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Abstract. The edge clique cover sum number (resp. edge clique partition
sum number) of a graph G, denoted by scc(G) (resp. scp(G)), is defined as the
smallest integer k for which there exists a collection of complete subgraphs of G,
covering (resp. partitioning) all edges of G such that the sum of sizes of the cliques
is at most k. By definition, scc(G) 5 scp(G). Also, it is known that for every
graph G on n vertices, scp(G) 5 n2/2. In this paper, among some other results,
we improve this bound for scc(G). In particular, we prove that if G is a graph on
n vertices with no isolated vertex and the maximum degree of the complement
of G is d− 1, for some integer d, then scc(G) 5 cnd ⌈log ((n− 1)/(d− 1))⌉, where
c is a constant. Moreover, we conjecture that this bound is best possible up to
a constant factor. Using a well-known result by Bollobás on set systems, we prove
that this conjecture is true at least for d = 2. Finally, we give an interpretation
of this conjecture as an interesting set system problem which can be viewed as
a multipartite generalization of Bollobás’ two families theorem.

1. Introduction

Throughout the paper, all graphs are simple and undirected. By a clique
of a graph G, we mean a subset of mutually adjacent vertices of G as well
as its corresponding complete subgraph. The size of a clique is the number
of its vertices. Also, a biclique of G is a complete bipartite subgraph of G.
A clique (resp. biclique) covering of G is defined as a family of cliques (resp.
bicliques) of G such that every edge of G lies in at least one of the cliques
(resp. bicliques) comprising this family. A clique (resp. biclique) covering
in which each edge belongs to exactly one clique (resp. biclique), is called
a clique (resp. biclique) partition. The minimum size of a clique covering,
a biclique covering, a clique partition and a biclique partition of G are called
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clique cover number, biclique cover number, clique partition number and bi-
clique partition number of G and are denoted by cc(G), bc(G), cp(G) and
bp(G), respectively.

The subject of clique covering has been widely studied in recent decades.
First time, Erdős et al. in [6] presented a close relationship between the
clique covering and the set intersection representation. Also, they proved
that the clique partition number of a graph on n vertices cannot exceed
n2/4 (known as Erdős–Goodman–Pósa theorem). The connections of clique
covering and other combinatorial objects have been explored (see e.g. [17,
21]). For a survey of the classical results on the clique and biclique coverings
see [13,16].

A number of different variants of the clique and biclique covering num-
ber have been investigated in the literature. For instance, the local clique
(resp. biclique) cover number denoted by lcc(G) (resp. lbc(G)) is the least
number r such that G admits a clique (resp. biclique) covering where no ver-
tex is in more than r of these cliques (resp. bicliques). Erdős and Pyber [7]
proved that lbc(G) 5 cn/log n, for some constant c. For more recent results
on lcc(G) and lbc(G) see [11] and [15], respectively.

Moreover, Chung et al. in [4] and independently Tuza in [20] considered
a weighted version of the biclique covering. In fact, given a graph G, they
were concerned with minimizing

∑
B∈B

∣∣V (B)
∣∣ among all biclique coverings

B of G. They proved that every graph on n vertices has a biclique covering
such that the sum of the number of vertices of these bicliques is O(n2/ logn)
[4,20]. Furthermore, a clique counterpart of weighted biclique cover number
has been studied. It was conjectured by Katona and Tarján and was proved
independently by Chung [3], Győri and Kostochka [8] and Kahn [12] that
every graph on n vertices admits a clique partition such that the sum of the
number of vertices in these cliques is at most n2/2. This can be considered
as a generalization of the Erdős–Goodman–Pósa theorem.

In this paper, we are concerned with the weighted version of the clique
cover number. Let G be a graph. The edge clique cover sum number of G,
denoted by scc(G), is defined as the minimal integer k for which there exists
a clique covering C of G, such that the sum of its clique sizes is at most k.
For a clique covering C of a graph G and a vertex u ∈ V (G), let the valency
of u (with respect to C), denoted by VC(u), be the number of cliques in C
containing u. In fact,

scc(G) = min
C

∑
C∈C

|C| = min
C

∑
u∈V (G)

VC(u),

where the minimum is taken over all clique coverings of G. Analogously, one
can define the edge clique partition sum number of G, denoted by scp(G).
As a matter of fact, the above-mentioned result in [3,8,12] states that for
every graph G on n vertices, scc(G) 5 scp(G) 5 n2/2.
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In order to reveal inherent difference between cc(G) and scc(G), we in-
troduce a similar parameter scc′(G) which is defined as the minimum of the
sum of clique sizes in a clique covering C achieving cc(G), i.e.

scc′(G) := min

{∑
C∈C

|C| : C is a clique covering of G and |C| = cc(G)

}
.

It is evident that scc(G) 5 scc′(G). In Section 2, first in Theorem 1, we
will see that for some classes of graphs G, the quotient scc′(G)/ scc(G) can
be arbitrary large. Then, we give some general bounds on the edge clique
cover sum number and the edge clique partition sum number. In partic-
ular, we prove that if G is a graph on n vertices with no isolated vertex
and the maximum degree of the complement of G is d− 1, for some inte-
ger d, then scc(G) 5 cnd⌈ log

(
(n− 1)/(d− 1)

)
⌉, where c is a constant. We

conjecture that this upper bound is best possible up to a constant factor.
In Section 3, using a well-known result by Bollobás, we prove the correct-
ness of this conjecture for d = 2. Moreover, we show that for every even
integer n, if G is the complement of an induced matching on n vertices,
then scc(G) ∼ n log n, where f ∼ g means that f asymptotically approaches
to g. Finally, in Section 4, we give an interpretation of this conjecture as
an interesting set system problem which can be viewed as a multipartite
generalization of Bollobás’ two families theorem.

2. Some bounds

In this section, first we present a class of graphs for which the family of
clique coverings achieving cc(G) is disjoint from the family of clique coverings
achieving scc(G). Then, we provide several inequalities relating the intro-
duced clique covering parameters. Moreover, we present an upper bound for
scc(G) in terms of the number of vertices and the maximum degree of the
complement of G.

Theorem 1. There exists a sequence of graphs {Gn} such that
scc′(Gn)/ scc(Gn) tends to infinity as n tends to infinity.

Proof. Let n be a positive integer and Gn be a graph on 3n+ 2
vertices, such that V (Gn) = {x0, y0} ∪X ∪ Y ∪ Z, where X = {x1, . . . , xn},
Y = {y1, . . . , yn} and Z = {z1, . . . , zn} and adjacency is as follows. The sets
X ∪{x0}, Y ∪{y0} and Z are three cliques and every vertex in Z is adjacent
to every vertex in X ∪ Y . Moreover, for all i, j ∈ {1, . . . , n}, xi is adjacent
to yj if and only if i = j (see Figure 1 for a schematic form of Gn).

First, note that each clique of Gn covers at most one edge from the set
{xiyi : 1 5 i 5 n}∪ {x0x1, y0y1}. This yields cc(Gn) = n+2. Now, we show
that Gn has a unique clique covering containing exactly n+ 2 cliques. Let
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Fig. 1: A schematic form of the graph Gn

C be a clique covering of Gn consisting of n+ 2 cliques. Assume that the
clique Ci ∈ C covers the edge xiyi, for 1 5 i 5 n, and the cliques Cn+1 ∈ C
and Cn+2 ∈ C cover the edges y0y1 and x0x1, respectively. Note that Cn+2 j
{x0} ∪X and x0 ̸∈ ∪n+1

i=1 Ci. Therefore, Cn+2 = {x0} ∪X . Similarly, Cn+1 =
{y0} ∪ Y . Also, we have xj , yj ̸∈ Ci, for every 1 5 i ̸= j 5 n. Thus, Ci =
{xi, yi} ∪ Z, 1 5 i 5 n. Hence, the clique covering C = {Ci : 1 5 i 5 n+ 2}
is the unique clique covering of Gn with n+ 2 cliques and then cc(Gn) =
n+ 2. Consequently,

scc′(Gn) =
∑
C∈C

|C| = n(n+ 2) + 2(n+ 1) = n2 + 4n+ 2.

On the other hand, the n+ 4 cliques {x0} ∪X , {y0} ∪ Y , X ∪Z, Y ∪Z and
{xi, yi}, 1 5 i 5 n, form a clique covering C′ and thus,

scc(Gn) 5
∑
C∈C′

|C| = 2(n+ 1) + 2(2n) + 2n = 8n+ 2.

Hence, the families of the optimum clique coverings achieving cc(Gn) and
scc(Gn) are disjoint and scc′(Gn)/ scc(Gn) tends to infinity. �

In the following, we prove some relations between scc(G), scp(G) and
cp(G).

Theorem 2. If G is a graph with m edges and ω(G) is the clique num-
ber of G, then

(i) 2m
ω(G)−1 5 scc(G) 5 scp(G) 5 2m,

(ii) scp2(G)
2m+scp(G) 5 cp(G).

Moreover, the first inequalities in (i) and (ii) hold with equality, whenever
the edge set of G can be partitioned into cliques of order ω(G) (in particular,
when G is a triangle-free graph).

Proof. (i) Since the collection of all edges of G is a clique partition
for G, we have scc(G) 5 scp(G) 5 2m. Now, suppose that C is a clique

Acta Mathematica Hungarica



EDGE CLIQUE COVERING SUM OF GRAPHS 5

covering of G such that
∑

C∈C |C| = scc(G). Hence,

m 5
∑
C∈C

(
|C|
2

)
5 ω − 1

2

∑
C∈C

|C| = 1

2
(ω − 1) scc(G).

(ii) Let cp(G) = t and {C1, . . . , Ct} be a clique partition of G. Then,

m =
∑t

i=1

(|Ci|
2

)
. Thus,

2m =
t∑

i=1

|Ci|2 −
t∑

i=1

|Ci| =
1

t

( t∑
i=1

|Ci|
)2

−
t∑

i=1

|Ci| =
1

t
scp2(G)− scp(G),

where the second inequality is due to Cauchy–Schwarz inequality and the
last inequality holds because the function f(x) = 1

tx
2 − x is increasing for

x = t
2 and clearly scp(G) = cp(G) = t.
Now assume that the edge set of G can be partitioned into l cliques

of order ω(G). Thus, clearly m = l
(
ω(G)
2

)
, cp(G) = l and scp(G) 5 lω(G) =

2m/(ω(G)− 1). Hence, scp(G) = lω(G) and the first inequalities in (i) and
(ii) hold with equality. �

For a vertex u ∈ V (G), let NG(u) denote the set of all neighbours of u
in G and let G stand for the complement of G. Moreover, let ∆(G) be the
maximum degree of G. Alon [1] proved that if G is a graph on n vertices and
∆(G) = d, then cc(G) = O(d2 logn). In the following, modifying the idea of
Alon, we stablish an upper bound for scc(G).

Theorem 3. If G is a graph on n vertices with no isolated vertex and
∆(G) = d− 1, then

(1) scc(G) 5 (e2 + 1)nd

⌈
ln

(
n− 1

d− 1

)⌉
.

Proof. Let p be a fixed number with 0 < p < 1 and let S be a ran-
dom subset of V (G) defined by choosing every vertex u independently with
probability p. For every vertex u ∈ S, if there exists a non-neighbour of u
in S, then remove u from S. The resulting set is a clique of G. Repeat this
procedure t times, independently, to get t cliques C1, C2, . . . , Ct of G.

Let F be the set of all the edges which are not covered by the cliques
C1, . . . , Ct. For every edge uv, using inequality (1− α) 5 e−α, we have

Pr(uv ∈ F ) =
(
1− p2(1− p)|NG(u)∪NG(v)|

)t
5 (1− p2(1− p)2(d−1))

t 5 e−tp2(1−p)2(d−1)

.
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The cliques C1, . . . , Ct along with all edges in F comprise a clique cov-
ering of G. Hence,

scc(G) 5 E

( t∑
i=1

|Ci|+ 2|F |
)

5 npt+ 2

(
n

2

)
e−tp2(1−p)2(d−1)

.

Now, set p := 1/d. Since (1− 1/d)d−1 = 1/e, we have

scc(G) 5 nt

d
+ n(n− 1)e−td−2e−2

.

Finally, by setting t := ⌈e2d2 ln (n−1
d−1 )⌉ > 0, we have

scc(G) 5
n(e2d2 ln(n−1

d−1 ) + 1)

d
+ n(d− 1)

5 nd

⌈
ln

(
n− 1

d− 1

)⌉(
e2 +

1

⌈ ln (n−1
d−1)⌉

)
5 nd

⌈
ln

(
n− 1

d− 1

)⌉
(e2 + 1). �

Now, one may naturally ask if the upper bound in (1) is tight. In other
words, for every positive integers n and d, does there exist an n-vertex graph
where the maximum degree of its complement is d− 1 and its edge clique
cover sum number is Ω(nd log (n−1

d−1 ))? In the sequel, we are going to give
an affirmative answer to this question at least for d = 2.

A first candidate for graphs with large edge clique cover sum numbers
is the family of complete multipartite graphs. The following theorem shows
that when n is small in comparison to d, the upper bound is not met for the
complete multipartite graphs. Nevertheless, we believe that it is the case
when n is much larger than d. For positive integers n and k, an orthogonal
array OA(n, k) is an n2×k array of elements in {1, . . . , n}, such that in every
two columns each ordered pair (i, j), 1 5 i, j 5 n, appears exactly once.

Theorem 4. For positive integers n, t and d, let G be a complete t-
partite graph on n vertices with at least two parts of size d and the other
parts of size at most d. Then, scc(G) = nd. Moreover, if d is a prime power
and t 5 d+ 1, then scc(G) = scp(G) = nd.

Proof. Let C be a clique covering for G. For every vertex u, NG(u)
contains a stable set (a set of pairwise nonadjacent vertices) of size d. There-
fore, u is contained in at least d cliques of C, i.e. the valency of u, VC(u) is
at least d. Thus, scc(G) = nd.

Now, let d be a prime power. Since t 5 d+ 1, there exists an orthogonal
array OA(d, t). Denote the ith row of the orthogonal array by ai1, ai2, . . . , ait
and let H be a complete t-partite graph on dt vertices with the parts
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V1, . . . , Vt, where Vj = {vj1, . . . , vjd}, for 1 5 j 5 t. For each i ∈
{
1, . . . , d2

}
,

the set Ci := {v1ai1
, v2ai2

, . . . , vtait
} is a clique of H . Since in every two

columns of OA, each ordered pair (i, j), 1 5 i, j 5 d, appears exactly once,
the collection C :=

{
Ci : 1 5 i 5 d2

}
forms a clique partition for H . More-

over, for every vertex u ∈ V (H), VC(u) = d. On the other hand, G is an in-
duced subgraph of H . Thus, the collection C′ :=

{
Ci ∩ V (G) : 1 5 i 5 d2

}
is a clique partition of G and for every vertex u ∈ V (G), VC′(u) is at most d.
Hence, scc(G) 5 scp(G) 5 nd. �

For positive integers t and d, let us denote the complete t-partite graph
on td vertices, each part of size d by Kt(d). Theorem 3 asserts that
scc
(
Kt(d)

)
5 cd2t log t, for some constant c. Although Theorem 4 says that

scc
(
Kt(d)

)
= d2t when t 5 (d+ 1) and d is a prime power, we believe that

scc
(
Kt(d)

)
= Ω(d2t log t), when d is constant and t is sufficiently large. This

leads us to the following conjecture.

Conjecture 5. There exists a function f and a constant c, such that
for every positive integers t and d, if t = f(d), then scc

(
Kt(d)

)
= cd2t log t.

In fact, if Conjecture 5 is correct, then the upper bound in (1) is best
possible up to a constant factor. In the following section, we will prove that
Conjecture 5 is true for d = 2.

3. Cocktail party graphs

In this section, we investigate the edge clique cover sum number of the
cocktail party graph Kt(2). Given a positive integer t, the cocktail party
graph Kt(2) is obtained from the complete graph K2t with the vertex set
{x1, . . . , xt} ∪ {y1, . . . , yt} by removing all the edges xiyi, 1 5 i 5 t.

Various clique covering parameters of the cocktail party graphs have been
studied in the literature. Orlin [14] asked about the asymptotic behaviour
of cc

(
Kt(2)

)
, with the motivation that it arises in an optimization problem

in Boolean functions theory. He also conjectured that cp
(
Kt(2)

)
∼ t. Gre-

gory et al. [9] proved that for t = 4, cp
(
Kt(2)

)
= 2t and for large enough t,

cp
(
Kt(2)

)
5 2t log log 2t. The problem that cp

(
Kt(2)

)
∼ 2t is still an open

problem. Moreover, Gregory and Pullman [10], by applying a Sperner-type
theorem of Bollobás and Schönheim on set systems, proved that for every
integer t, cc

(
Kt(2)

)
= σ(t), where

σ(t) = min

{
k : t 5

(
k − 1

⌈k/2⌉

)}
.

Furthermore, the authors in [5], using the pairwise balanced designs, have

proved that scp
(
Kt(2)

)
∼ (2t)3/2.
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Here, using the following well-known theorem by Bollobás, we prove
a lower bound for the edge clique cover sum number of Kt(2) which deter-
mines the asymptotic behaviour of scc

(
Kt(2)

)
and implies that Conjecture 5

is true for d = 2.

Bollobás’ two families Theorem [2]. Let A1, . . . , At be some sets
of size a1, . . . , at, respectively and B1, . . . , Bt be some sets of size b1, . . . , bt,
respectively, such that Ai ∩Bj = ∅ if and only if i = j. Then

(2)

t∑
i=1

(
ai + bi
ai

)−1

5 1.

Theorem 6. Let Kt(2) be the cocktail party graph on 2t vertices. Then

tρ(t) 5 scc
(
Kt(2)

)
5 tσ(t),

where σ(t) is defined as above and ρ(t) = min
{
k − 1 : t 5

(
k

⌈k/2⌉
)}

.

Proof. Since cc
(
Kt(2)

)
= σ(t) and every clique in Kt(2) is of size

at most t, we have scc
(
Kt(2)

)
5 tσ(t). For the lower bound, assume

that {C1, . . . , Ck} is an arbitrary clique covering for Kt(2). For every
i ∈ {1, . . . , t}, define

Ai = {a : xi ∈ Ca}, Bi = {a : yi ∈ Ca}.

Also, let ai = |Ai|, bi = |Bi| and ci = ai + bi. Then for every i ̸= j, there
exists a clique containing the edge xiyj . Hence, Ai∩Bj ̸= ∅. Moreover, since
no clique contains both vertices xi and yi, we have Ai ∩Bi = ∅. Therefore,
by Bollobás’ theorem, we have (2).

For every integer m, let f(m) =
(

m
⌈m/2⌉

)−1
and f(x) be the linear ex-

tension of f(m) in R+. Since f is non-increasing and convex, by Jensen
inequality, we have

f

(⌈
1

t

t∑
i=1

ci

⌉)
5 f

(
1

t

t∑
i=1

ci

)
5 1

t

t∑
i=1

(
ci

⌈ci/2⌉

)−1

5 1

t

t∑
i=1

(
ai + bi
ai

)−1

5 1

t
.

Thus,

(⌈1
t

∑t
i=1 ci

⌉⌈
1
2t

∑t
i=1 ci

⌉) = t. Therefore,

ρ(t) 5
⌈
1

t

t∑
i=1

ci

⌉
− 1 5 1

t

t∑
i=1

ci =
1

t

k∑
a=1

|Ca|.
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Consequently, tρ(t) 5 scc
(
Kt(2)

)
. �

Theorem 6 along with the approximation
(
2n
n

)
∼ 22n/

√
πn yields the fol-

lowing corollary which proves Conjecture 5 for d = 2.

Corollary 7. For every integer t, scc
(
Kt(2)

)
∼ t log t.

4. Concluding remarks

In the previous section, by considering a clique covering as a set system
and applying Bollobás’ theorem, we proved Conjecture 5 for d = 2. From
this point of view, the conjecture can be restated as an interesting set sys-
tem problem and thus it can be viewed as a generalization of Bollobás’ two
families theorem, as follows. For other multipartite versions of Bollobás’
inequality, see a two-part survey by Tuza [18,19].

Conjecture 8. Let d = 2, t = 1 and F = {
(
A1

i , A
2
i , . . . , A

d
i

)
: 1 5

i 5 t} such that Aj
i is a set of size kij and Aj

i ∩Aj′

i′ = ∅ if and only if

i = i′ and j ̸= j′. Then, there exists a function f and a constant c, such that
for every t = f(d), ∑

i,j

kij = cd2t log t.

It is worth noting that Conjecture 8 is equivalent to Conjecture 5 and thus
its correctness would imply that the upper bound in (1) is tight up to a con-
stant factor.

Acknowledgement. The authors express their sincere thanks to the
anonymous referee for helpful comments specially for suggesting the case
where equalities hold in Theorem 2.
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