ORIGINAL PAPER

Clique-Coloring of $K_{3,3}-$ Minor Free Graphs

Behnaz Omoomi ${ }^{1} \cdot$ Maryam Taleb 1

Received: 12 October 2019 / Accepted: 8 December 2019
© Iranian Mathematical Society 2019

Abstract

A clique-coloring of a given graph G is a coloring of the vertices of G such that no maximal clique of size at least two is monocolored. The clique-chromatic number of G is the least number of colors for which G admits a clique-coloring. It has been proved that every planar graph is 3-clique colorable and every claw-free planar graph, different from an odd cycle, is 2 -clique colorable. In this paper, we generalize these results to $K_{3,3}$-minor free ($K_{3,3}$-subdivision free) graphs.

Keywords Clique-coloring • Clique chromatic number • $K_{3,3}$-Minor free graphs \cdot Claw-free graphs

Mathematics Subject Classification 05C15 - 05C10

1 Introduction

Graphs considered in this paper are all simple and undirected. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The number of vertices of G is called the order of G. The set of vertices adjacent to a vertex v is denoted by $N_{G}(v)$, and the size of $N_{G}(v)$ is called the degree of v and is denoted by $d_{G}(v)$. A vertex with degree zero is called an isolated vertex. The maximum degree of G is denoted by $\Delta(G)$. For a subset $S \subseteq V(G)$, the subgraph induced by S is denoted by $G[S]$. An independent set is a set of vertices in graph that does not induce any edge and the size of maximum independent set in G is written by $\alpha(G)$.

As usual, the complete bipartite graph with parts of cardinality m and $n(m, n \in \mathbf{N})$ is indicated by $K_{m, n}$. The graph $K_{1,3}$ is called a claw. The complete graph with n vertices

[^0]$\left\{v_{1}, \ldots, v_{n}\right\}$ is denoted by K_{n} or $\left[v_{1}, \ldots, v_{n}\right]$. The graph \bar{G} is the complement of G with the same vertex set as G, and $u v$ is an edge in \bar{G} if and only if it is not an edge in G. The path and the cycle of order n are denoted by P_{n} and C_{n}, respectively. The length of a path and a cycle is the number of its edges. A path with end vertices u and v is denoted by (u, v)-path.

Edge e is called an edge cut in connected graph G if $G /\{e\}$ is disconnected. A block in G is a maximal 2-connected subgraph of G. A chord of a cycle C is an edge not in C whose end vertices lie in C. A hole is a chordless cycle of length greater than three. A hole is said to be odd if its length is odd; otherwise, it is said to be even. Given a graph F, a graph G is called F-free if G does not contain any induced subgraph isomorphic with F. A graph G is a $\left(F_{1}, \ldots, F_{k}\right)$-free graph if it is F_{i}-free for all $i \in\{1, \ldots, k\}$. A graph G is claw-free (resp. triangle-free) if it does not contain $K_{1,3}$ (resp. K_{3}) as an induced subgraph.

By a subdivision of an edge $e=u v$, we mean replacing the edge e with a (u, v)-path. Any graph derived from graph F by a sequence of subdivisions is called a subdivision of F or an F-subdivision. The contraction of an edge e with endpoints u and v is the replacement of u and v with a vertex such that edges incident to the new vertex are the edges that were incident with either u or v except e; the obtained graph is denoted by $G \cdot e$. Graph F is called a minor of G (G is called F-minor graph) if F can be obtained from G by a sequence of vertex and edge deletions and edge contractions. Given a graph F, graph G is F-minor free if F is not a minor of G. Obviously, any graph G which contains an F-subdivision also has an F-minor. Thus an F-minor free graph is necessarily F-subdivision free, although in general the converse is not true. However, if F is a graph of the maximum degree at most three, any graph which has an F-minor also contains an F-subdivision. Thus, a graph is $K_{3,3}$-minor free if and only if it is $K_{3,3}$-subdivision free. By the well-known Kuratowski's theorem a graph is planar if and only if it is K_{5}-minor free and $K_{3,3}$-minor free. For further information on graph theory concepts and terminology we refer the reader to [17].

A vertex k-coloring of G is a function $c: V(G) \longrightarrow\{1,2, \ldots, k\}$ such that for every two adjacent vertices u and $v, c(u) \neq c(v)$. The minimum integer k for which G has a vertex k-coloring is called the chromatic number of G and is denoted by $\chi(G)$. A hypergraph \mathcal{H} is a pair (V, \mathcal{E}), where V is the set of vertices of \mathcal{H}, and \mathcal{E} is a family of non-empty subsets of V called hyperedges of \mathcal{H}. A k-coloring of $\mathcal{H}=(V, \mathcal{E})$ is a mapping $c: V \longrightarrow\{1,2, \ldots, k\}$ such that for all $e \in \mathcal{E}$, where $|e| \geq 2$, there exist $u, v \in e$ with $c(u) \neq c(v)$. The chromatic number of $\mathcal{H}, \chi(\mathcal{H})$, is the smallest k for which \mathcal{H} has a k-coloring. Indeed, every graph is a hypergraph in which every hyperedge is of size two and a k-coloring of such hypergraph is a usual vertex k-coloring.

A clique of G is a subset of mutually adjacent vertices of $V(G)$. A clique is said to be maximal if it is not properly contained in any other clique of G. We call cliquehypergraph of G, the hypergraph $\mathcal{H}(G)=(V, \mathcal{E})$ with the same vertices as G whose hyperedges are the maximal cliques of G of cardinality at least two. A k-coloring of $\mathcal{H}(G)$ is also called a k-clique coloring of G, and the chromatic number of $\mathcal{H}(G)$ is called the clique-chromatic number of G, and is denoted by $\chi_{c}(G)$. In other words, a k-clique coloring of G is a coloring of $V(G)$ such that no maximal clique in G is monochromatic, and $\chi_{c}(G)=\chi(\mathcal{H}(G))$. A clique coloring of $\mathcal{H}(G)$ is strong if
no triangle of G is monochromatic. A graph G is hereditary k-clique colorable if G and all its induced subgraphs are k-clique colorable. The clique-hypergraph coloring problem was posed by Duffus et al. in [6]. To see more results on this concept, see [2,3,7,8,15].

Clearly, any vertex k-coloring of G is a k-clique coloring, whence $\chi_{c}(G) \leq \chi(G)$. It is shown that in general, clique coloring can be a very different problem from usual vertex coloring and $\chi_{c}(G)$ could be much smaller than $\chi(G)$ [2]. On the other hand, if G is triangle-free, then $\mathcal{H}(G)=G$, which implies $\chi_{c}(G)=\chi(G)$. Since the chromatic number of triangle-free graphs is known to be unbounded [10], we get that the same is true for the clique-chromatic number of triangle-free graphs. In addition, clique-chromatic number of claw-free graphs or even line graphs is not bounded. For instance for each constant k, there exists $N_{k} \in \mathbf{N}$ such that for each $n \geq N_{k}$, $\chi_{c}\left(L\left(K_{n}\right)\right) \geq k+1$ that $L\left(K_{n}\right)$ is line graph of complete graph K_{n} and is claw-free [2]. On the other hand, Défossez proved that a claw-free graph is hereditary 2-clique colorable if and only if it is odd-hole-free [5]. That is why recognizing the structure of graphs with bounded and unbounded clique-chromatic number could be an interesting problem.

For planar graphs, Mohar and Skrekovski in [9] proved the following theorem:
Theorem 1.1 [9] Every planar graph is strongly 3-clique colorable.
Moreover, Shan et al. in [12] proved the following theorem:
Theorem 1.2 [12] Every claw-free planar graph, different from an odd cycle, is 2clique colorable.

Shan and Kang generalized the result of Theorem 1.1 to K_{5}-minor free graphs and the result of Theorem 1.2 to graphs which are claw-free and K_{5}-subdivision free [11] as follows:

Theorem 1.3 [11] Every K_{5}-minor free graph is strongly 3-clique colorable.
Theorem 1.4 [11] Every graph which is claw-free and K_{5}-subdivision free, different from an odd cycle, is 2-clique colorable.

In this paper, we generalize the result of Theorem 1.1 to $K_{3,3}$-minor free graphs and the result of Theorem 1.2 to claw-free and $K_{3,3}$-minor ($K_{3,3}$-subdivision) free graphs.

2 Preliminaries

In this section, we state the structure theorem of claw-free graphs that is proved by Chudnovsky and Seymour [4]. At first we need a number of definitions.

Two adjacent vertices u, v of graph G are called twins if they have the same neighbors in G, and if there are two such vertices, we say G admits twins. For a vertex v in G and a set $X \subseteq V(G) \backslash\{v\}$, we say that v is complete to X or X-complete if v is adjacent to every vertex in X; and that v is anticomplete to X or X-anticomplete if
v has no neighbor in X. For two disjoint subsets A and B of $V(G)$, we say that A is complete, respectively, anticomplete, to B, if every vertex in A is complete, respectively, anticomplete, to B. A vertex is called singular if the set of its non-neighbors induces a clique.

Let G be a graph and A, B be disjoint subsets of $V(G)$, the pair (A, B) is called homogeneous pair in G, if for every vertex $v \in V(G) \backslash(A \cup B), v$ is either A-complete or A-anticomplete and either B-complete or B-anticomplete. If one of the subsets A or B, for instance B is empty, then A is called a homogeneous set.

Let (A, B) be a homogeneous pair, such that A, B are both cliques, and A is neither complete nor anticomplete to B, and at least one of A, B has at least two members. In these conditions the pair (A, B) is called a W-join. A homogeneous pair (A, B) is non-dominating if some vertex of $V(G) \backslash(A \cup B)$ has no neighbor in $A \cup B$, and it is coherent if the set of all $(A \cup B)$-complete vertices in $V(G) \backslash(A \cup B)$ is a clique.

Next, suppose that V_{1}, V_{2} is a partition of $V(G)$ such that V_{1}, V_{2} are non-empty and V_{1} is anticomplete to V_{2}. The pair $\left(V_{1}, V_{2}\right)$ is called a 0 -join in G.

Next, suppose that V_{1}, V_{2} is a partition of $V(G)$, and for $i=1,2$ there is a subset $A_{i} \subseteq V_{i}$ such that:
(1) A_{i} is a clique, and $A_{i}, V_{i} \backslash A_{i}$ are both non-empty;
(2) A_{1} is complete to A_{2};
(3) $V_{1} \backslash A_{1}$ is anticomplete to V_{2}, and $V_{2} \backslash A_{2}$ is anticomplete to V_{1}.

In these conditions, the pair $\left(V_{1}, V_{2}\right)$ is a 1-join.
Now, suppose that V_{0}, V_{1}, V_{2} is a partition of $V(G)$, and for $i=1,2$ there are subsets A_{i}, B_{i} of V_{i} satisfying the following properties:
(1) A_{i}, B_{i} are cliques, $A_{i} \cap B_{i}=\emptyset$, and A_{i}, B_{i} and $V_{i} \backslash\left(A_{i} \cup B_{i}\right)$ are all non-empty;
(2) A_{1} is complete to A_{2}, and B_{1} is complete to B_{2}, and there are no other edges between V_{1} and V_{2};
(3) V_{0} is a clique, and, for $i=1,2, V_{0}$ is complete to $A_{i} \cup B_{i}$ and anticomplete to $V_{i} \backslash\left(A_{i} \cup B_{i}\right)$.
The triple $\left(V_{0}, V_{1}, V_{2}\right)$ is called a generalized 2-join, and, if $V_{0}=\emptyset$, the pair $\left(V_{1}, V_{2}\right)$ is called a 2 -join.

The last decomposition is the following: Let $\left(V_{1}, V_{2}\right)$ be a partition of $V(G)$, such that for $i=1,2$, there are cliques $A_{i}, B_{i}, C_{i} \subseteq V_{i}$ with the following properties:
(1) the sets A_{i}, B_{i}, C_{i} are pairwise disjoint and have union V_{i};
(2) V_{1} is complete to V_{2} except that there are no edges between A_{1} and A_{2}, between B_{1} and B_{2}, and between C_{1} and C_{2}; and
(3) V_{1}, V_{2} are both non-empty.

In these conditions it is said that G is a hex-join of V_{1} and V_{2}.
Now we define classes F_{0}, \ldots, F_{7} as follows:

- F_{0} is the class of all line graphs.
- The icosahedron is the unique planar graph with 12 vertices of all degree five. For $k=0,1,2,3, \operatorname{icosa}(k)$ denotes the graph obtained from the icosahedron by deleting k pairwise adjacent vertices. The class F_{1} is the family of all graphs G isomorphic to icosa(0), icosa(1), or icosa(2).
- Let H be the graph with vertex set $\left\{v_{1}, \ldots, v_{13}\right\}$, with the following adjacency: $v_{1} v_{2} \ldots v_{6} v_{1}$ is a hole in G of length $6 ; v_{7}$ is adjacent to $v_{1}, v_{2} ; v_{8}$ is adjacent to v_{4}, v_{5} and possibly to $v_{7} ; v_{9}$ is adjacent to $v_{6}, v_{1}, v_{2}, v_{3} ; v_{10}$ is adjacent to $v_{3}, v_{4}, v_{5}, v_{6}, v_{9} ; v_{11}$ is adjacent to $v_{3}, v_{4}, v_{6}, v_{1}, v_{9}, v_{10} ; v_{12}$ is adjacent to $v_{2}, v_{3}, v_{5}, v_{6}, v_{9}, v_{10} ; v_{13}$ is adjacent to $v_{1}, v_{2}, v_{4}, v_{5}, v_{7}, v_{8}$ and no other pairs are adjacent. The class F_{2} is the family of all graphs G isomorphic to $H \backslash X$, where $X \subseteq\left\{v_{11}, v_{12}, v_{13}\right\}$.
- Let C be a circle, and $V(G)$ be a finite set of points of C. Take a set of subset of C homeomorphic to interval $[0,1]$ such that there are not three intervals covering C and no two intervals share an end-point. Say that $u, v \in V(G)$ are adjacent in G if the set of points $\{u, v\}$ of C is a subset of one of the intervals. Such a graph is called circular interval graph. The class F_{3} is the family of all circular interval graphs.
- Let H be the graph with seven vertices h_{0}, \ldots, h_{6}, in which h_{1}, \ldots, h_{6} are pairwise adjacent and h_{0} is adjacent to h_{1}. Let H^{\prime} be the graph obtained from the line graph $L(H)$ by adding one new vertex, adjacent precisely to the members of $V(L(H))=E(H)$ that are not incident with h_{1} in H. Then H^{\prime} is claw-free. Let F_{4} be the class of all graphs isomorphic to induced subgraphs of H^{\prime}. Note that the vertices of H^{\prime} corresponding to the members of $E(H)$ that are incident with h_{1} in H form a clique in H^{\prime}. So the class F_{4} is the family of graphs that is either a line graph or has a singular vertex.
- Let $n \geq 0$. Let $A=\left\{a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{1}, \ldots, b_{n}\right\}, C=\left\{c_{1}, \ldots, c_{n}\right\}$ be three cliques, pairwise disjoint. For $1 \leq i, j \leq n$, let a_{i}, b_{j} be adjacent if and only if $i=j$, and let c_{i} be adjacent to a_{j}, b_{j} if and only if $i \neq j$. Let $d_{1}, d_{2}, d_{3}, d_{4}, d_{5}$ be five more vertices, where d_{1} is $(A \cup B \cup C)$-complete; d_{2} is complete to $A \cup B \cup\left\{d_{1}\right\}$; d_{3} is complete to $A \cup\left\{d_{2}\right\} ; d_{4}$ is complete to $B \cup\left\{d_{2}, d_{3}\right\} ; d_{5}$ is adjacent to d_{3}, d_{4}; and there are no more edges. Let the graph just constructed be H. A graph $G \in F_{5}$ if (for some n) G is isomorphic to $H \backslash X$ for some $X \subseteq A \cup B \cup C$. Note that vertex d_{1} is adjacent to all the vertices but the triangle formed by d_{3}, d_{4} and d_{5}, so it is a singular vertex in G.
- Let $n \geq 0$. Let $A=\left\{a_{0}, \ldots, a_{n}\right\}, B=\left\{b_{0}, \ldots, b_{n}\right\}, C=\left\{c_{1}, \ldots, c_{n}\right\}$ be three cliques, pairwise disjoint. For $0 \leq i, j \leq n$, let a_{i}, b_{j} be adjacent if and only if $i=j>0$, and for $1 \leq i \leq n$ and $0 \leq j \leq n$ let c_{i} be adjacent to a_{j}, b_{j} if and only if $i \neq j \neq 0$. Let the graph just constructed be H. A graph $G \in F_{6}$ if (for some n) G is isomorphic to $H \backslash X$ for some $X \subseteq\left(A \backslash\left\{a_{0}\right\}\right) \cup\left(B \backslash\left\{b_{0}\right\}\right) \cup C$.
- A graph G is prismatic, if for every triangle T of G, every vertex of G not in T has a unique neighbor in T. A graph G is antiprismatic if its complement is prismatic. The class F_{7} is the family of all antiprismatic graphs.

The structure theorem in [4] is as follows:
Theorem 2.1 [4] If G is a claw-free graph, then either

- $G \in F_{0} \cup \cdots \cup F_{7}$, or
- G admits either twins, a non-dominating W-join, a 0 -join, a 1 -join, a generalized 2-join, or a hex-join.

$3 K_{3,3}$-Minor Free Graphs

In this section, we focus on the clique chromatic number of $K_{3,3}$-minor free graphs. In particular, we prove that every $K_{3,3}$-minor free graph is strongly 3 -clique colorable. Moreover, it is 2 -clique colorable if it is claw-free and different from an odd cycle.

For this purpose, first we need the Wagner characterization of $K_{3,3}$-minor free graphs [14]. Let G_{1} and G_{2} be graphs with disjoint vertex-sets. Also, let $k \geq 0$ be an integer, and for $i=1,2$, let $X_{i} \subseteq V\left(G_{i}\right)$ be a set of cardinality k of pairwise adjacent vertices. For $i=1,2$, let G_{i}^{\prime} be obtained from G_{i} by deleting a (possibly empty) set of edges with both ends in X_{i}. If $f: X_{1} \longrightarrow X_{2}$ is a bijection, and G is the graph obtained from the union of G_{1}^{\prime} and G_{2}^{\prime} by identifying x with $f(x)$ for all $x \in X_{1}$, then we say that G is a k-sum of G_{1} and G_{2}.

Theorem 3.1 [13,14] A graph is $K_{3,3}$-minor free if and only if it can be obtained from planar graphs and complete graph K_{5} by means of 0 -, 1-, 2-sums.

In order to make the above characterization easier, we use the structural sequence for $K_{3,3}$-minor free graphs. In fact, graph G is $K_{3,3}$-minor free if and only if there exists a sequence $\mathcal{T}=T_{1}, T_{2}, \ldots, T_{r}$, in which for each $i, 1 \leq i \leq r, T_{i}$ is either a planar graph or isomorphic with K_{5}, such that $G_{1}=T_{1}$, and for each $i, 2 \leq i \leq r, G_{i}$ is obtained from disjoin union of G_{i-1} and T_{i}, or by gluing T_{i} to G_{i-1} on one vertex or one edge or two non-adjacent vertices and $G_{r}=G$. For a given $K_{3,3}$-minor free G, the sequence \mathcal{T} is called a Wagner sequence.

Also we need following lemma proposed in [9]:
Lemma 3.2 [9] Let G be a connected plane graph such that its outer cycle, C, is a triangle. If $\phi: V(C) \longrightarrow\{1,2,3\}$ is a clique coloring of induced subgraph C, then ϕ can be extended to a strong 3-clique coloring of G.

In the following, we use the Wagner sequence to provide a strong 3-clique coloring for $K_{3,3}$-minor free graphs.

Theorem 3.3 Every $K_{3,3}$-minor free graph is strongly 3-clique colorable.
Proof Let G be a $K_{3,3}$-minor free graph. The assertion is trivial for $|V(G)| \leq 3$. So let $|V(G)| \geq 4$ and $\mathcal{T}=T_{1}, T_{2}, \ldots, T_{r}$ be a Wagner sequence of G. We use induction on r. If $r=1$, then $G=T_{1}$ is either K_{5} or a planar graph. If G is K_{5}, then the assertion is obvious, since by assigning color 1 to two vertices of K_{5} and color 2 to two vertices of K_{5} and color 3 to rest vertex, we have a strong 3-clique coloring of K_{5}. Also, if G is a planar graph, then the assertion follows directly from Theorem 1.1.

Now let $r \geq 2$. By the induction hypothesis G_{r-1} and T_{r} have strong 3-clique coloring. If G_{r} is 0 -sum of G_{r-1} and T_{r}, then there is nothing to say. Suppose that G_{r} is obtained from G_{r-1} and T_{r} by gluing on vertex $\{v\}$. Thus, by a renaming of the colors, if it is necessary, we obtain a strong 3-clique coloring for G_{r}.

Next, we suppose that G_{r} is obtained from G_{r-1} and T_{r} by gluing on edge $u v$ or two non-adjacent vertices u and v. If T_{r} is K_{5}, then we consider a strong 3-clique coloring of G_{r-1}, say ϕ, and extend it to a strong 3-clique coloring of G_{r} as follows: If $\phi(u) \neq \phi(v)$, then we assign three different colors $\{1,2,3\}$ to the other three vertices
of K_{5}. If $\phi(u)=\phi(v)$, then we assign two different colors $\{1,2,3\} \backslash\{\phi(v)\}$ to the other three vertices of K_{5}. Obviously, the extended coloring is a strong 3-clique coloring of G_{r}.

Finally, let T_{r} be a planar graph. We consider a strong 3-clique coloring of G_{r-1}, say ϕ, and provide a strong 3-clique coloring of G_{r} as follows : If $\phi(u) \neq \phi(v)$ and $e=u v$ is a maximal clique of T_{r}, then suppose that ϕ^{\prime} is a strong 3-clique coloring of T_{r}. In this case, by a renaming the color of $\phi^{\prime}(u)$ and $\phi^{\prime}(v)$ in T_{r}, if it is necessary, we obtain a strong 3-clique coloring of G_{r}. If $e=u v$ is not a maximal clique in T_{r}, then there exists a triangle T containing e in T_{r}. Now we consider a planar embedding of T_{r} in which T is an outer face in it. Hence, by Lemma 3.2, it is enough to give a strong 3-clique coloring of outer cycle T of plane graph T_{r}. That is obviously possible by coloring the third vertex of T properly.

If $\phi(u)=\phi(v)$, then let $e=u v$ and $T_{r}^{\prime}=T_{r} \cdot e$. If there is no triangle consisting of $e=u v$ in T_{r}^{\prime}, then we consider a strong 3-clique coloring ϕ^{\prime} of plane graph T_{r}^{\prime}, such that $\phi^{\prime}(u)=\phi^{\prime}(v)=\phi(u)=\phi(v)$. Note that edge $e=u v$ is not maximal clique in G_{r-1}, so it is not maximal clique in G_{r}. Therefore, the coloring $\phi(x)$ for $x \in G_{r-1}$ and $\phi^{\prime}(x)$ for $x \in T_{r} \cdot e$ is a strong 3-clique coloring for G_{r}. If $e=u v$ is in triangle T in T_{r}^{\prime}, then we consider a planar embedding of T_{r}^{\prime} in which T is an outer face in it. By Lemma 3.2, it is enough to give a 3-clique coloring of outer cycle T of plane graph T_{r}^{\prime}. Thus, we give $\phi^{\prime}(u=v)=\phi(u)=\phi(v)$ and assign two different colors $\{1,2,3\} \backslash\{\phi(v)\}$ to other two vertices of T; then we extend ϕ^{\prime} to a strong 3-clique coloring of T_{r}^{\prime}. This implies a strong 3-clique coloring of T_{r} as desired, and again we obtain a strong 3-clique coloring of G_{r}.

The rest of this section deals with the proof that, every claw-free and $K_{3,3}$-minor free graph G, different from an odd cycle of order greater than three, is 2-clique colorable. For this purpose, we need two following theorems:

Theorem 3.4 [8] If $G \in F_{1} \cup F_{2} \cup F_{3} \cup F_{5} \cup F_{6}$ or G admits a hex-join, different from an odd cycle of order greater than three, then G is 2-clique colorable.

Theorem 3.5 [8] Every connected claw-free graph G with maximum degree at most seven, not an odd cycle of order greater than three, is 2-clique colorable.

From the proof of Theorem 3.5, we conclude the following corollary:
Corollary 3.6 If G is a connected $K_{3,3}$-minor free graph which admits either twins, or a non-dominating W-join, or a coherent W-join, or a 1-join, or a generalized 2-join, except an odd cycle of order greater than three, then G is 2-clique colorable.

According to Theorem 3.4 and Corollary 3.6, it is sufficient to show that every $K_{3,3}$-minor free graph $G \in F_{0} \cup F_{4} \cup F_{7}$ except an odd cycle of order greater than three, is 2-clique colorable. First we show this result for class F_{0} (the class of line graphs).

Proposition 3.7 Every $K_{3,3}$-minor free graph in F_{0}, different from an odd cycle of order greater than three, is 2-clique colorable.

Proof Let G be a $K_{3,3}$-minor free line graph. The assertion is trivial for $|V(G)| \leq 3$. Now, let $|V(G)| \geq 4$. Let $\mathcal{T}=T_{1}, T_{2}, \ldots, T_{r}$ be a Wagner sequence of G. We use induction on r. If $r=1$, then $G=T_{1}$ is either K_{5} or a planar graph. If G is K_{5}, then the assertion is obvious. If G is a planar graph, then by Theorem 1.2, G has a 2-clique coloring, since every line graph is claw-free.

Now let $r \geq 2$. By the induction hypothesis G_{r-1} and T_{r} have 2-clique coloring. If G_{r} is 0 -sum or 1-sum of G_{r-1} and T_{r}, then the result is obvious. Now, we suppose that G_{r} is 2-sum of G_{r-1} and T_{r} on edge $u v$. Note that if $u v$ is an edge cut, then G can be considered as 1 -sum of two graphs. So, later on we assume that $u v$ is not an edge cut. If T_{r} is K_{5} and ϕ is a 2 -clique coloring of G_{r-1}, then we assign the colors $\phi(u)$ and $\phi(v)$ to vertices u, v in K_{5} and give two different colors $\{1,2\}$ to the other three vertices of K_{5}.

If T_{r} is a planar graph, then we have four possibilities:
(i) there exists 2-clique colorings ϕ and ϕ^{\prime} of G_{r-1} and T_{r}, such that $\phi(u) \neq \phi(v)$ and $\phi^{\prime}(u) \neq \phi^{\prime}(v)$;
(ii) there exists 2-clique colorings ϕ and ϕ^{\prime} of G_{r-1} and T_{r}, such that $\phi(u)=\phi(v)$ and $\phi^{\prime}(u)=\phi^{\prime}(v)$;
(iii) in every 2-clique colorings ϕ and ϕ^{\prime} of G_{r-1} and $T_{r}, \phi(u) \neq \phi(v)$ and $\phi^{\prime}(u)=\phi^{\prime}(v)$;
(iv) in every 2 -clique colorings ϕ and ϕ^{\prime} of G_{r-1} and $T_{r}, \phi(u)=\phi(v)$ and $\phi^{\prime}(u) \neq \phi^{\prime}(v)$.

In the first two cases, only by a color renaming, if it is necessary, we obtain a 2-clique coloring for G_{r}. In the following, without loss of generality we consider the case (iii) and show that it is impossible:

The assumption (iii) concludes that vertex u (and v) in T_{r} belongs to a maximal clique C_{u} (and C_{v}) such that in every 2-clique coloring of $T_{r}, C_{u} \backslash\{u\}$ (and $C_{v} \backslash\{v\}$) is monochromatic. Hence, $u \notin C_{v}$ and $v \notin C_{u}$. This implies that, u has a nonneighbor vertex in C_{v}, say v^{\prime}, also v has a non-neighbor vertex in C_{u}, say u^{\prime}. Moreover, assumption (iii) implies that $u v$ is a maximal clique in G_{r-1}. Thus, there exist vertex $u^{\prime \prime} \in N_{G_{r-1}}(u)$ that $u^{\prime \prime} \notin N_{G_{r-1}}(v)$ (or $v^{\prime \prime} \in N_{G_{r-1}}(v)$ that $v^{\prime \prime} \notin N_{G_{r-1}}(u)$). Hence, edge $u v$ among edges $u u^{\prime}$ and $u u^{\prime \prime}$ (or $v v^{\prime}$ and $v v^{\prime \prime}$) is a claw in G_{r}, that is a contradiction.

If in the operation 2-sum, the edge $u v$ is deleted, then by the following argument, we could change the coloring of vertices in T_{r} such that $\phi^{\prime}(u) \neq \phi^{\prime}(v)$, that contradicts the assumption (iii). Note that since $u v$ is not an edge cut in G_{r-1} and T_{r}, there are shortest (u, v)-paths $P: u_{0}=u u_{1} \ldots u_{s}=v$ in $T_{r} /\{u v\}$ and $Q: v_{0}=v v_{1} \ldots v_{t}=u$ in $G_{r-1} /\{u v\}$. Since G_{r} is claw-free, vertices u and v in T_{r} and G_{r-1} belong to only one maximal clique. If $d_{T_{r}}\left(u_{i}\right)=2, i=1, \ldots, s-1$ and $d_{G_{r-1}}\left(v_{j}\right)=2, j=1, \ldots, t-1$, then by (iii), the length of P is even and the length of Q is odd. This implies G_{r} is an odd cycle and contradicts our assumption. Thus, assume that $k \in\{0,1, \ldots, s-1\}$ is the smallest indices that $d_{T_{r}}\left(u_{k}\right) \geq 3$ and $w \in N_{T_{r}}\left(u_{k}\right)$. Since G_{r} is claw free, we must have $w \in N_{T_{r}}\left(u_{k+1}\right)$. Let C be a unique maximal clique consisting of $\left[u_{k}, u_{k+1}, w\right]$ (note that $N_{T_{r}}\left(u_{k}\right) \subseteq N_{T_{r}}\left(u_{k+1}\right)$). If there exists a vertex in C that its color is $\phi^{\prime}\left(u_{k}\right)$, then we swap the colors of vertices on $\left(u, u_{k}\right)$-path in P. Thus, we will obtain a 2-
clique coloring of T_{r} such that u and v are assigned different colors. This contradicts the assumption (iii).

Now assume that the color of all vertices in C is different from $\phi^{\prime}\left(u_{k}\right)$. In this case, if there exists a vertex in C, say $w^{\prime} \neq u_{k}$, such that C is a unique maximal clique contains w^{\prime}, then we assign $\phi^{\prime}\left(u_{k}\right)$ to w^{\prime} and again swap the colors of vertices on (u, u_{k})-path in P. Otherwise, every vertex in C belongs to a maximal clique other than C. In this case, if there exists a vertex $w^{\prime} \in C$, such that $w^{\prime} \in C^{\prime}$, where C and C^{\prime} are maximal cliques in different blocks of T_{r}, then we swap the color of vertices in the component of $T_{r} /\left\{w^{\prime}\right\}$ consisting of C^{\prime}, assign $\phi^{\prime}\left(u_{k}\right)$ to w^{\prime} and again swap the colors of vertices on (u, u_{k})-path in P. Thus, we will obtain a 2-clique coloring of T_{r} such that u and v are assigned different colors. This contradicts the assumption (iii).

The remaining case is that all vertices in C belong to some other maximal cliques and all cliques are in one block in T_{r}. In this case, let l be the smallest indices that there exists a path from u_{l} to some vertices in $C /\left\{u_{k}, u_{k+1}\right\}$, whih we call $\left(w, u_{l}\right)$ path $P^{\prime}: w w_{1} \ldots w_{m}=u_{l}$. Note that if there is no such a path, then we can consider graph G as a 2 -sum of two graphs on edge $u_{k} u_{k+1}$, and we are done. If $m=1$, then since P is a shortest path, we have $l=k+2$. Therefore, the induced subgraph on vertices $\left\{u_{k-1}, u_{k}, u_{k+1}, u_{k+2}, u_{k+3}, w\right\}$ is one of the nine forbidden structures in line graphs (see [16]) (note that if $k=0$ or $k=s-2$, then vertex $u_{k-1}=v_{t-1}$ or $u_{k+3}=v_{1}$). Hence, $m \geq 2$. Also, w_{m-1} is adjacent to u_{l+1}, since T_{r} is claw free. Now, by considering the first internal vertices in P^{\prime} and $\left(u_{k+1}, u_{l}\right)$-path in P with degree greater than two, we do the similar above discussion in order to change the color of vertices w or u_{k+1} and subsequently change the color of u. Therefore, if we could not do that, then we conclude that pattern of colors in these paths are $a, b, a, b \ldots$, where $a, b \in\{1,2\}$. Now, we have $\phi^{\prime}\left(w_{m-1}\right)=\phi^{\prime}\left(u_{l+1}\right) \neq \phi^{\prime}\left(u_{l}\right)$ or $\phi^{\prime}\left(w_{m-1}\right) \neq \phi^{\prime}\left(u_{l+1}\right)$. In the former case, we swap the color of vertices in path $w_{m-1} w_{m-2} \ldots w_{1} w u_{k} \ldots u$. In the latter case, we swap the color of vertices in path $u_{l} u_{l-1} \ldots u_{k+1} u_{k} u_{k-1} \ldots u$. Thus, in both cases, we obtain a 2-clique coloring for T_{r} such that the vertices u and v receive different colors and this contradicts the assumption (iii). Therefore, the cases (iii) and (iv) are impossible and the proof is complete.

Now we show the 2-clique colorability of $K_{3,3}$-minor free graphs in class F_{4}. First, we need the following theorem:

Theorem 3.8 [2] For any graph $G \neq C_{5}$ with $\alpha(G) \geq 2$, we have $\chi_{c}(G) \leq \alpha(G)$.
Proposition 3.9 Every $K_{3,3}$-minor free graph in F_{4} is 2-clique colorable.
Proof Let G be a graph in F_{4}. Since a graph in F_{4} is a line graph or has a singular vertex, by Proposition 3.7 it is sufficient to consider graphs in F_{4} with singular vertex. So by the constraction of graphs in F_{4}, we have $\alpha(G) \leq 3$. For case $\alpha(G)=1$, the statement is obvious. If $\alpha(G)=2$, then by Theorem 3.8, G is 2-clique colorable; otherwise, $\alpha(G)=3$. Let x be a singular vertex and $S=\{r, s, t\}$ be a maximum independent set in G. Note that $x \notin S$, and since non-neighbor vertices of x induce a clique, vertices r, s are adjacent to x and t is not adjacent to x.

Now we propose a 2-clique coloring ϕ for G as follows: let $\phi(x)=1, \phi(t)=2$ and assign color 1 to every non-neighbor vertex of x except t. Now if x and t have
more than one common neighbor, then assign color 2 to one of them and color 1 to the other vertices; otherwise, assign color 1 to their common neighbor. Finally, assign color 2 to the other adjacent vertices to x. It is easy to see that this assignment is a 2-clique coloring of G.

Finally, we show the 2-clique colorability of $K_{3,3}$-minor free graphs in class F_{7}.

Proposition 3.10 Every $K_{3,3}$-minor free graph in F_{7} is 2-clique colorable.

Proof Let G be a graph in F_{7}. Since G is an antiprismatic, \bar{G} is prismatic. If \bar{G} has no triangle, then $\alpha(G)=2$, and by Theorem 3.8, is 2 -clique colorable. Now let $T=[v u w]$ be a triangle in \bar{G}, and $S_{1}=N_{\bar{G}}(v) \backslash\{u, w\}, S_{2}=N_{\bar{G}}(u) \backslash\{v, w\}$ and $S_{3}=N_{\bar{G}}(w) \backslash\{u, v\}$ be a partition of vertices $V(G)-\{v, u, w\}$.

Liang et al. in [8] prove that if
(i) $\left|S_{i}\right|=0$ for some $i=1,2,3$, then G has a 2-clique coloring.
(ii) $\left|S_{i}\right|=1$ for some $i=1,2,3$, then G has a 2-clique coloring.
(iii) there is an edge $x y$ in \bar{G} such that for $i \neq j \in\{1,2,3\}, x$ is an isolated vertex in $\bar{G}\left[S_{i}\right]$ and y is an isolated vertex in $\bar{G}\left[S_{j}\right]$, then there exists a 2-clique coloring of G.
(iv) there exist $i \neq j \in\{1,2,3\}$ such that $S_{i} \cup S_{j}$ is an independent set in \bar{G}, then G has a 2 -clique coloring.

In the following for the remaining cases, we provide a 2 -clique coloring for G or we show that G is $K_{3,3}$-minor that is a contradiction. Let $S_{1}=\left\{v_{1}, v_{2}\right\}$ and $S_{2}=\left\{u_{1}, u_{2}\right\}$ and $S_{3}=\left\{w_{1}, w_{2}\right\}$. There are $i \neq j, i, j \in\{1,2,3\}$, say $i=1, j=2$, such that v_{1} is adjacent to v_{2} in \bar{G} and u_{1} is adjacent to u_{2} in \bar{G}; otherwise by (iii) or (iv), we have $\chi_{c}(G) \leq 2$. Hence, we have triangles $\left[u u_{1} u_{2}\right]$ and $\left[v v_{1} v_{2}\right]$ in \bar{G}. Since \bar{G} is a prismatic $v_{1}, v_{2}, w_{1}, w_{2}$ have a unique neighbor in $\left[u u_{1} u_{2}\right]$ and $u_{1}, u_{2}, w_{1}, w_{2}$ have a unique neighbor in $\left[v v_{1} v_{2}\right]$. Thus, $\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ induces a cycle in \bar{G} because, otherwise, for instance if u_{1} and u_{2} both are adjacent to v_{1}, then there exist two neighbors for u in triangle $\left[u_{1} u_{2} v_{1}\right]$. Without loss of generality, assume that $u_{1} v_{1}$ and $u_{2} v_{2}$ are edges in \bar{G}. That means, $u_{1} v_{2}$ and $u_{2} v_{1}$ are edges in G.

Now each two vertices w_{1} and w_{2} have unique neighbor in $\left[u u_{1} u_{2}\right]$ and $\left[v v_{1} v_{2}\right.$]. If both vertices w_{1} and w_{2} are adjacent to u_{1} (or u_{2}) and v_{1} (or v_{2}) in \bar{G}, then there exists two neighbors for w_{2} in triangle $\left[v_{1} u_{1} w_{1}\right]$ (or [$\left.v_{2} u_{2} w_{1}\right]$) that contradicts \bar{G} is prismatic. If vertices w_{1} and w_{2} are both adjacent to u_{1} (or u_{2}) and v_{2} (or v_{1}) in \bar{G}, then G has a $K_{3,3}$-minor, on vertices $\left\{w, w_{1}, w_{2} ; u, v, v_{1}\right\}$ (or $\left\{w, w_{1}, w_{2} ; u, v, v_{2}\right\}$). Note that if w_{1} is adjacent to w_{2} in \bar{G}, then we have triangle $\left[w w_{1} w_{2}\right]$ and since \bar{G} is prismatic, vertices w_{1} and w_{2} cannot be both adjacent to one vertex of $\left\{v_{1}, v_{2}\right\}$ or $\left\{u_{1}, u_{2}\right\}$. If w_{1} is adjacent to u_{1} (or u_{2}) and v_{1} (or v_{2}) and w_{2} is adjacent to u_{2} (or u_{1}) and v_{2} (or v_{2}) in \bar{G}, then G has a $K_{3,3}$-minor, on vertices $\left\{w, w_{1}, w_{2} ; u, v, v_{2}\right\}$ (or $\left.\left\{w, w_{1}, w_{2} ; u, v, v_{1}\right\}\right)$. Hence, all cases above contradict that G is $K_{3,3}$-minor free or \bar{G} is prismatic. Thus, it is enough to consider the two following remaining cases:

- w_{1} is adjacent to u_{1} and v_{2}, and w_{2} is adjacent to u_{2} and v_{1} in \bar{G} (Fig. 1b shows graph G).
- w_{1} is adjacent to u_{2} and v_{1}, and w_{2} is adjacent to u_{1} and v_{2} in \bar{G} (Fig. 1a shows graph G).

(a)

(b)

Fig. 1 Two $K_{3,3}$-minor free graphs

In both above cases G is a claw free planar graph and by Theorem 1.2 is 2-clique colorable (in Fig. 1, and the dashed lines show the edges that may exist or not exist in G).

Finally, let $\left|S_{i}\right| \geq 3$ for some $i=1,2,3$, say $\left|S_{1}\right| \geq 2,\left|S_{2}\right| \geq 2$ and $S_{3}=$ $\left\{w_{1}, w_{2}, w_{3}\right\}$. Since such graphs contain the graphs with $\left|S_{i}\right| \leq 2, i=1,2,3$ as subgraph, we only need to consider graphs that contains one of the two graphs shown in Fig. 1. By case (iv) there are $i \neq j \in\{1,2,3\}$ such that $\bar{G}\left[S_{i}\right]$ and $\bar{G}\left[S_{j}\right]$ both are not independent. Liang et al. in [8] show that $\bar{G}\left[S_{i}\right], i \in\{1,2,3\}$, is not path and triangle. So we need to consider the case that $\left[u u_{1} u_{2}\right]$ and $\left[v v_{1} v_{2}\right]$ are triangles in \bar{G}, and $v_{1} w_{3} \in E(\bar{G})$ or $v_{2} w_{3} \in E(\bar{G})$. This implies G has a $K_{3,3}$-minor, on vertex set $\left\{w, w_{1}, w_{2} ; u, v, v_{2}\right\}$ or $\left\{w, w_{1}, w_{2} ; u, v, v_{1}\right\}$, respectively. Note that, when [uu u_{2}] and $\left[w w_{1} w_{2}\right]$ are triangles in \bar{G}, the proof is similar. Therefore, when $\left|S_{i}\right| \geq 3$ for some $i=1,2,3, G$ is a $K_{3,3}$-minor, that is a contradiction.

By Theorem 3.4, Corollary 3.6 and Propositions 3.7, 3.9, 3.10, the main result in this section is proved.

Theorem 3.11 If G is claw-free and $K_{3,3}$-minor free graph except an odd cycle of order greater than three, then G is 2 -clique colorable.

References

1. Andreae, T., Schughart, M., Tuza, Z.: Clique-transversal sets of line graphs and complements of line graphs. Discrete Math. 88(1), 11-20 (1991)
2. Bacsó, G., Gravier, S., Gyárfás, A., Preissmann, M., Sebo, A.: Coloring the maximal cliques of graphs. SIAM J. Discrete Math. 17(3), 361-376 (2004)
3. Bacsó, G., Tuza, Z.: Clique-transversal sets and weak 2-colorings in graphs of small maximum degree. Discrete Math. Theor. Comput. Sci. 11(2), 15-24 (2009)
4. Chudnovsky, M., Seymour, P.: Claw-free graphs. IV. Decomposition theorem. J. Combin. Theory Ser. B 98(5), 839-938 (2008)
5. Défossez, D.: Complexity of clique-coloring odd-hole-free graphs. J. Graph Theory 62(2), 139-156 (2009)
6. Duffus, D., Sands, B., Sauer, N., Woodrow, R.E.: Two-colouring all two-element maximal antichains. J. Combin. Theory Ser. A 57(1), 109-116 (1991)
7. Kratochvíl, J., Tuza, Z.: On the complexity of bicoloring clique hypergraphs of graphs. J. Algorithms 45(1), 40-54 (2002)
8. Liang, Z., Shan, E., Kang, L.: Clique-coloring claw-free graphs. Graphs Combin. 32(4), 1473-1488 (2016)
9. Mohar, B., Skrekovski, R.: The Grötzsch theorem for the hypergraph of maximal cliques. Electron. J. Combin. 6, Research Paper 26 (1999)
10. Mycielski, J.: Sur le coloriage des graphs. Colloq. Math 3, 161-162 (1955)
11. Shan, E., Kang, L.: Coloring clique-hypergraphs of graphs with no subdivision of K_{5}. Theoret. Comput. Sci. 592, 166-175 (2015)
12. Shan, E., Liang, Z., Kang, L.: Clique-transversal sets and clique-coloring in planar graphs. Eur. J. Combin. 36, 367-376 (2014)
13. Thomas, R.: Recent excluded minor theorems for graphs. Lond. Math. Soc. Lect. Note Ser. 1, 201-222 (1999)
14. Wagner, K.: Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114(1), 570-590 (1937)
15. Wichianpaisarn, T., Uiyyasathian, C.: Clique-chromatic numbers of claw-free graphs. East West J. Math. 15(2), 152-157 (2013)
16. Beineke, L.W.: Characterizations of derived graphs. J. Combin. Theory 9(2), 129-135 (1970)
17. Bondy J.A., Murty U.S.R.: Graph theory. Grad. Texts in Math (2008)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Communicated by Behruz Tayfeh-Rezaie.

 Behnaz Omoomi
 bomoomi@iut.ac.ir
 Maryam Taleb
 m.taleb@math.iut.ac.ir

 1 Department of Mathematical Sciences, Isfahan University of Technology, 84156-83111 Isfahan, Iran

