subdivision. Thus, a graph is K3 3-minor free if and
only if itis K3 3-subdivision free. By the well-known Kuratowski’s theorem a graph is
planar if and only if it is Ks-minor free and K3 3-minor free. For further information
on graph theory concepts and terminology we refer the reader to [17].

A vertex k-coloring of G is a function ¢ : V(G) — {1, 2, ..., k} such that for
every two adjacent vertices u and v, c(u) # c(v). The minimum integer k for which
G has a vertex k-coloring is called the chromatic number of G and is denoted by
x(G). A hypergraph H is a pair (V, £), where V is the set of vertices of H, and
€ is a family of non-empty subsets of V called hyperedges of H. A k-coloring of
H = (V,E)isamapping ¢ : V — {1,2,...,k} such that for all ¢ € &£, where
le|] > 2, there exist u, v € e with c(u) # c(v). The chromatic number of H, x (H), is
the smallest k for which H has a k-coloring. Indeed, every graph is a hypergraph in
which every hyperedge is of size two and a k-coloring of such hypergraph is a usual
vertex k-coloring.

A clique of G is a subset of mutually adjacent vertices of V (G). A clique is said
to be maximal if it is not properly contained in any other clique of G. We call cligue-
hypergraph of G, the hypergraph H(G) = (V, £) with the same vertices as G whose
hyperedges are the maximal cliques of G of cardinality at least two. A k-coloring of
H(G) is also called a k-clique coloring of G, and the chromatic number of H(G) is
called the clique-chromatic number of G, and is denoted by x.(G). In other words,
a k-clique coloring of G is a coloring of V(G) such that no maximal clique in G
is monochromatic, and x.(G) = x (H(G)). A clique coloring of H(G) is strong if
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no triangle of G is monochromatic. A graph G is hereditary k-clique colorable if G
and all its induced subgraphs are k-clique colorable. The clique-hypergraph coloring
problem was posed by Duffus et al. in [6]. To see more results on this concept, see
[2,3,7,8,15].

Clearly, any vertex k-coloring of G is a k-clique coloring, whence x.(G) < x(G).
It is shown that in general, clique coloring can be a very different problem from usual
vertex coloring and x.(G) could be much smaller than x (G) [2]. On the other hand,
if G is triangle-free, then H(G) = G, which implies x.(G) = x(G). Since the
chromatic number of triangle-free graphs is known to be unbounded [10], we get that
the same is true for the clique-chromatic number of triangle-free graphs. In addition,
clique-chromatic number of claw-free graphs or even line graphs is not bounded.
For instance for each constant k, there exists Ny € N such that for each n > N,
Xc(L(Ky)) = k + 1 that L(K,,) is line graph of complete graph K,, and is claw-free
[2]. On the other hand, Défossez proved that a claw-free graph is hereditary 2-clique
colorable if and only if it is odd-hole-free [5]. That is why recognizing the structure of
graphs with bounded and unbounded clique-chromatic number could be an interesting
problem.

For planar graphs, Mohar and Skrekovski in [9] proved the following theorem:

Theorem 1.1 [9] Every planar graph is strongly 3-clique colorable.
Moreover, Shan et al. in [12] proved the following theorem:

Theorem 1.2 [12] Every claw-free planar graph, different from an odd cycle, is 2-
clique colorable.

Shan and Kang generalized the result of Theorem 1.1 to K5-minor free graphs and
the result of Theorem 1.2 to graphs which are claw-free and Ks-subdivision free [11]
as follows:

Theorem 1.3 [11] Every Ks-minor free graph is strongly 3-clique colorable.

Theorem 1.4 [11] Every graph which is claw-free and Ks-subdivision free, different
from an odd cycle, is 2-clique colorable.

In this paper, we generalize the result of Theorem 1.1 to K3 3-minor free graphs
and the result of Theorem 1.2 to claw-free and K3 3-minor (K3 3-subdivision) free
graphs.

2 Preliminaries

In this section, we state the structure theorem of claw-free graphs that is proved by
Chudnovsky and Seymour [4]. At first we need a number of definitions.

Two adjacent vertices u, v of graph G are called twins if they have the same neigh-
bors in G, and if there are two such vertices, we say G admits twins. For a vertex v
in G and aset X C V(G)\{v}, we say that v is complete to X or X-complete if v is
adjacent to every vertex in X; and that v is anticomplete to X or X-anticomplete if
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v has no neighbor in X. For two disjoint subsets A and B of V(G), we say that A is
complete, respectively, anticomplete, to B, if every vertex in A is complete, respec-
tively, anticomplete, to B. A vertex is called singular if the set of its non-neighbors
induces a clique.

Let G be a graph and A, B be disjoint subsets of V(G), the pair (A, B) is called
homogeneous pair in G, if for every vertex v € V(G)\(AU B), v is either A-complete
or A-anticomplete and either B-complete or B-anticomplete. If one of the subsets A
or B, for instance B is empty, then A is called a homogeneous set.

Let (A, B) be ahomogeneous pair, such that A, B are both cliques, and A is neither
complete nor anticomplete to B, and at least one of A, B has at least two members.
In these conditions the pair (A, B) is called a W-join. A homogeneous pair (A, B) is
non-dominating if some vertex of V(G)\(A U B) has no neighbor in A U B, and it is
coherent if the set of all (A U B)-complete vertices in V(G)\(A U B) is a clique.

Next, suppose that Vi, V; is a partition of V(G) such that Vi, V, are non-empty
and V; is anticomplete to V5. The pair (V1, V) is called a 0-join in G.

Next, suppose that Vi, V5 is a partition of V(G), and for i = 1, 2 there is a subset
A; C V; such that:

(1) A;isaclique, and A;, V;\ A; are both non-empty;
(2) Ajiscomplete to As;
(3) V1\A; is anticomplete to V;, and V,\ A3 is anticomplete to V.

In these conditions, the pair (Vi, V») is a 1-join.
Now, suppose that Vp, V1, V2 is a partition of V(G), and for i = 1,2 there are
subsets A;, B; of V; satisfying the following properties:

(1) A;, B; are cliques, A; N B; =@, and A;, B; and V;\(A; U B;) are all non-empty;

(2) Aj is complete to A>, and B is complete to B;, and there are no other edges
between V| and V>;

(3) Vp is aclique, and, for i = 1, 2, Vp is complete to A; U B; and anticomplete to
Vi\(A; U B;).

The triple (Vy, V1, V») is called a generalized 2-join, and, if Vy = @, the pair (Vi, V»)
is called a 2-join.

The last decomposition is the following: Let (V7, V») be a partition of V (G), such
that for i = 1, 2, there are cliques A;, B;, C; C V; with the following properties:

(1) the sets A;, B;, C; are pairwise disjoint and have union V;;

(2) Vj is complete to V» except that there are no edges between A; and A,, between
B1 and Bj, and between Ci and C»; and

(3) Vi, V; are both non-empty.

In these conditions it is said that G is a hex-join of V| and V5.
Now we define classes Fy, ..., F7 as follows:

e [y is the class of all line graphs.

e The icosahedron is the unique planar graph with 12 vertices of all degree five.
For k = 0, 1, 2, 3, icosa(k) denotes the graph obtained from the icosahedron by
deleting k pairwise adjacent vertices. The class Fj is the family of all graphs G
isomorphic to icosa(0), icosa(l), or icosa(2).
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e Let H be the graph with vertex set {vy, ..., vi3}, with the following adjacency:
V1v2...060] is a hole in G of length 6; v7 is adjacent to vy, vy; vg is adja-
cent to v4, v5 and possibly to v7; vg is adjacent to vg, v1, V2, V3; V1o 1s adjacent
to v3, v4, Vs, Vg, V9; V1] 1S adjacent to v3, v4, ve, V1, V9, V10; V12 is adjacent to
V2, U3, V5, Vg, V9, U10; V13 is adjacent to vy, va, v4, V5, v7, vg and no other pairs are
adjacent. The class F> is the family of all graphs G isomorphic to H\X, where
X C {v11, v12, v13}.

e Let C be acircle, and V(G) be a finite set of points of C. Take a set of subset of
C homeomorphic to interval [0, 1] such that there are not three intervals covering
C and no two intervals share an end-point. Say that u, v € V(G) are adjacent in
G if the set of points {u, v} of C is a subset of one of the intervals. Such a graph
is called circular interval graph. The class F3 is the family of all circular interval
graphs.

e Let H bethe graph with seven vertices hy, . . ., hg,inwhichhy, ..., he are pairwise
adjacent and hg is adjacent to hy. Let H " be the graph obtained from the line
graph L(H) by adding one new vertex, adjacent precisely to the members of
V(L(H)) = E(H) that are not incident with & in H. Then H "is claw-free. Let
F4 be the class of all graphs isomorphic to induced subgraphs of H ". Note that the
vertices of H' corresponding to the members of E(H) that are incident with A in
H form a clique in H ", So the class Fy is the family of graphs that is either a line
graph or has a singular vertex.

o letn >0.LetA ={ay,...,a,}, B=1{b1,...,b,}, C ={cy,...,cu} be three
cliques, pairwise disjoint. For 1 < i, j < n, let a;, b; be adjacent if and only if
i = j,andlet ¢; be adjacenttoa;, bj if and only if i # j.Letdy, d, d3, d4, ds be
five more vertices, where d; is (AU BUC)-complete; d> is complete to AUBU{d };
dz is complete to A U {d3}; ds is complete to B U {d3, d3}; ds is adjacent to d3, da;
and there are no more edges. Let the graph just constructed be H. A graph G € F5
if (for some n) G is isomorphic to H\ X for some X € AU BUC. Note that vertex
dj is adjacent to all the vertices but the triangle formed by d3, d4 and ds, so itis a
singular vertex in G.

e Letn >0.Let A ={ag,...,a,}, B=1{bo,...,b,}, C ={cy,...,cn} be three
cliques, pairwise disjoint. For 0 < i, j < n, let a;, b; be adjacent if and only if
i=j>0,andforl <i <nand0 < j < n let ¢; be adjacent to a; , b; if and
only if i # j # 0. Let the graph just constructed be H. A graph G € Fg if (for
some n) G is isomorphic to H\X for some X € (A\{ap}) U (B\{bo}) UC.

e A graph G is prismatic, if for every triangle T of G, every vertex of G notin 7 has
aunique neighbor in 7. A graph G is antiprismatic if its complement is prismatic.
The class F7 is the family of all antiprismatic graphs.

The structure theorem in [4] is as follows:
Theorem 2.1 [4] If G is a claw-free graph, then either
e GeFyU---UFy, or

e G admits either twins, a non-dominating W-join, a 0-join, a 1-join, a generalized
2-join, or a hex-join.
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3 K3 3-Minor Free Graphs

In this section, we focus on the clique chromatic number of K3 3-minor free graphs. In
particular, we prove that every K3 3-minor free graph is strongly 3-clique colorable.
Moreover, it is 2-clique colorable if it is claw-free and different from an odd cycle.

For this purpose, first we need the Wagner characterization of K3 3-minor free
graphs [14]. Let G| and G, be graphs with disjoint vertex-sets. Also, let K > 0 be an
integer, and fori = 1, 2, let X; € V(G;) be a set of cardinality k of pairwise adjacent
vertices. For i = 1, 2, let G} be obtained from G; by deleting a (possibly empty) set
of edges with both ends in X;. If f : X; —> X3 is a bijection, and G is the graph
obtained from the union of G| and G/, by identifying x with f(x) forall x € X1, then
we say that G is a k-sum of G| and G».

Theorem 3.1 [13,14] A graph is K3 3-minor free if and only if it can be obtained from
planar graphs and complete graph Ks by means of 0-, 1-, 2-sums.

In order to make the above characterization easier, we use the structural sequence
for K3 3-minor free graphs. In fact, graph G is K3 3-minor free if and only if there
exists a sequence 7 = 11, Tz, ..., Ty, in which for each i, 1 <i < r, T; is either a
planar graph or isomorphic with Ks, such that G| = T}, and foreachi,2 <i <r, G;
is obtained from disjoin union of G;_; and T;, or by gluing 7; to G;_1 on one vertex
or one edge or two non-adjacent vertices and G, = G. For a given K3 3-minor free
G, the sequence 7 is called a Wagner sequence.

Also we need following lemma proposed in [9]:

Lemma3.2 [9] Let G be a connected plane graph such that its outer cycle, C, is a
triangle. If ¢ : V(C) — {1, 2, 3} is a clique coloring of induced subgraph C, then
¢ can be extended to a strong 3-clique coloring of G.

In the following, we use the Wagner sequence to provide a strong 3-clique coloring
for K3 3-minor free graphs.

Theorem 3.3 Every K3 3-minor free graph is strongly 3-clique colorable.

Proof Let G be a K3 3-minor free graph. The assertion is trivial for |V (G)| < 3. So let
[V(G)| >4and T =Ty, T», ..., T, be a Wagner sequence of G. We use induction on
r.If r = 1, then G = T is either K5 or a planar graph. If G is K5, then the assertion
is obvious, since by assigning color 1 to two vertices of K5 and color 2 to two vertices
of K5 and color 3 to rest vertex, we have a strong 3-clique coloring of Ks. Also, if G
is a planar graph, then the assertion follows directly from Theorem 1.1.

Now let » > 2. By the induction hypothesis G,_; and 7, have strong 3-clique
coloring. If G, is 0-sum of G,_1 and T}, then there is nothing to say. Suppose that
G, is obtained from G,_1 and 7} by gluing on vertex {v}. Thus, by a renaming of the
colors, if it is necessary, we obtain a strong 3-clique coloring for G,.

Next, we suppose that G, is obtained from G,_; and 7, by gluing on edge uv
or two non-adjacent vertices u and v. If 7, is K5, then we consider a strong 3-clique
coloring of G,_1, say ¢, and extend it to a strong 3-clique coloring of G, as follows: If
¢ (u) # ¢ (v), then we assign three different colors {1, 2, 3} to the other three vertices
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of K5.If ¢ (u) = ¢ (v), then we assign two different colors {1, 2, 3}\{¢ (v)} to the other
three vertices of K5. Obviously, the extended coloring is a strong 3-clique coloring of
G,.

Finally, let 7, be a planar graph. We consider a strong 3-clique coloring of G,_1,
say ¢, and provide a strong 3-clique coloring of G, as follows : If ¢ (1) # ¢ (v) and
e = uv is a maximal clique of T, then suppose that q&/ is a strong 3-clique coloring
of T;. In this case, by a renaming the color of ¢’(«) and ¢’ (v) in T}, if it is necessary,
we obtain a strong 3-clique coloring of G,. If ¢ = uv is not a maximal clique in 7},
then there exists a triangle 7' containing e in 7,.. Now we consider a planar embedding
of T, in which T is an outer face in it. Hence, by Lemma 3.2, it is enough to give a
strong 3-clique coloring of outer cycle T of plane graph 7. That is obviously possible
by coloring the third vertex of T properly.

Ifo(u) = ¢(v), thenlete = uv and Tr/ = T, - e. If there is no triangle consisting of
e =uvin Tr/ , then we consider a strong 3-clique coloring ¢ of plane graph Tr/ , such
that ¢>/(u) = ¢/(v) = ¢(u) = ¢(v). Note that edge e = uv is not maximal clique in
Gr_1, so it is not maximal clique in G,. Therefore, the coloring ¢ (x) for x € G,
and ¢>/(x) for x € T, - e is a strong 3-clique coloring for G,. If ¢ = uv is in triangle
T in Tr/, then we consider a planar embedding of Tr/ in which 7' is an outer face in
it. By Lemma 3.2, it is enough to give a 3-clique coloring of outer cycle T of plane
graph Tr/. Thus, we give ¢'(u = v) = ¢(u) = ¢(v) and assign two different colors
{1,2,3\{¢(v)} to other two vertices of T; then we extend ¢’ to a strong 3-clique
coloring of Tr/ . This implies a strong 3-clique coloring of 7, as desired, and again we
obtain a strong 3-clique coloring of G,.. O

The rest of this section deals with the proof that, every claw-free and K3 3-minor
free graph G, different from an odd cycle of order greater than three, is 2-clique
colorable. For this purpose, we need two following theorems:

Theorem3.4 [8]IfG € F1 U F, U F3 U F5 U Fg or G admits a hex-join, different
from an odd cycle of order greater than three, then G is 2-clique colorable.

Theorem 3.5 [8] Every connected claw-free graph G with maximum degree at most
seven, not an odd cycle of order greater than three, is 2-clique colorable.

From the proof of Theorem 3.5, we conclude the following corollary:

Corollary 3.6 If G is a connected K3 3-minor free graph which admits either twins, or
a non-dominating W -join, or a coherent W -join, or a 1-join, or a generalized 2-join,
except an odd cycle of order greater than three, then G is 2-clique colorable.

According to Theorem 3.4 and Corollary 3.6, it is sufficient to show that every
K3 3-minor free graph G € Fp U F4 U F7 except an odd cycle of order greater than
three, is 2-clique colorable. First we show this result for class Fy (the class of line
graphs).

Proposition 3.7 Every K3 3-minor free graph in Fy, different from an odd cycle of
order greater than three, is 2-clique colorable.
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Proof Let G be a K3 3-minor free line graph. The assertion is trivial for |V (G)| < 3.
Now, let |[V(G)| > 4. Let T = T, Tp, ..., T, be a Wagner sequence of G. We use
induction on r. If » = 1, then G = T is either K5 or a planar graph. If G is K5, then
the assertion is obvious. If G is a planar graph, then by Theorem 1.2, G has a 2-clique
coloring, since every line graph is claw-free.

Now let r > 2. By the induction hypothesis G,_; and 7, have 2-clique coloring.
If G, is O-sum or 1-sum of G,_; and 7}, then the result is obvious. Now, we suppose
that G, is 2-sum of G,_1 and T, on edge uv. Note that if uv is an edge cut, then G
can be considered as 1-sum of two graphs. So, later on we assume that uv is not an
edge cut. If 7, is K5 and ¢ is a 2-clique coloring of G,_, then we assign the colors
¢ (u) and ¢ (v) to vertices u, v in K5 and give two different colors {1, 2} to the other
three vertices of Ks.

If 7, is a planar graph, then we have four possibilities:

(i) there exists 2-clique colorings ¢ and ¢>, of G,_1 and T}, such that ¢ (1) # ¢ (v)
and ¢ (u) # ¢ (v); ,

(ii) there exists 2-clique colorings ¢ and ¢ of G,_; and T}, such that ¢ (u) = ¢ (v)
and ¢ (u) = ¢ (v); ,

(iii) in every 2-clique colorings ¢ and ¢ of G,_; and T, ¢(u) # ¢(v) and
¢ () =¢ (v); ,

(iv) in every 2-clique colorings ¢ and ¢ of G,_; and T, ¢(u) = ¢(v) and
¢ () # ¢ (v).

In the first two cases, only by a color renaming, if it is necessary, we obtain a 2-clique
coloring for G,. In the following, without loss of generality we consider the case (iii)
and show that it is impossible:

The assumption (iii) concludes that vertex # (and v) in 7, belongs to a maximal
clique Cy, (and Cy) such that in every 2-clique coloring of T,., C;,\{u} (and Cy\{v})
is monochromatic. Hence, u ¢ C, and v ¢ C,. This implies that, u has a non-
neighbor vertex in C,,, say v’, also v has a non-neighbor vertex in C,,, say u’. Moreover,
assumption (iii) implies that uv is a maximal clique in G,_;. Thus, there exist ver-
tex u” € Ng, ,(u) that u” ¢ Ng, ,(v) (or v" € Ng, ,(v) that v/ ¢ Ng, ,(w)).
Hence, edge uv among edges uu’ and uu” (or vv’ and vv”) is a claw in G,, that is a
contradiction.

If in the operation 2-sum, the edge uv is deleted, then by the following argument, we
could change the coloring of vertices in 7} such that qb/ (u) # ¢>/ (v), that contradicts the
assumption (iii). Note that since uv is not an edge cutin G,_ and T, there are shortest
(u,v)-paths P : ug = uuy...uy = vin T, /{fuv}and Q : vop = vv;...v; = u in
Gr—1/{uv}. Since G, is claw-free, vertices u and v in 7, and G,_1 belong to only one
maximal clique. If d7, (u;) =2,i =1,...,s—1landdg,_(vj;) =2,j=1,...,t—1,
then by (iii), the length of P is even and the length of Q is odd. This implies G, is an
odd cycle and contradicts our assumption. Thus, assume that k € {0, 1,...,s — 1} is
the smallest indices that d7, (ux) > 3 and w € N7, (ux). Since G, is claw free, we must
have w € N7, (ur+1). Let C be a unique maximal clique consisting of [ux, ug+1, w]
(note that N7, (ux) € Nt (ur+1)). If there exists a vertex in C that its color is qb/(uk),
then we swap the colors of vertices on (u, ug)-path in P. Thus, we will obtain a 2-
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clique coloring of 7 such that # and v are assigned different colors. This contradicts
the assumption (iii).

Now assume that the color of all vertices in C is different from ¢, (uy). In this case,
if there exists a vertex in C, say w’ # uy, such that C is a unique maximal clique
contains w’, then we assign qﬁ/ (uy) to w’ and again swap the colors of vertices on
(u, up)-path in P. Otherwise, every vertex in C belongs to a maximal clique other
than C. In this case, if there exists a vertex w’ € C, such that w’ € C’, where C and
C’ are maximal cliques in different blocks of T}, then we swap the color of vertices
in the component of T} /{w'} consisting of C’, assign ¢ (i) to w’ and again swap the
colors of vertices on (u, uy)-path in P. Thus, we will obtain a 2-clique coloring of 7,
such that ¥ and v are assigned different colors. This contradicts the assumption (iii).

The remaining case is that all vertices in C belong to some other maximal cliques
and all cliques are in one block in 7. In this case, let / be the smallest indices that
there exists a path from u; to some vertices in C/{uy, ux4+1}, whih we call (w, u;)-
path P’ : wwy ... w,;; = u;. Note that if there is no such a path, then we can consider
graph G as a 2-sum of two graphs on edge uiu+1, and we are done. If m = 1,
then since P is a shortest path, we have [ = k 4 2. Therefore, the induced subgraph
on vertices {ug_1, Uk, Uf+1, Uk+2, Uk+3, W} s one of the nine forbidden structures in
line graphs (see [16]) (note that if k = 0 or k = s — 2, then vertex uy_; = v;—1 or
ur+3 = v1). Hence,m > 2. Also, w,,—1 is adjacent to u; 1, since 7} is claw free. Now,
by considering the first internal vertices in P’ and (uy41, u;)-path in P with degree
greater than two, we do the similar above discussion in order to change the color of
vertices w or uj41 and subsequently change the color of u. Therefore, if we could not
do that, then we conclude thay pattern of cqlors in these, paths are a, b,a,b.. > where
a,b € {1,2}. Now,wehave ¢ (wp—1) = ¢ (ui+1) # ¢ () orp (wy—1) # ¢ (uy41).
In the former case, we swap the color of vertices in path wy,,—jw;,—> ... wiwug ... u.
In the latter case, we swap the color of vertices in path uju;_1 ... uppuglp—1 ... u.
Thus, in both cases, we obtain a 2-clique coloring for 7, such that the vertices u and v
receive different colors and this contradicts the assumption (ii7). Therefore, the cases
(iii) and (iv) are impossible and the proof is complete. m|

Now we show the 2-clique colorability of K3 3-minor free graphs in class Fjy. First,
we need the following theorem:

Theorem 3.8 [2] For any graph G # Cs with a(G) > 2, we have x.(G) < a(G).
Proposition 3.9 Every K3 3-minor free graph in Fy is 2-clique colorable.

Proof Let G be a graph in Fy4. Since a graph in Fy is a line graph or has a singular
vertex, by Proposition 3.7 it is sufficient to consider graphs in F4 with singular vertex.
So by the constraction of graphs in Fy, we have «(G) < 3. For case «(G) = 1, the
statement is obvious. If «(G) = 2, then by Theorem 3.8, G is 2-clique colorable;
otherwise, «(G) = 3. Let x be a singular vertex and S = {r, s, t} be a maximum
independent set in G. Note that x ¢ S, and since non-neighbor vertices of x induce a
clique, vertices r, s are adjacent to x and ¢ is not adjacent to x.

Now we propose a 2-clique coloring ¢ for G as follows: let ¢ (x) = 1, ¢p(t) = 2
and assign color 1 to every non-neighbor vertex of x except ¢. Now if x and ¢ have

@ Springer



Bulletin of the Iranian Mathematical Society

more than one common neighbor, then assign color 2 to one of them and color 1 to
the other vertices; otherwise, assign color 1 to their common neighbor. Finally, assign
color 2 to the other adjacent vertices to x. It is easy to see that this assignment is a
2-clique coloring of G. O

Finally, we show the 2-clique colorability of K3 3-minor free graphs in class F7.

Proposition 3.10 Every K3 3-minor free graph in F7 is 2-clique colorable.

Proof Let G be a graph in F;. Since G is an antiprismatic, G is prismatic. If G has
no triangle, then «(G) = 2, and by Theorem 3.8, is 2-clique colorable. Now let
T = [vuw] be a triangle in G,and S| = Ne(W\{u, w}, 2 = Ng@)\{v, w} and
83 = Ng(w)\{u, v} be a partition of vertices V(G) — {v, u, w}.

Liang et al. in [8] prove that if

(1) |Si| =0 forsome i = 1,2, 3, then G has a 2-clique coloring.
(1) |S;| = 1 forsome i = 1, 2, 3, then G has a 2-clique coloring.
(iii) there is an edge xy in G such that fori # j € {1, 2, 3}, x is an isolated vertex in
G[S;] and y is an isolated vertex in G[S i1, then there exists a 2-clique coloring
of G.
(iv) there existi # j € {1, 2, 3} such that S; U S; is an independent set in G, then G
has a 2-clique coloring.

In the following for the remaining cases, we provide a 2-clique coloring for G or we
show that G is K3 3-minor that is a contradiction. Let S = {v1, v} and S> = {uy, us}
and S3 = {wy, wy}. Thereare i # j,i, j € {1,2,3},sayi = 1, j = 2, such that vy is
adjacent to v; in G and u; is adjacent to u» in G; otherwise by (iii) or (iv), we have
Xc(G) < 2.Hence, we have triangles [uuju>] and [vvivz] in G.Since Gisa prismatic
v1, V2, w1, w2 have a unique neighbor in [uuius] and uy, us, wi, wy have a unique
neighbor in [vvjvz]. Thus, {u;, uz, v1, v2} induces a cycle in G because, otherwise,
for instance if #| and u, both are adjacent to vy, then there exist two neighbors for u
in triangle [ujuov1]. Without loss of generality, assume that v and upv; are edges
in G. That means, u; v, and uyv| are edgesin G.

Now each two vertices w; and wy have unique neighbor in [uuu2] and [vvva].
If both vertices w; and w, are adjacent to u1 (or u) and vy (or v2) in G, then there
exists two neighbors for wy in triangle [viujw;] (or [vauaw1]) that contradicts G is
prismatic. If vertices w; and w are both adjacent to u (or u#2) and v (or vy) in G,
then G has a K3 3-minor, on vertices {w, wy, wy; u, v, v1} (or {w, wi, wa; u, v, V2}).
Note that if w; is adjacent to wy in G, then we have triangle [wwjw,;] and since G
is prismatic, vertices w; and w, cannot be both adjacent to one vertex of {vy, va} or
{ur, uz}. If wy is adjacent to u; (or uy) and vy (or v2) and wy is adjacent to uy (or
u1) and v (or v2) in G, then G has a K3 3-minor, on vertices {w, wi, wa; u, v, v2} (or
{w, wi, wa; u, v, v1}). Hence, all cases above contradict that G is K3 3-minor free or
G is prismatic. Thus, it is enough to consider the two following remaining cases:

e w is adjacent to u| and v, and w» is adjacent to u; and v; in G (Fig. 1b shows
graph G).

e wj is adjacent to u, and v, and w> is adjacent to u# and v, in G (Fig. 1a shows
graph G).
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(a) (b)

Fig.1 Two K3 3-minor free graphs

In both above cases G is a claw free planar graph and by Theorem 1.2 is 2-clique
colorable (in Fig. 1, and the dashed lines show the edges that may exist or not exist in
G).

Finally, let |S;| > 3 for some i = 1,2,3, say |S1| > 2, |$2] > 2 and §3 =
{w1, wa, w3}. Since such graphs contain the graphs with |S;| < 2,i = 1,2,3 as
subgraph, we only need to consider graphs that contains one of the two graphs shown
in Fig. 1. By case (iv) there are i # j € {1,2,3} such that G[S;] and G[S;] both
are not independent. Liang et al. in [8] show that G[S;], i € {1, 2, 3}, is not path and
triangle. So we need to consider the case that [uuu3] and [vvyv;] are triangles in G,
and viw3 € E(G) or vaws € E(G). This implies G has a K3 3-minor, on vertex set
{w, wy, wa; u, v, v2} or {w, wy, wa; u, v, v}, respectively. Note that, when [uuju;]
and [wwiw,] are triangles in G, the proof is similar. Therefore, when |S;| > 3 for
some i =1, 2,3, G is a K3 3-minor, that is a contradiction. O

By Theorem 3.4, Corollary 3.6 and Propositions 3.7, 3.9, 3.10, the main result in
this section is proved.

Theorem 3.11 If G is claw-free and K3 3-minor free graph except an odd cycle of
order greater than three, then G is 2-clique colorable.
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