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Abstract
A clique-coloring of a given graph G is a coloring of the vertices of G such that no
maximal clique of size at least two is monocolored. The clique-chromatic number of
G is the least number of colors for which G admits a clique-coloring. It has been
proved that every planar graph is 3-clique colorable and every claw-free planar graph,
different from an odd cycle, is 2-clique colorable. In this paper, we generalize these
results to K3,3-minor free (K3,3-subdivision free) graphs.

Keywords Clique-coloring · Clique chromatic number · K3,3-Minor free graphs ·
Claw-free graphs
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1 Introduction

Graphs considered in this paper are all simple and undirected. Let G be a graph with
vertex set V (G) and edge set E(G). The number of vertices of G is called the order
of G. The set of vertices adjacent to a vertex v is denoted by NG(v), and the size of
NG(v) is called the degree of v and is denoted by dG(v). A vertex with degree zero
is called an isolated vertex. The maximum degree of G is denoted by �(G). For a
subset S ⊆ V (G), the subgraph induced by S is denoted by G[S]. An independent set
is a set of vertices in graph that does not induce any edge and the size of maximum
independent set in G is written by α(G).

As usual, the complete bipartite graphwith parts of cardinalitym andn (m, n ∈ N) is
indicated by Km,n . The graph K1,3 is called a claw. The complete graph with n vertices
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{v1, . . . , vn} is denoted by Kn or [v1, . . . , vn]. The graph Ḡ is the complement of G
with the same vertex set as G, and uv is an edge in Ḡ if and only if it is not an edge
in G. The path and the cycle of order n are denoted by Pn and Cn , respectively. The
length of a path and a cycle is the number of its edges. A path with end vertices u and
v is denoted by (u, v)-path.

Edge e is called an edge cut in connected graphG ifG/{e} is disconnected. A block
inG is a maximal 2-connected subgraph ofG. A chord of a cycleC is an edge not inC
whose end vertices lie in C . A hole is a chordless cycle of length greater than three. A
hole is said to be odd if its length is odd; otherwise, it is said to be even. Given a graph
F , a graph G is called F-free if G does not contain any induced subgraph isomorphic
with F . A graph G is a (F1, . . . , Fk)-free graph if it is Fi -free for all i ∈ {1, . . . , k}.
A graph G is claw-free (resp. triangle-free) if it does not contain K1,3 (resp. K3) as
an induced subgraph.

By a subdivision of an edge e = uv, wemean replacing the edge ewith a (u, v)-path.
Any graph derived from graph F by a sequence of subdivisions is called a subdivision
of F or an F-subdivision. The contraction of an edge e with endpoints u and v is the
replacement of u and v with a vertex such that edges incident to the new vertex are
the edges that were incident with either u or v except e; the obtained graph is denoted
by G · e. Graph F is called a minor of G (G is called F-minor graph) if F can be
obtained from G by a sequence of vertex and edge deletions and edge contractions.
Given a graph F , graph G is F-minor free if F is not a minor of G. Obviously, any
graph G which contains an F-subdivision also has an F-minor. Thus an F-minor free
graph is necessarily F-subdivision free, although in general the converse is not true.
However, if F is a graph of the maximum degree at most three, any graph which has
an F-minor also contains an F-subdivision. Thus, a graph is K3,3-minor free if and
only if it is K3,3-subdivision free. By the well-known Kuratowski’s theorem a graph is
planar if and only if it is K5-minor free and K3,3-minor free. For further information
on graph theory concepts and terminology we refer the reader to [17].

A vertex k-coloring of G is a function c : V (G) −→ {1, 2, . . . , k} such that for
every two adjacent vertices u and v, c(u) �= c(v). The minimum integer k for which
G has a vertex k-coloring is called the chromatic number of G and is denoted by
χ(G). A hypergraph H is a pair (V , E), where V is the set of vertices of H, and
E is a family of non-empty subsets of V called hyperedges of H. A k-coloring of
H = (V , E) is a mapping c : V −→ {1, 2, . . . , k} such that for all e ∈ E , where
|e| ≥ 2, there exist u, v ∈ e with c(u) �= c(v). The chromatic number ofH, χ(H), is
the smallest k for which H has a k-coloring. Indeed, every graph is a hypergraph in
which every hyperedge is of size two and a k-coloring of such hypergraph is a usual
vertex k-coloring.

A clique of G is a subset of mutually adjacent vertices of V (G). A clique is said
to be maximal if it is not properly contained in any other clique of G. We call clique-
hypergraph of G, the hypergraphH(G) = (V , E) with the same vertices as G whose
hyperedges are the maximal cliques of G of cardinality at least two. A k-coloring of
H(G) is also called a k-clique coloring of G, and the chromatic number of H(G) is
called the clique-chromatic number of G, and is denoted by χc(G). In other words,
a k-clique coloring of G is a coloring of V (G) such that no maximal clique in G
is monochromatic, and χc(G) = χ(H(G)). A clique coloring of H(G) is strong if
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no triangle of G is monochromatic. A graph G is hereditary k-clique colorable if G
and all its induced subgraphs are k-clique colorable. The clique-hypergraph coloring
problem was posed by Duffus et al. in [6]. To see more results on this concept, see
[2,3,7,8,15].

Clearly, any vertex k-coloring of G is a k-clique coloring, whence χc(G) ≤ χ(G).
It is shown that in general, clique coloring can be a very different problem from usual
vertex coloring and χc(G) could be much smaller than χ(G) [2]. On the other hand,
if G is triangle-free, then H(G) = G, which implies χc(G) = χ(G). Since the
chromatic number of triangle-free graphs is known to be unbounded [10], we get that
the same is true for the clique-chromatic number of triangle-free graphs. In addition,
clique-chromatic number of claw-free graphs or even line graphs is not bounded.
For instance for each constant k, there exists Nk ∈ N such that for each n ≥ Nk ,
χc(L(Kn)) ≥ k + 1 that L(Kn) is line graph of complete graph Kn and is claw-free
[2]. On the other hand, Défossez proved that a claw-free graph is hereditary 2-clique
colorable if and only if it is odd-hole-free [5]. That is why recognizing the structure of
graphs with bounded and unbounded clique-chromatic number could be an interesting
problem.

For planar graphs, Mohar and Skrekovski in [9] proved the following theorem:

Theorem 1.1 [9] Every planar graph is strongly 3-clique colorable.

Moreover, Shan et al. in [12] proved the following theorem:

Theorem 1.2 [12] Every claw-free planar graph, different from an odd cycle, is 2-
clique colorable.

Shan and Kang generalized the result of Theorem 1.1 to K5-minor free graphs and
the result of Theorem 1.2 to graphs which are claw-free and K5-subdivision free [11]
as follows:

Theorem 1.3 [11] Every K5-minor free graph is strongly 3-clique colorable.

Theorem 1.4 [11] Every graph which is claw-free and K5-subdivision free, different
from an odd cycle, is 2-clique colorable.

In this paper, we generalize the result of Theorem 1.1 to K3,3-minor free graphs
and the result of Theorem 1.2 to claw-free and K3,3-minor (K3,3-subdivision) free
graphs.

2 Preliminaries

In this section, we state the structure theorem of claw-free graphs that is proved by
Chudnovsky and Seymour [4]. At first we need a number of definitions.

Two adjacent vertices u, v of graph G are called twins if they have the same neigh-
bors in G, and if there are two such vertices, we say G admits twins. For a vertex v

in G and a set X ⊆ V (G)\{v}, we say that v is complete to X or X -complete if v is
adjacent to every vertex in X ; and that v is anticomplete to X or X -anticomplete if
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v has no neighbor in X . For two disjoint subsets A and B of V (G), we say that A is
complete, respectively, anticomplete, to B, if every vertex in A is complete, respec-
tively, anticomplete, to B. A vertex is called singular if the set of its non-neighbors
induces a clique.

Let G be a graph and A, B be disjoint subsets of V (G), the pair (A, B) is called
homogeneous pair inG, if for every vertex v ∈ V (G)\(A∪ B), v is either A-complete
or A-anticomplete and either B-complete or B-anticomplete. If one of the subsets A
or B, for instance B is empty, then A is called a homogeneous set.

Let (A, B) be a homogeneous pair, such that A, B are both cliques, and A is neither
complete nor anticomplete to B, and at least one of A, B has at least two members.
In these conditions the pair (A, B) is called a W -join. A homogeneous pair (A, B) is
non-dominating if some vertex of V (G)\(A ∪ B) has no neighbor in A ∪ B, and it is
coherent if the set of all (A ∪ B)-complete vertices in V (G)\(A ∪ B) is a clique.

Next, suppose that V1, V2 is a partition of V (G) such that V1, V2 are non-empty
and V1 is anticomplete to V2. The pair (V1, V2) is called a 0-join in G.

Next, suppose that V1, V2 is a partition of V (G), and for i = 1, 2 there is a subset
Ai ⊆ Vi such that:

(1) Ai is a clique, and Ai , Vi\Ai are both non-empty;
(2) A1 is complete to A2;
(3) V1\A1 is anticomplete to V2, and V2\A2 is anticomplete to V1.

In these conditions, the pair (V1, V2) is a 1-join.
Now, suppose that V0, V1, V2 is a partition of V (G), and for i = 1, 2 there are

subsets Ai , Bi of Vi satisfying the following properties:

(1) Ai , Bi are cliques, Ai ∩ Bi = ∅, and Ai , Bi and Vi\(Ai ∪ Bi ) are all non-empty;
(2) A1 is complete to A2, and B1 is complete to B2, and there are no other edges

between V1 and V2;
(3) V0 is a clique, and, for i = 1, 2, V0 is complete to Ai ∪ Bi and anticomplete to

Vi\(Ai ∪ Bi ).

The triple (V0, V1, V2) is called a generalized 2-join, and, if V0 = ∅, the pair (V1, V2)
is called a 2-join.

The last decomposition is the following: Let (V1, V2) be a partition of V (G), such
that for i = 1, 2, there are cliques Ai , Bi ,Ci ⊆ Vi with the following properties:

(1) the sets Ai , Bi ,Ci are pairwise disjoint and have union Vi ;
(2) V1 is complete to V2 except that there are no edges between A1 and A2, between

B1 and B2, and between C1 and C2; and
(3) V1, V2 are both non-empty.

In these conditions it is said that G is a hex-join of V1 and V2.
Now we define classes F0, . . . , F7 as follows:

• F0 is the class of all line graphs.
• The icosahedron is the unique planar graph with 12 vertices of all degree five.
For k = 0, 1, 2, 3, icosa(k) denotes the graph obtained from the icosahedron by
deleting k pairwise adjacent vertices. The class F1 is the family of all graphs G
isomorphic to icosa(0), icosa(1), or icosa(2).
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• Let H be the graph with vertex set {v1, . . . , v13}, with the following adjacency:
v1v2 . . . v6v1 is a hole in G of length 6; v7 is adjacent to v1, v2; v8 is adja-
cent to v4, v5 and possibly to v7; v9 is adjacent to v6, v1, v2, v3; v10 is adjacent
to v3, v4, v5, v6, v9; v11 is adjacent to v3, v4, v6, v1, v9, v10; v12 is adjacent to
v2, v3, v5, v6, v9, v10; v13 is adjacent to v1, v2, v4, v5, v7, v8 and no other pairs are
adjacent. The class F2 is the family of all graphs G isomorphic to H\X , where
X ⊆ {v11, v12, v13}.

• Let C be a circle, and V (G) be a finite set of points of C . Take a set of subset of
C homeomorphic to interval [0, 1] such that there are not three intervals covering
C and no two intervals share an end-point. Say that u, v ∈ V (G) are adjacent in
G if the set of points {u, v} of C is a subset of one of the intervals. Such a graph
is called circular interval graph. The class F3 is the family of all circular interval
graphs.

• Let H be the graphwith sevenvertices h0, . . . , h6, inwhich h1, . . . , h6 are pairwise
adjacent and h0 is adjacent to h1. Let H

′
be the graph obtained from the line

graph L(H) by adding one new vertex, adjacent precisely to the members of
V (L(H)) = E(H) that are not incident with h1 in H . Then H

′
is claw-free. Let

F4 be the class of all graphs isomorphic to induced subgraphs of H
′
. Note that the

vertices of H
′
corresponding to the members of E(H) that are incident with h1 in

H form a clique in H
′
. So the class F4 is the family of graphs that is either a line

graph or has a singular vertex.
• Let n ≥ 0. Let A = {a1, . . . , an}, B = {b1, . . . , bn}, C = {c1, . . . , cn} be three
cliques, pairwise disjoint. For 1 ≤ i, j ≤ n, let ai , b j be adjacent if and only if
i = j , and let ci be adjacent to a j , b j if and only if i �= j . Let d1, d2, d3, d4, d5 be
fivemore vertices, where d1 is (A∪B∪C)-complete; d2 is complete to A∪B∪{d1};
d3 is complete to A∪ {d2}; d4 is complete to B ∪ {d2, d3}; d5 is adjacent to d3, d4;
and there are no more edges. Let the graph just constructed be H . A graph G ∈ F5
if (for some n)G is isomorphic to H\X for some X ⊆ A∪ B∪C . Note that vertex
d1 is adjacent to all the vertices but the triangle formed by d3, d4 and d5, so it is a
singular vertex in G.

• Let n ≥ 0. Let A = {a0, . . . , an}, B = {b0, . . . , bn}, C = {c1, . . . , cn} be three
cliques, pairwise disjoint. For 0 ≤ i, j ≤ n, let ai , b j be adjacent if and only if
i = j > 0, and for 1 ≤ i ≤ n and 0 ≤ j ≤ n let ci be adjacent to a j , b j if and
only if i �= j �= 0. Let the graph just constructed be H . A graph G ∈ F6 if (for
some n) G is isomorphic to H\X for some X ⊆ (A\{a0}) ∪ (B\{b0}) ∪ C .

• A graph G is prismatic, if for every triangle T of G, every vertex of G not in T has
a unique neighbor in T . A graph G is antiprismatic if its complement is prismatic.
The class F7 is the family of all antiprismatic graphs.

The structure theorem in [4] is as follows:

Theorem 2.1 [4] If G is a claw-free graph, then either

• G ∈ F0 ∪ · · · ∪ F7, or
• G admits either twins, a non-dominating W -join, a 0-join, a 1-join, a generalized
2-join, or a hex-join.
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3 K3,3-Minor Free Graphs

In this section, we focus on the clique chromatic number of K3,3-minor free graphs. In
particular, we prove that every K3,3-minor free graph is strongly 3-clique colorable.
Moreover, it is 2-clique colorable if it is claw-free and different from an odd cycle.

For this purpose, first we need the Wagner characterization of K3,3-minor free
graphs [14]. Let G1 and G2 be graphs with disjoint vertex-sets. Also, let k ≥ 0 be an
integer, and for i = 1, 2, let Xi ⊆ V (Gi ) be a set of cardinality k of pairwise adjacent
vertices. For i = 1, 2, let G ′

i be obtained from Gi by deleting a (possibly empty) set
of edges with both ends in Xi . If f : X1 −→ X2 is a bijection, and G is the graph
obtained from the union of G ′

1 and G
′
2 by identifying x with f (x) for all x ∈ X1, then

we say that G is a k-sum of G1 and G2.

Theorem 3.1 [13,14] A graph is K3,3-minor free if and only if it can be obtained from
planar graphs and complete graph K5 by means of 0-, 1-, 2-sums.

In order to make the above characterization easier, we use the structural sequence
for K3,3-minor free graphs. In fact, graph G is K3,3-minor free if and only if there
exists a sequence T = T1, T2, . . . , Tr , in which for each i , 1 ≤ i ≤ r , Ti is either a
planar graph or isomorphic with K5, such that G1 = T1, and for each i , 2 ≤ i ≤ r , Gi

is obtained from disjoin union of Gi−1 and Ti , or by gluing Ti to Gi−1 on one vertex
or one edge or two non-adjacent vertices and Gr = G. For a given K3,3-minor free
G, the sequence T is called a Wagner sequence.

Also we need following lemma proposed in [9]:

Lemma 3.2 [9] Let G be a connected plane graph such that its outer cycle, C, is a
triangle. If φ : V (C) −→ {1, 2, 3} is a clique coloring of induced subgraph C, then
φ can be extended to a strong 3-clique coloring of G.

In the following, we use the Wagner sequence to provide a strong 3-clique coloring
for K3,3-minor free graphs.

Theorem 3.3 Every K3,3-minor free graph is strongly 3-clique colorable.

Proof LetG be a K3,3-minor free graph. The assertion is trivial for |V (G)| ≤ 3. So let
|V (G)| ≥ 4 and T = T1, T2, . . . , Tr be aWagner sequence of G. We use induction on
r . If r = 1, then G = T1 is either K5 or a planar graph. If G is K5, then the assertion
is obvious, since by assigning color 1 to two vertices of K5 and color 2 to two vertices
of K5 and color 3 to rest vertex, we have a strong 3-clique coloring of K5. Also, if G
is a planar graph, then the assertion follows directly from Theorem 1.1.

Now let r ≥ 2. By the induction hypothesis Gr−1 and Tr have strong 3-clique
coloring. If Gr is 0-sum of Gr−1 and Tr , then there is nothing to say. Suppose that
Gr is obtained from Gr−1 and Tr by gluing on vertex {v}. Thus, by a renaming of the
colors, if it is necessary, we obtain a strong 3-clique coloring for Gr .

Next, we suppose that Gr is obtained from Gr−1 and Tr by gluing on edge uv

or two non-adjacent vertices u and v. If Tr is K5, then we consider a strong 3-clique
coloring ofGr−1, say φ, and extend it to a strong 3-clique coloring ofGr as follows: If
φ(u) �= φ(v), then we assign three different colors {1, 2, 3} to the other three vertices
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of K5. Ifφ(u) = φ(v), thenwe assign two different colors {1, 2, 3}\{φ(v)} to the other
three vertices of K5. Obviously, the extended coloring is a strong 3-clique coloring of
Gr .

Finally, let Tr be a planar graph. We consider a strong 3-clique coloring of Gr−1,
say φ, and provide a strong 3-clique coloring of Gr as follows : If φ(u) �= φ(v) and
e = uv is a maximal clique of Tr , then suppose that φ

′
is a strong 3-clique coloring

of Tr . In this case, by a renaming the color of φ′(u) and φ′(v) in Tr , if it is necessary,
we obtain a strong 3-clique coloring of Gr . If e = uv is not a maximal clique in Tr ,
then there exists a triangle T containing e in Tr . Now we consider a planar embedding
of Tr in which T is an outer face in it. Hence, by Lemma 3.2, it is enough to give a
strong 3-clique coloring of outer cycle T of plane graph Tr . That is obviously possible
by coloring the third vertex of T properly.

If φ(u) = φ(v), then let e = uv and T
′
r = Tr · e. If there is no triangle consisting of

e = uv in T
′
r , then we consider a strong 3-clique coloring φ

′
of plane graph T

′
r , such

that φ
′
(u) = φ

′
(v) = φ(u) = φ(v). Note that edge e = uv is not maximal clique in

Gr−1, so it is not maximal clique in Gr . Therefore, the coloring φ(x) for x ∈ Gr−1
and φ

′
(x) for x ∈ Tr · e is a strong 3-clique coloring for Gr . If e = uv is in triangle

T in T
′
r , then we consider a planar embedding of T

′
r in which T is an outer face in

it. By Lemma 3.2, it is enough to give a 3-clique coloring of outer cycle T of plane
graph T

′
r . Thus, we give φ′(u = v) = φ(u) = φ(v) and assign two different colors

{1, 2, 3}\{φ(v)} to other two vertices of T ; then we extend φ′ to a strong 3-clique
coloring of T

′
r . This implies a strong 3-clique coloring of Tr as desired, and again we

obtain a strong 3-clique coloring of Gr . �
The rest of this section deals with the proof that, every claw-free and K3,3-minor

free graph G, different from an odd cycle of order greater than three, is 2-clique
colorable. For this purpose, we need two following theorems:

Theorem 3.4 [8] If G ∈ F1 ∪ F2 ∪ F3 ∪ F5 ∪ F6 or G admits a hex-join, different
from an odd cycle of order greater than three, then G is 2-clique colorable.

Theorem 3.5 [8] Every connected claw-free graph G with maximum degree at most
seven, not an odd cycle of order greater than three, is 2-clique colorable.

From the proof of Theorem 3.5, we conclude the following corollary:

Corollary 3.6 If G is a connected K3,3-minor free graph which admits either twins, or
a non-dominating W-join, or a coherent W-join, or a 1-join, or a generalized 2-join,
except an odd cycle of order greater than three, then G is 2-clique colorable.

According to Theorem 3.4 and Corollary 3.6, it is sufficient to show that every
K3,3-minor free graph G ∈ F0 ∪ F4 ∪ F7 except an odd cycle of order greater than
three, is 2-clique colorable. First we show this result for class F0 (the class of line
graphs).

Proposition 3.7 Every K3,3-minor free graph in F0, different from an odd cycle of
order greater than three, is 2-clique colorable.
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Proof Let G be a K3,3-minor free line graph. The assertion is trivial for |V (G)| ≤ 3.
Now, let |V (G)| ≥ 4. Let T = T1, T2, . . . , Tr be a Wagner sequence of G. We use
induction on r . If r = 1, then G = T1 is either K5 or a planar graph. If G is K5, then
the assertion is obvious. If G is a planar graph, then by Theorem 1.2, G has a 2-clique
coloring, since every line graph is claw-free.

Now let r ≥ 2. By the induction hypothesis Gr−1 and Tr have 2-clique coloring.
If Gr is 0-sum or 1-sum of Gr−1 and Tr , then the result is obvious. Now, we suppose
that Gr is 2-sum of Gr−1 and Tr on edge uv. Note that if uv is an edge cut, then G
can be considered as 1-sum of two graphs. So, later on we assume that uv is not an
edge cut. If Tr is K5 and φ is a 2-clique coloring of Gr−1, then we assign the colors
φ(u) and φ(v) to vertices u, v in K5 and give two different colors {1, 2} to the other
three vertices of K5.

If Tr is a planar graph, then we have four possibilities:

(i) there exists 2-clique colorings φ and φ
′
of Gr−1 and Tr , such that φ(u) �= φ(v)

and φ
′
(u) �= φ

′
(v);

(ii) there exists 2-clique colorings φ and φ
′
ofGr−1 and Tr , such that φ(u) = φ(v)

and φ
′
(u) = φ

′
(v);

(iii) in every 2-clique colorings φ and φ
′
of Gr−1 and Tr , φ(u) �= φ(v) and

φ
′
(u) = φ

′
(v);

(iv) in every 2-clique colorings φ and φ
′
of Gr−1 and Tr , φ(u) = φ(v) and

φ
′
(u) �= φ

′
(v).

In the first two cases, only by a color renaming, if it is necessary, we obtain a 2-clique
coloring for Gr . In the following, without loss of generality we consider the case (i i i)
and show that it is impossible:

The assumption (iii) concludes that vertex u (and v) in Tr belongs to a maximal
clique Cu (and Cv) such that in every 2-clique coloring of Tr , Cu\{u} (and Cv\{v})
is monochromatic. Hence, u /∈ Cv and v /∈ Cu . This implies that, u has a non-
neighbor vertex inCv , say v′, also v has a non-neighbor vertex inCu , say u′. Moreover,
assumption (iii) implies that uv is a maximal clique in Gr−1. Thus, there exist ver-
tex u′′ ∈ NGr−1(u) that u′′ /∈ NGr−1(v) (or v′′ ∈ NGr−1(v) that v′′ /∈ NGr−1(u)).
Hence, edge uv among edges uu′ and uu′′ (or vv′ and vv′′) is a claw in Gr , that is a
contradiction.

If in the operation 2-sum, the edge uv is deleted, then by the following argument, we
could change the coloring of vertices in Tr such thatφ

′
(u) �= φ

′
(v), that contradicts the

assumption (iii). Note that since uv is not an edge cut inGr−1 and Tr , there are shortest
(u, v)-paths P : u0 = uu1 . . . us = v in Tr/{uv} and Q : v0 = vv1 . . . vt = u in
Gr−1/{uv}. Since Gr is claw-free, vertices u and v in Tr and Gr−1 belong to only one
maximal clique. If dTr (ui ) = 2, i = 1, . . . , s−1 and dGr−1(v j ) = 2, j = 1, . . . , t−1,
then by (iii), the length of P is even and the length of Q is odd. This implies Gr is an
odd cycle and contradicts our assumption. Thus, assume that k ∈ {0, 1, . . . , s − 1} is
the smallest indices that dTr (uk) ≥ 3 andw ∈ NTr (uk). SinceGr is claw free, wemust
have w ∈ NTr (uk+1). Let C be a unique maximal clique consisting of [uk, uk+1, w]
(note that NTr (uk) ⊆ NTr (uk+1)). If there exists a vertex in C that its color is φ

′
(uk),

then we swap the colors of vertices on (u, uk)-path in P . Thus, we will obtain a 2-
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clique coloring of Tr such that u and v are assigned different colors. This contradicts
the assumption (iii).

Now assume that the color of all vertices in C is different from φ
′
(uk). In this case,

if there exists a vertex in C , say w′ �= uk , such that C is a unique maximal clique
contains w′, then we assign φ

′
(uk) to w′ and again swap the colors of vertices on

(u, uk)-path in P . Otherwise, every vertex in C belongs to a maximal clique other
than C . In this case, if there exists a vertex w′ ∈ C , such that w′ ∈ C ′, where C and
C ′ are maximal cliques in different blocks of Tr , then we swap the color of vertices
in the component of Tr/{w′} consisting of C ′, assign φ

′
(uk) to w′ and again swap the

colors of vertices on (u, uk)-path in P . Thus, we will obtain a 2-clique coloring of Tr
such that u and v are assigned different colors. This contradicts the assumption (iii).

The remaining case is that all vertices in C belong to some other maximal cliques
and all cliques are in one block in Tr . In this case, let l be the smallest indices that
there exists a path from ul to some vertices in C/{uk, uk+1}, whih we call (w, ul)-
path P ′ : ww1 . . . wm = ul . Note that if there is no such a path, then we can consider
graph G as a 2-sum of two graphs on edge ukuk+1, and we are done. If m = 1,
then since P is a shortest path, we have l = k + 2. Therefore, the induced subgraph
on vertices {uk−1, uk, uk+1, uk+2, uk+3, w} is one of the nine forbidden structures in
line graphs (see [16]) (note that if k = 0 or k = s − 2, then vertex uk−1 = vt−1 or
uk+3 = v1). Hence,m ≥ 2. Also,wm−1 is adjacent to ul+1, since Tr is claw free. Now,
by considering the first internal vertices in P ′ and (uk+1, ul)-path in P with degree
greater than two, we do the similar above discussion in order to change the color of
vertices w or uk+1 and subsequently change the color of u. Therefore, if we could not
do that, then we conclude that pattern of colors in these paths are a, b, a, b . . . , where
a, b ∈ {1, 2}. Now,we haveφ

′
(wm−1) = φ

′
(ul+1) �= φ

′
(ul) orφ

′
(wm−1) �= φ

′
(ul+1).

In the former case, we swap the color of vertices in path wm−1wm−2 . . . w1wuk . . . u.
In the latter case, we swap the color of vertices in path ulul−1 . . . uk+1ukuk−1 . . . u.
Thus, in both cases, we obtain a 2-clique coloring for Tr such that the vertices u and v

receive different colors and this contradicts the assumption (i i i). Therefore, the cases
(iii) and (iv) are impossible and the proof is complete. �

Nowwe show the 2-clique colorability of K3,3-minor free graphs in class F4. First,
we need the following theorem:

Theorem 3.8 [2] For any graph G �= C5 with α(G) ≥ 2, we have χc(G) ≤ α(G).

Proposition 3.9 Every K3,3-minor free graph in F4 is 2-clique colorable.

Proof Let G be a graph in F4. Since a graph in F4 is a line graph or has a singular
vertex, by Proposition 3.7 it is sufficient to consider graphs in F4 with singular vertex.
So by the constraction of graphs in F4, we have α(G) ≤ 3. For case α(G) = 1, the
statement is obvious. If α(G) = 2, then by Theorem 3.8, G is 2-clique colorable;
otherwise, α(G) = 3. Let x be a singular vertex and S = {r , s, t} be a maximum
independent set in G. Note that x /∈ S, and since non-neighbor vertices of x induce a
clique, vertices r , s are adjacent to x and t is not adjacent to x .

Now we propose a 2-clique coloring φ for G as follows: let φ(x) = 1, φ(t) = 2
and assign color 1 to every non-neighbor vertex of x except t . Now if x and t have
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more than one common neighbor, then assign color 2 to one of them and color 1 to
the other vertices; otherwise, assign color 1 to their common neighbor. Finally, assign
color 2 to the other adjacent vertices to x . It is easy to see that this assignment is a
2-clique coloring of G. �

Finally, we show the 2-clique colorability of K3,3-minor free graphs in class F7.

Proposition 3.10 Every K3,3-minor free graph in F7 is 2-clique colorable.

Proof Let G be a graph in F7. Since G is an antiprismatic, Ḡ is prismatic. If Ḡ has
no triangle, then α(G) = 2, and by Theorem 3.8, is 2-clique colorable. Now let
T = [vuw] be a triangle in Ḡ, and S1 = NḠ(v)\{u, w}, S2 = NḠ(u)\{v,w} and
S3 = NḠ(w)\{u, v} be a partition of vertices V (G) − {v, u, w}.

Liang et al. in [8] prove that if

(i) |Si | = 0 for some i = 1, 2, 3, then G has a 2-clique coloring.
(ii) |Si | = 1 for some i = 1, 2, 3, then G has a 2-clique coloring.
(iii) there is an edge xy in Ḡ such that for i �= j ∈ {1, 2, 3}, x is an isolated vertex in

Ḡ[Si ] and y is an isolated vertex in Ḡ[S j ], then there exists a 2-clique coloring
of G.

(iv) there exist i �= j ∈ {1, 2, 3} such that Si ∪ S j is an independent set in Ḡ, then G
has a 2-clique coloring.

In the following for the remaining cases, we provide a 2-clique coloring for G or we
show that G is K3,3-minor that is a contradiction. Let S1 = {v1, v2} and S2 = {u1, u2}
and S3 = {w1, w2}. There are i �= j , i, j ∈ {1, 2, 3}, say i = 1, j = 2, such that v1 is
adjacent to v2 in Ḡ and u1 is adjacent to u2 in Ḡ; otherwise by (iii) or (iv), we have
χc(G) ≤ 2. Hence, we have triangles [uu1u2] and [vv1v2] in Ḡ. Since Ḡ is a prismatic
v1, v2, w1, w2 have a unique neighbor in [uu1u2] and u1, u2, w1, w2 have a unique
neighbor in [vv1v2]. Thus, {u1, u2, v1, v2} induces a cycle in Ḡ because, otherwise,
for instance if u1 and u2 both are adjacent to v1, then there exist two neighbors for u
in triangle [u1u2v1]. Without loss of generality, assume that u1v1 and u2v2 are edges
in Ḡ. That means, u1v2 and u2v1 are edges in G.

Now each two vertices w1 and w2 have unique neighbor in [uu1u2] and [vv1v2].
If both vertices w1 and w2 are adjacent to u1 (or u2) and v1 (or v2) in Ḡ, then there
exists two neighbors for w2 in triangle [v1u1w1] (or [v2u2w1]) that contradicts Ḡ is
prismatic. If vertices w1 and w2 are both adjacent to u1 (or u2) and v2 (or v1) in Ḡ,
then G has a K3,3-minor, on vertices {w,w1, w2; u, v, v1} (or {w,w1, w2; u, v, v2}).
Note that if w1 is adjacent to w2 in Ḡ, then we have triangle [ww1w2] and since Ḡ
is prismatic, vertices w1 and w2 cannot be both adjacent to one vertex of {v1, v2} or
{u1, u2}. If w1 is adjacent to u1 (or u2) and v1 (or v2) and w2 is adjacent to u2 (or
u1) and v2 (or v2) in Ḡ, then G has a K3,3-minor, on vertices {w,w1, w2; u, v, v2} (or
{w,w1, w2; u, v, v1}). Hence, all cases above contradict that G is K3,3-minor free or
Ḡ is prismatic. Thus, it is enough to consider the two following remaining cases:

• w1 is adjacent to u1 and v2, and w2 is adjacent to u2 and v1 in Ḡ (Fig. 1b shows
graph G).

• w1 is adjacent to u2 and v1, and w2 is adjacent to u1 and v2 in Ḡ (Fig. 1a shows
graph G).
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Fig. 1 Two K3,3-minor free graphs

In both above cases G is a claw free planar graph and by Theorem 1.2 is 2-clique
colorable (in Fig. 1, and the dashed lines show the edges that may exist or not exist in
G).

Finally, let |Si | ≥ 3 for some i = 1, 2, 3, say |S1| ≥ 2, |S2| ≥ 2 and S3 =
{w1, w2, w3}. Since such graphs contain the graphs with |Si | ≤ 2, i = 1, 2, 3 as
subgraph, we only need to consider graphs that contains one of the two graphs shown
in Fig. 1. By case (iv) there are i �= j ∈ {1, 2, 3} such that Ḡ[Si ] and Ḡ[S j ] both
are not independent. Liang et al. in [8] show that Ḡ[Si ], i ∈ {1, 2, 3}, is not path and
triangle. So we need to consider the case that [uu1u2] and [vv1v2] are triangles in Ḡ,
and v1w3 ∈ E(Ḡ) or v2w3 ∈ E(Ḡ). This implies G has a K3,3-minor, on vertex set
{w,w1, w2; u, v, v2} or {w,w1, w2; u, v, v1}, respectively. Note that, when [uu1u2]
and [ww1w2] are triangles in Ḡ, the proof is similar. Therefore, when |Si | ≥ 3 for
some i = 1, 2, 3, G is a K3,3-minor, that is a contradiction. �

By Theorem 3.4, Corollary 3.6 and Propositions 3.7, 3.9, 3.10, the main result in
this section is proved.

Theorem 3.11 If G is claw-free and K3,3-minor free graph except an odd cycle of
order greater than three, then G is 2-clique colorable.
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