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a b s t r a c t

A b-coloring of a graph G by k colors is a proper k-coloring of G such that in each color class
there exists a vertex having neighbors in all the other k− 1 color classes. The b-chromatic
number of a graph G, denoted by ϕ(G), is the maximum k for which G has a b-coloring by
k colors. It is obvious that χ(G) ≤ ϕ(G). A graph G is b-continuous if for every k between
χ(G) and ϕ(G) there is a b-coloring of G by k colors. In this paper, we study the b-coloring
of Kneser graphs K(n, k) and determine ϕ(K(n, k)) for some values of n and k. Moreover,
we prove that K(n, 2) is b-continuous for n ≥ 17.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph without loops and multiple edges with vertex set V (G) and edge set E(G). A proper k-coloring of G is
a function c defined from V (G) onto a set of colors C = {1, 2, . . . , k} such that every two adjacent vertices have different
colors. In fact, for every i, 1 ≤ i ≤ k, the set c−1(i) is a nonempty independent set of vertices which is called color class i. The
minimum cardinality k for which G has a proper k-coloring is the chromatic number of G, denoted by χ(G).
A b-coloring of G by k colors is a proper k-coloring of the vertices of G such that in each color class i there exists a vertex

xi having neighbors in all the other k− 1 color classes. Such a vertex xi is called a b-dominating vertex, and the set of vertices
{x1, x2, . . . , xk} is called a b-dominating system. The b-chromatic number ofG, denoted by ϕ(G), is themaximum k for whichG
has a b-coloring by k colors. It is an elementary exercise to observe that every proper coloringwithχ(G) colors is a b-coloring.
The b-chromatic number was introduced by R.W. Irving and D.F. Manlove in [4]. (See also [5,6].)
Immediate and useful bound for ϕ(G) is:

χ(G) ≤ ϕ(G) ≤ ∆(G)+ 1, (1)

where∆(G) is the maximum degree of vertices in G.
The graph G is b-continuous if for every k between χ(G) and ϕ(G) there is a b-coloring with k colors. A peculiar

characteristic of b-coloring is that not all graphs are b-continuous. For example, the 3-dimensional cube Q3 is not
b-continuous: χ(Q3) = 2 and ϕ(Q3) = 4, but Q3 has no b-coloring with three colors [4]. Only a few classes of graphs
are known to be b-continuous [1,3].
Let S = {1, 2, . . . , n} and let V be the set of all k-subsets of S, where k ≤ n

2 . The Kneser graph with parameters n and
k, denoted by K(n, k), is the graph with vertex set V such that two vertices are adjacent if and only if the corresponding
subsets are disjoint. It is known that χ(K(n, k)) = n − 2k + 2 [8]. In this paper, we study b-coloring of Kneser graphs. We
determine ϕ(K(2k+ 1, k)) for every k and ϕ(K(n, 2)) for every n. Also, we prove that K(n, 2) is b-continuous for n ≥ 17.
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2. Steiner triple systems

In this section, we recall some necessary definitions and constructions of Steiner triple systems which will be used in the
proofs of our main theorems.
A quasigroup of order n is a pair (Q , ◦), whereQ is a set of size n and ‘‘◦’’ is a binary operation onQ such that for every pair

of elements a, b ∈ Q , the equations a◦x = b and y◦a = b have unique solutions. A quasigroup (Q , ◦)withQ = {1, 2, . . . , n}
is said to be idempotent if i ◦ i = i, for 1 ≤ i ≤ n and commutative if i ◦ j = j ◦ i, for all 1 ≤ i, j ≤ n. A quasigroup (Q , ◦)with
Q = {1, 2, . . . , 2n} is said to be half-idempotent if for 1 ≤ i ≤ n, i ◦ i = (n ◦ i) ◦ (n ◦ i) = i. A quasigroup (Q ′, ◦), where
Q ′ ⊆ Q , is called a sub-quasigroup of quasigroup (Q , ◦).

Example 1. Let n = 2k+ 1 and consider the additive group (Zn,+). Since n is odd, for each i, j ∈ Zn where i 6= j, we have
2i 6= 2j. Therefore, there is a permutation σ on the set {1, 2, . . . , n} such that for each i ∈ Zn, σ(2i) = i. Now we define the
quasigroup (Q1, ◦) where Q1 = Zn and i ◦ j = σ(i + j) for every i, j ∈ Q1. This quasigroup is an idempotent commutative
quasigroup.
Let n = 2k and consider the additive group (Zn,+). In this case for each i, 1 ≤ i ≤ k, i+ i = (i+ k)+ (i+ k) = 2i. We

consider a permutation σ on the set {1, 2, . . . , n} such that for each i, 1 ≤ i ≤ k, σ(2i) = i. Now we define the quasigroup
(Q2, ◦)where Q2 = Zn and i◦ j = σ(i+ j) for every i, j ∈ Q2. This quasigroup is a half-idempotent commutative quasigroup.

A designwith parameters t− (n, k, λ) is an ordered pair (S,B), where S is a set of n points or symbols andB is a family of
k-subsets of S called blocks, such that every t elements of S occur together in exactly λ blocks ofB. When λ = 1, it is called
a Steiner system, and when k = 3, it is called a triple system. A design with parameters t = 2, k = 3 and λ = 1 with n points
is called a Steiner triple system of order n, denoted by STS(n).
It is known that a Steiner triple system of order n exists if and only if n ≡ 1, 3(mod 6) [7].

2.1. The Bose Construction: n ≡ 3(mod 6)

Let n = 6k+ 3 and (Q , ◦) be an idempotent commutative quasigroup of order 2k+ 1 and define S = Q × {1, 2, 3}. We
denote an ordinary element of S by xi, where x ∈ Q and i ∈ {1, 2, 3} and define B to contain the following two types of
triples:

Type 1 : for 1 ≤ i ≤ 2k+ 1, {i1, i2, i3} ∈ B,
Type 2 : for 1 ≤ i < j ≤ 2k+ 1, {i1, j1, (i ◦ j)2}, {i2, j2, (i ◦ j)3}, {i3, j3, (i ◦ j)1} ∈ B.

Then (S,B) is a Steiner triple system of order 6k+ 3 [7].

2.2. The Skolem Construction: n ≡ 1(mod 6)

Let n = 6k+1 and (Q , ◦) be a half-idempotent commutative quasigroup of order 2k and define S = {∞}∪(Q×{1, 2, 3}).
We denote an ordinary point in Q × {1, 2, 3} by xi, where x ∈ Q and i ∈ {1, 2, 3} and defineB as follows:

Type 1 : for 1 ≤ i ≤ k, {i1, i2, i3} ∈ B,
Type 2 : for 1 ≤ i ≤ k, {∞, (k+ i)1, i2}, {∞, (k+ i)2, i3}, {∞, (k+ i)3, i1} ∈ B,
Type 3 : for 1 ≤ i < j ≤ 2k, {i1, j1, (i ◦ j)2}, {i2, j2, (i ◦ j)3}, {i3, j3, (i ◦ j)1} ∈ B.

Then (S,B) is a Steiner triple system of order 6k+ 1 [7].
Above we have constructed Steiner triple systems of all orders n ≡ 1, 3(mod 6). Although no STS(6k+ 5) exists, we can

get very close.
A pairwise balanced design or simply PBD is an ordered pair (S,B), where S is a finite set of points and B is a collection

of subsets of S called blocks, such that each pair of distinct elements of S occurs together in exactly one block of B. When
|S| = n it is denoted by PBD(n).
For all n ≡ 5(mod 6), we produce a PBD of order nwith one block of size 5 and others of size 3, called 3-blocks.

2.3. The n = 6k+ 5 Construction

Let (Q , ◦) be an idempotent commutative quasiqroup of order 2k + 1 and α be the permutation (1, 2)(3, 4) . . . (2k −
1, 2k)(2k + 1). Let S = {∞1,∞2} ∪ (Q × {1, 2, 3}), we denote an ordinary point in Q × {1, 2, 3} by xi, where x ∈ Q and
i ∈ {1, 2, 3}. Now defineB to contain the following blocks:

Type 1 : {∞1,∞2, (2k+ 1)1, (2k+ 1)2, (2k+ 1)3} ∈ B,
Type 2 : for 1 ≤ i ≤ k, {∞1, (2i− 1)1, (2i− 1)2}, {∞1, (2i− 1)3, (2i)1}, {∞1, (2i)2, (2i)3},

{∞2, (2i− 1)2, (2i− 1)3}, {∞2, (2i)1, (2i)2}, {∞2, (2i− 1)1, (2i)3} ∈ B,
Type 3 : for 1 ≤ i < j ≤ 2k+ 1, {i1, j1, (i ◦ j)2}, {i2, j2, (i ◦ j)3}, {i3, j3, (α(i ◦ j))1} ∈ B.

Then (S,B) is a PBD(6k+ 5)with exactly one block of size 5 and all others of size 3 [7].
For results in later sections we need some steiner triple systems containing another Steiner triple system, called

subsystem.
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Theorem A ([2]).
(i) For every two integers n,m ≡ 1, 3 (mod 6) such that n ≥ 2m+ 1, there is an STS(n) containing a subsystem STS(m).
(ii) For every two integers n,m ≡ 5 (mod 6) such that n ≥ 2m+ 1, there is a PBD(n) which contains a PBD(m).

A Steiner quasigroup (Q , ◦) is a commutative quasigroup, where i ◦ i = i and (i ◦ j) ◦ j = i, for every i, j ∈ Q [2].
Given a Steiner triple system, we can construct a steiner quasigroup by setting x ◦ y = z when {x, y, z} is a block of the

design or when x = y = z. Also given a PBD with one block of size 5 and others of size 3 and an idempotent commutative
quasigroup of order 5, (Q ′, ◦′), we can construct an idempotent commutative quasigroup by setting x ◦ y = z when {x, y, z}
is a 3-block of the PBD or when x = y = z; and x ◦ y = x ◦′ y when x, y are both in the block of size 5. Thus we have the
following proposition.

Proposition 1. For every odd integer n, n 6= 5, there exists an idempotent commutative quasigroup of order n containing a
sub-quasigroup of order 3.

3. b-chromatic number of the Kneser graph

In this section, we determine ϕ(K(2k+ 1, k)) for every k and ϕ(K(n, 2)) for every n.

Theorem 1. For every integer k ≥ 3,

ϕ(K(2k+ 1, k)) = k+ 2.

Proof. We know that ∆(K(2k + 1, k)) = k + 1, so by Inequality (1), ϕ(K(2k + 1, k)) ≤ k + 2. To prove the equality we
describe a b-coloring of K(2k+ 1, k) by k+ 2 colors as follows. For i, 1 ≤ i ≤ k, we define the color class i to contain the set
of vertices

{{k+ 1, k+ 2, . . . , 2k+ 1} \ {k+ i}} ∪ {{1, 2, . . . , k} \ {i} ∪ {k+ j} | 1 ≤ j ≤ k+ 1, j 6= i},

the color class k+ 1 contains the set of vertices

{k+ 1, k+ 2, . . . , 2k} ∪ {{1, 2, . . . , k} \ {j} ∪ {k+ j} | 1 ≤ j ≤ k}

and the color class k+ 2 contains the set {{1, 2, . . . , k}}.
Now we complete the coloring as follows. Let A ⊆ {1, 2, . . . , 2k + 1} be a vertex distinct from the vertices in the color

classes above. If 2k+ 1 ∈ A then we choose an integer i ∈ Ac ∩ {1, 2, . . . , k} and add A to the color class i. If 2k+ 1 6∈ A and
2k ∈ A then we choose an integer i ∈ Ac ∩ {1, 2, . . . , k}, i 6= k, and add A to the color class i. If 2k, 2k+ 1 6∈ A then we add
A to the color class k+ 2. It is not hard to see that the vertices in each class have mutually nonempty intersections. Hence,
such a coloring is a proper coloring.
In this proper coloring the set of vertices {{k + 1, k + 2, . . . , 2k + 1} \ {k + i} | 1 ≤ i ≤ k + 1, {1, 2, . . . , k}} is a

b-dominating system. Because, the vertex {1, 2, . . . , k} is adjacent to all vertices {k + 1, k + 2, . . . , 2k + 1} \ {k + i},
1 ≤ i ≤ k+ 1. Moreover, for a fixed integer i0, 1 ≤ i0 ≤ k+ 1, the vertex {k+ 1, k+ 2, . . . , 2k+ 1} \ {k+ i0} is adjacent to
the vertices {1, 2, . . . , k} and {1, 2, . . . , k} \ {i} ∪ {k+ i0}, 1 ≤ i ≤ k, i 6= i0 and for 1 ≤ i0 ≤ k, this vertex is adjacent to the
vertex {1, 2, . . . , k} \ {i0} ∪ {k+ i0}. �

In the sequel, we are going to determine ϕ(K(n, 2)). First we mention some facts, terminology and lemmas which will
be used in the proof of the main theorem.

Fact 1. By the definition of STS(n), it is obvious that every Steiner triple system of order n is in fact an edge decomposition
of the complete graph Kn into triangles.

Fact 2. Each vertex in K(n, 2) which is a 2-subset of the set {1, 2, . . . , n} corresponds to an edge in the complete graph Kn
with vertex set {1, 2, . . . , n}. Hence, two vertices of K(n, 2) are nonadjacent if and only if the corresponding edges in Kn are
adjacent.

Fact 3. If A is an independent set of vertices in K(n, 2), then either all vertices in A have a common element, say a, or
A = {{a, b}, {a, c}, {b, c}}, for some a, b, c ∈ {1, 2, . . . , n}. In other words an independent set of vertices in K(n, 2)
corresponds to a star subgraph with center a or a triangle subgraph in Kn. From now on we call the independent set (color
class) in K(n, 2) of the first form starlikewith center a and the second form triangular. Moreover, for simplicitywe denote the
independent set {{a, b}, {a, c}, {b, c}} with {a, b, c}. Since every proper coloring is a partition of vertices into independent
sets of vertices, we can consider every proper coloring of K(n, 2) as an edge decomposition of the complete graph Kn into
star and triangle subgraphs.

A set of vertices S is called a dominating set, whenever every vertex not in S has a neighbor in S. A dominating set S in G
is called an independent dominating set when the vertices in S are mutually nonadjacent. The following proposition is a fact
about dominating sets in Kneser graphs.

Proposition 2. Let S = {1, 2, . . . , n}. If T is a subset of S of size 2k − 1, then the set of all k-subsets of T is an independent
dominating set in the K(n, k).
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Proof. Let T ⊆ S = {1, 2, . . . , n}, |T | = 2k− 1 and A be a vertex in K(n, k) for which A 6⊆ T . So |A ∩ T | ≤ k− 1 and there
is a k-subset of T , say B, for which A ∩ B = ∅. Therefore, the vertices A and B are adjacent in K(n, k). Obviously, every two
k-subsets of T intersect, so they are not adjacent in K(n, k). The statement follows. �

By the proposition above, when a Steiner systemwith some special parameters exists, we can find a lower bound for the
b-chromatic number of K(n, k).

Theorem 2. If (S,B) is a k− (n, 2k− 1, 1) Steiner system, then ϕ(K(n, k)) ≥ |B|.
Proof. Let B = {B1, B2, . . . , B|B|}. For each i, 1 ≤ i ≤ |B|, we define the set of all k-subsets of Bi as the color class i. Since
|Bi| = 2k− 1, by Proposition 2, each class i is an independent set of vertices, so this partition is a proper coloring of K(n, k).
Moreover, by Proposition 2, each class i is a dominating set. Therefore, each element in a color class j has neighbors in all
the other color classes. Hence, this partition is a b-coloring of K(n, k) by |B| colors. �

Lemma 1. Assume that c is a proper coloring of K(n, 2) and A1, A2, . . . , At , |Ai| ≥ 3, 1 ≤ i ≤ t, are the starlike color classes in
c, with centers a1, a2, . . . , at , respectively. Then c is a b-coloring of K(n, 2) if and only if the following conditions hold.
(i) a1, a2, . . . , at are distinct,
(ii) every 2-subset of the set {a1, a2, . . . , at} is in ∪tk=1 Ak, and
(iii) for each i, 1 ≤ i ≤ t, there exists an element xi 6∈ {a1, a2, . . . , at}, where {ai, xi} ∈ Ai.

Proof. Assume that c is a b-coloring of K(n, 2). Suppose that ai = aj for some i 6= j. Hence, Ai ∪ Aj is an independent set
in K(n, 2). This means that no vertex in the color class Ai has a neighbor in the color class Aj, which contradicts that c is a
b-coloring. So ai 6= aj for all 1 ≤ i 6= j ≤ t .
Now consider an arbitrary 2-subset {ai, aj} of the set {a1, a2, . . . , at}. If {ai, aj} 6∈ ∪tk=1 Ak, then this vertex is in a triangular

color class, say {ai, aj, b}. In this color class, the vertices {ai, aj} and {ai, b} are not b-dominating vertices because they have
no neighbor in the color class Ai. The vertex {aj, b} also is not a b-dominating vertex since it has no neighbor in the color class
Aj. This is a contradiction. Thus {ai, aj} ∈ ∪tk=1 Ak, for all i, j. Since in each starlike color class Ai wemust have a b-dominating
vertex, the property (iii) is obviously concluded.
Now assume that c is a proper coloring of K(n, 2) that satisfies (i), (ii) and (iii). It is enough to show that in each color

class of c , there is a b-dominating vertex. In the starlike color classes Ai, 1 ≤ i ≤ t , the vertex {ai, xi} is a b-dominating
vertex, because in each color class Aj, j 6= i, there exists a vertex {aj, y} such that y 6= ai, xi. Moreover, by Proposition 2
each triangular color class is a dominating set. Therefore, the vertex {ai, xi} has neighbors in all color classes. On the other
hand for each triangular color class {a, b, c}, by (ii), we have |{a, b, c} ∩ {a1, a2, . . . , at}| ≤ 1. Hence there exists at least
two elements, say a and b, with a, b 6∈ {a1, a2, . . . , at}. Since |Ai| ≥ 3, the vertex {a, b} has neighbors in all starlike color
classes. Furthermore, by Proposition 2 each triangular color class is a dominating set. So the vertex {a, b} is a b-dominating
vertex. �

Proposition 3. If n ≡ 5(mod 6) then ϕ(K(n, 2)) ≥ n(n−1)
6 −

1
3 .

Proof. If n ≡ 5(mod 6) then by the 6k + 5 construction given in Section 2, we have a PBD(n) with one block of
size 5, say {1, 2, 3, 4, 5}, and 3-blocks otherwise. In this construction, number of 3-blocks is n(n−1)6 −

10
3 . Now we

provide a b-coloring of K(n, 2). We consider each 3-block as a triangular color class and define the other color classes as
{{1, 2}, {1, 3}, {1, 4}, {1, 5}}, {{2, 3}, {2, 4}, {2, 5}}, and {{3, 4}, {3, 5}, {4, 5}}. This is an edgedecomposition of the complete
graph Kn into stars and triangles, so by Fact 3 this is a proper coloring of K(n, 2). Furthermore, this coloring satisfies the
conditions of Lemma 1 and so is a b-coloring of K(n, 2). Hence

ϕ(K(n, 2)) ≥
n(n− 1)
6

−
10
3
+ 3 =

n(n− 1)
6

−
1
3
. �

Theorem 3. For every positive integer n, n 6= 8, we have:

ϕ(K(n, 2)) =


⌊
n(n− 1)
6

⌋
if n is odd,⌊

(n− 1)(n− 2)
6

⌋
+ 3 if n is even.

Proof. We prove the theorem for two cases n is even and n is odd.
Case 1. n is even.
First we find an upper bound for ϕ(K(n, 2)). Let c be a b-coloring of K(n, 2) by ϕ colors and t starlike color classes with

centers 1, . . . , t of sizes n1, . . . , nt , respectively. Then,

|V (K(n, 2))| =
(n
2

)
=

t∑
i=1

ni + 3(ϕ − t). (2)
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By Fact 3, the coloring c corresponds to an edge decomposition of the complete graph Kn into stars and triangles. For
every vertex i ∈ V (Kn), the number of edges incident to i in the triangles of the decomposition is even. Since n is even, there
is an edge incident to i in a star subgraph in the decomposition. Therefore, for each i satisfying t+1 ≤ i ≤ n there is a vertex
in K(n, 2) containing i in the starlike color classes 1 to t . Moreover, by Lemma 1, every 2-subset of the set {1, 2, . . . , t} is in
the starlike color classes. Therefore, we have

t∑
i=1

ni ≥ (n− t)+
t(t − 1)
2

= n+
t(t − 3)
2

.

Hence,(n
2

)
≥ n+

t(t − 9)
2

+ 3ϕ.

So

ϕ ≤
n(n− 3)
6

−
t(t − 9)
6

.

The minimum of t(t − 9) occurs in t = 4 and t = 5. Therefore,

ϕ ≤

⌊
n(n− 3)
6

+
10
3

⌋
=

⌊
(n− 1)(n− 2)

6

⌋
+ 3. (3)

Now we find a lower bound for ϕ(K(n, 2)).
Case 1.1. n = 6k.
We consider an STS(6k − 3) with the Bose construction. As shown in Section 2, in this construction there are 2k − 1

disjoint blocks of Type 1. We denote these blocks by {a1, b1, c1}, {a2, b2, c2}, . . . , {a2k−1, b2k−1, c2k−1}. By Fact 1, this STS is
an edge decomposition of the complete graph Kn−3 into triangles. Now we add three new points a, b, c and then construct
a proper coloring of K(n, 2) by ϕ0 = n(n−3)

6 + 3 colors or equivalently an edge decomposition of the complete graph Kn into
ϕ0 stars and triangles.
We consider every block of Type 2 in the STS(6k− 3) as one triangular color class. The other color classes are defined as

follows. Color class A consists of

{a, c1}, {a, c2}, . . . , {a, c2k−1}, {a, b}.

Color class B consists of

{b, a1}, {b, a2}, . . . , {b, a2k−1}, {b, c}.

Color class C consists of

{c, b1}, {c, b2}, . . . , {c, b2k−1}, {c, a}.

Also for each i, 1 ≤ i ≤ 2k− 1, we define three triangular color classes

{a, ai, bi}, {b, bi, ci}, {c, ci, ai}.

In the STS(6k− 3) the number of blocks is (n−3)(n−4)6 , of which 2k− 1 = n−3
3 blocks are of Type 1. Therefore, the number of

color classes in the given coloring above are (n−3)(n−4)6 −
n−3
3 + 3+ 3

(n−3)
3 =

n(n−3)
6 + 3 = ϕ0.

For n = 6, it is obvious that this coloring is a b-coloring of K(6, 2) by 6 colors. For k ≥ 2, we have only three starlike color
classes and this coloring satisfies the conditions of Lemma 1. Hence, the given coloring is a b-coloring of K(n, 2). Therefore,
ϕ ≥ n(n−3)

6 + 3 =
⌊
(n−1)(n−2)

6

⌋
+ 3.

Case 1.2. n = 6k+ 2, k ≥ 2, or n = 6k+ 4.
We consider an STS(n − 1) with the Bose or the Skolem construction given in Section 2. Moreover, in this construction

we consider three disjoint blocks {a, b, c}, {a′, b′, c ′}, and {a′′, b′′, c ′′} in which {a, a′, a′′} is a block. Nowwe add a new point
d and construct a b-coloring of K(n, 2) by ϕ0 = (n−1)(n−2)

6 + 3 colors as follows.
We consider every block in STS(n − 1) except four blocks {a, b, c}, {a′, b′, c ′}, {a′′, b′′, c ′′}, and {a, a′, a′′} as a

color class. Moreover, we add the following color classes. Color class A consists of {a, b}, {a, c}, {a, a′}. Color class B
consists of {a′, b′}, {a′, c ′}, {a′, a′′}. Color class C consists of {a′′, b′′}, {a′′, c ′′}, {a′′, a}. Color class D consists of {d, x}, x 6∈
{b, b′, b′′, c, c ′, c ′′}. Finally, we add three triangular color classes {b, c, d}, {b′, c ′, d} and {b′′, c ′′, d}. The number of these
color classes is ϕ0 = (n−1)(n−2)

6 − 4+ 4+ 3 = (n−1)(n−2)
6 + 3.

We have only four starlike color classes and this coloring satisfies the conditions of Lemma 1. Hence, the given coloring
is a b-coloring of K(n, 2). Therefore, ϕ ≥

⌊
(n−1)(n−2)

6

⌋
+ 3.
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Case 2. n is odd.
First we find an upper bound for ϕ(K(n, 2)). Let c be a b-coloring of K(n, 2) by ϕ = ϕ(K(n, 2)) colors and t starlike color

classes with centers 1, . . . , t of sizes n1, . . . , nt , respectively. Then,

|V (K(n, 2))| =
(n
2

)
=

t∑
i=1

ni + 3(ϕ − t). (4)

By Lemma 1, every 2-subset of the set {1, 2, . . . , t} is in the color classes 1 to t . Moreover, in the color class i we must
have a b-dominating vertex, say {i, x}, where x ∈ {t + 1, t + 2, . . . , n}. Hence,

t∑
i=1

ni ≥
t(t − 1)
2

+ t =
t(t + 1)
2

.

Therefore,(n
2

)
≥ 3ϕ +

t(t + 1)
2

− 3t = 3ϕ +
t(t − 5)
2

.

So

ϕ ≤
n(n− 1)
6

−
t(t − 5)
6

.

The minimum of the expression t(t − 5) occurs in t = 2 and t = 3, so ϕ ≤ n(n−1)
6 + 1.

Now we prove that ϕ ≤ n(n−1)
6 . Suppose ϕ = n(n−1)

6 + 1, hence, t = 2 or t = 3. For every vertex i ∈ V (Kn), the number
of edges incident to i in the triangles of the decomposition is even. Since n is odd, the number of edges incident to i in the
stars of the decomposition is also even. Equivalently, in the b-coloring of K(n, 2) the number of vertices containing i in the
starlike color classes are even numbers.
If t = 3 then by Lemma 1 (ii) and (iii), the vertices {1, 2}, {1, 3} and {2, 3} in K(n, 2) are in the starlike color classes with

centers 1, 2, or 3 and for every i, 1 ≤ i ≤ 3, there is a vertex {i, x} in the starlike color classes which x 6= 1, 2, 3. So by the
discussion above, for every i, 1 ≤ i ≤ 3, at least two vertices {i, x} and {i, y}, where x, y 6= 1, 2, 3, are in the starlike color
classes. Therefore,

∑3
i=1 ni ≥ 3 + 2 × 3 = 9. So by Relation (4),

( n
2

)
≥ 9 + 3(ϕ − 3) = 3ϕ. Hence, ϕ ≤ n(n−1)

6 , which
contradicts our assumption.
Now let t = 2. By Lemma 1 (ii) and (iii), the starlike color class with center 1 contains vertex {1, 2} and at least one

more vertex, say {1, 3}. By the discussion above, if the vertex {1, i} in K(n, 2) is in the starlike color class with center 1,
then the vertex {2, i} is in the starlike color class with center 2. If the vertices {1, 2}, {1, 3} and {2, 3} are the only vertices
in the starlike color classes, then there is no b-dominating vertex in these classes. Therefore, the starlike color class with
center 1 and consequently, the starlike color class with center 2 each one contains at least more two vertices. Hence,∑2
i=1 ni = 1+ 2× 3 = 7. Therefore, by Relation (4)(n

2

)
≥ 7+ 3(ϕ − 2) = 3ϕ + 1.

So ϕ ≤ n(n−1)
6 , which contradicts our assumption.

Therefore,ϕ ≤
⌊
n(n−1)
6

⌋
. If n ≡ 1, 3(mod 6) then an STS(n) exists. Therefore, by Theorem2,ϕ ≥ n(n−1)

6 . If n ≡ 5(mod 6)

then by Proposition 3, ϕ ≥ n(n−1)
6 −

1
3 . Hence, ϕ =

⌊
n(n−1)
6

⌋
. �

Since the Petersen graph is Kneser graph K(5, 2), we get the following result.

Corollary 1. If P is the Petersen graph, then ϕ(P) = 3.

Kneser graph K(8, 2) is an exception.

Proposition 4. ϕ(K(8, 2)) = 9.

Proof. Consider the notations in the proof of Theorem 3 for Case 1. By Inequality (3), we have ϕ(K(8, 2)) ≤ 10 and the
equality holds if and only if t = 4 or t = 5. Assume that a b-coloring of K(8, 2) exists with 10 colors and A1, A2, . . . , At are
starlike color classes with centers 1, 2, . . . , t , respectively.
If t = 4 then by Equality (2),

∑4
i=1 ni = 10. By Lemma 1 (ii) and (iii), every 2-subset of the set {1, 2, 3, 4} is in ∪

4
i=1 Ai

and for each i, 1 ≤ i ≤ 4, there exists xi 6∈ {1, 2, 3, 4}, where {i, xi} ∈ Ai. On the other hand n− t and the number of vertices
containing i in triangular color classes are even numbers. So there are at least two vertices {i, xi}, {i, yi} in the starlike color
classes, where xi, yi 6∈ {1, 2, 3, 4}. Hence,

∑4
i=1 ni = 10 ≥ 6+ 4× 2 = 14, which is contradiction.
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If t = 5 then by Equality (2),
∑5
i=1 ni = 13. On the other hand, similar to the above by Lemma 1 (ii) and (iii),∑5

i=1 ni = 13 ≥ 10+ 5, a contradiction. So ϕ(K(8, 2)) ≤ 9.
Nowweprovide a b-coloring ofK(8, 2)by9 colors. Firstwe consider an STS(7) anddelete onepoint of it.What remains is a

decomposition of K6 into 4 triangles and a 1-factor called F = {{a1, b1}, {a2, b2}, {a3, b3}}. Nowwe add two newpoints a and
b and define the color classes as all triangles in the decomposition above in addition to the triangular color classes {a, a1, b1},
{a, a2, b2} and {b, a3, b3} and the starlike color classes {{a, a3}, {a, b3}, {a, b}} and {{b, a1}, {b, b1}, {b, a2}, {b, b2}}. This is a
proper coloring of K(8, 2) satisfying the conditions of Lemma 1, so is a b-coloring by 9 colors as desired. �

By Relation (1), ϕ(K(n, k)) ≤ ∆+ 1 =
(
n−k
k

)
+ 1. Hence ϕ(K(n, k)) = O(nk). Theorems 2 and 3 motivate us to propose

the following conjecture.

Conjecture 1. For every integer k, we have ϕ(K(n, k)) = Θ(nk).

4. b-continuity of the Kneser graph K (n, 2)

In this section we prove that K(n, 2) is b-continuous when n ≥ 17.

Lemma 2. (a) Let n = 6k+ 1 or n = 6k+ 3 and (S,B) be an STS(n). Also let T be a subset of S = {1, 2, . . . , n} and t be the
number of blocks inB on the points of T , such that:
(i) |T | = m ≥ 3,
(ii) for each i ∈ T , there exists j ∈ T such that the third point of the block containing both i, j is not in T .
Then there exists a b-coloring of K(n, 2) by ϕ − (m(m−3)2 − 2t) colors, where ϕ = ϕ(K(n, 2)).

(b) Let n = 6k+ 5 and (S,B) be a PBD(n) with one block of size 5, say {1, 2, n, n− 1, n− 2} and the others 3-blocks. Also let
T be a subset of S = {1, 2, . . . , n} and t be the number of 3-blocks inB on the points of T , such that:
(i) |T | = m ≥ 3,
(ii) 1, 2 ∈ T and n− 2, n− 1, n 6∈ T ,
(iii) for each i ∈ T , i 6= 1, 2, there exists j ∈ T such that the third point of the 3-block containing both i, j is not in T .
Then there exists a b-coloring of K(n, 2) by ϕ − (m(m−3)2 − 2t + 1) colors, where ϕ = ϕ(K(n, 2)).

Proof. Let c be the b-coloring of K(n, 2) by ϕ colors corresponding to STS(n) or PBD(n) (see Theorem 2 and Proposition 3).
In the case n = 6k+ 5, we take the centers of starlike color classes as 1 and 2.
Assume T = {1, 2, . . . ,m}, consider the b-coloring c and delete all triangular color classes containing a vertex {i, j} ⊆ T .

(a) Since each vertex {i, j} ⊆ T is contained in a triangular color class and there are exactly t triangles on the points of T ,
the number of deleted color classes (triangles) is m(m−1)2 − 3t + t . Now we define m new color classes as follows. New
color class i, 3 ≤ i ≤ m − 2, contains the set of vertices {{i, j} | i + 1 ≤ j ≤ m}. Also new color classes 1, 2,m − 1
and m contain respectively the sets {{1, j} | 2 ≤ j ≤ m − 2}, {{2, j} | 3 ≤ j ≤ m − 1}, {{m − 1,m}, {m − 1, 1}} and
{{m, 1}, {m, 2}}. Moreover, if a vertex {i, x}, where i ∈ T and x 6∈ T is in a deleted color class, then we add this vertex to
the color class i. These m new color classes together with the old color classes give us a new proper coloring of K(n, 2)
by ϕ − (m(m−1)2 − 2t)+m colors.

(b) Since each vertex {i, j} ⊆ T except {1, 2} is contained in a triangular color class and there are exactly t triangular color
classes on the points of T , the number of deleted triangles is m(m−1)2 −1−3t+ t . Nowwe definem−2 new color classes
as follows. Color class i, 3 ≤ i ≤ m, contains the set of vertices {{i, j} | i + 1 ≤ j ≤ m} ∪ {{i, 1}, {i, 2}}. Moreover, if a
vertex {i, x}, where i ∈ T and x 6∈ T is in a deleted color class, then we add this vertex to the color class i. These m − 2
new color classes together with the old color classes give us a new proper coloring by ϕ − (m(m−1)2 − 1− 2t)+ m− 2
colors.

The obtained colorings in (a) and (b) satisfy the conditions of Lemma 1, so they are b-colorings. �

Lemma 3. Let n ≥ 13 be an odd integer and let k = b n6c. For every odd integer m, 5 ≤ m ≤ k + 5 and for every integer t,
0 ≤ t ≤ 3m−11

2 , where (m, t) 6= (5, 2), (7, 5), (k+ 5, 0), there exists an STS(n) or PBD(n) and a set T satisfying the conditions
of Lemma 2.

Proof. Let l = b n3c. Depending on n, using the Bose construction, the Skolem construction or the 6k+ 5 construction given
in Section 2 and the quasigroups of Example 1, construct an STS(n) or a PBD(n).
If t = 0, then it is easy to find a set T with parameters (m, t). Assume 5 ≤ m ≤ k+ 5 andm is odd.

(a) If 1 ≤ t ≤ m−5
2 , then define

T = {l1, i1, (l− i)1 | 1 ≤ i ≤ t} ∪ {j1 | t + 1 ≤ j ≤ m− 4− t} ∪ {(σ (l))2, 13, (σ−1(k+ 2)− 1)3}.
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(b) If m−52 < t < m− 5, then define

T =
{
l1, i1, (l− i)1 | 1 ≤ i ≤

m− 5
2

}
∪ {(σ (l))2, (σ (2(m− 5− t)))2, (σ (m− 5))2, (σ (2l−m+ 5))2}.

(c) Ifm− 5 ≤ t < 3(m−52 ), then define

T =
{
l1, i1, (l− i)1 | 1 ≤ i ≤

m− 5
2

}
∪ {(σ (l))2, (σ (1))2, (σ (3(m− 5)− 2t))2, (σ (2l−m+ 5))2}.

(d) If 3(m−52 ) ≤ t ≤ 2m− 11, then define

T =
{
l1, i1, (l− i)1 | 1 ≤ i ≤

m− 5
2

}
∪ {(σ (l))2, (σ (1))2, (σ (l− 1))2, (σ (4(m− 5)− 2t))2}.

The set T given above satisfies the conditions of Lemma 2 (with an appropriate renaming of elements of S). If m ≥ 11
then 2m − 11 ≥ 3m−11

2 , hence, for each 11 ≤ m ≤ k + 5 and 0 ≤ t ≤ 3m−11
2 , we are done. Moreover, by the construction

above there exists such a set T for (m, t) = (5, 0), (m = 7, 0 ≤ t ≤ 3), (m = 9, 0 ≤ t ≤ 7). For (m, t) = (5, 1), let
T = {11, (l− 1)1, (σ (l))2, 12, (l− 1)2}. For (m, t) = (7, 4), let T = {11, (l− 1)1, 21, (l− 2)1, (σ (l))2, (σ (1))2, (σ (l− 1))2}.
Nowwe construct a set T with parameters (m, t) = (9, 8). Sincem ≤ k+5,wehaven ≥ 25. Now ifn ≡ 1, 3(mod 6), then

by TheoremA there is an STS(n) containing an STS(9) on the set T0 = {1, 2, . . . , 9}. So the set T = T0∪{10}−{9} is the desired
set with parameters (m, t) = (9, 8). If n ≡ 5(mod 6), then we consider an idempotent commutative quasigroup containing
a sub-quasigroup of order 3 (see Proposition 1).Without loss of generalitywe can assume that {1, 2, 3} is the sub-quasigroup
of order 3. Then by applying this quasigroup to the 6k + 5 construction (see Section 2), we construct a PBD(n) and define
T = {∞1,∞2, 31, i1, i2, i3 | i = 1, 2}. The set T is the desired set (with an appropirate renaming of elements of S). �

Lemma 4. Let n ≥ 13 be an odd integer and k = b n6c. For every even integer m, 4 ≤ m ≤ k + 5 and every integer t,
0 ≤ t ≤ m− 4, there exists an STS(n) or PBD(n) and a set T satisfying the conditions of Lemma 2. Moreover, when n ≥ 19 and
n 6= 6k+ 5 such an STS and a set T exist for (m, t) ∈ {(6, 4), (8, 8)},

Proof. Let l = b n3c. Consider the STS(n) or PBD(n) as in the proof of Lemma 3.
If t = 0, then it is easy to find a set T with parameters (m, t). Assume 4 ≤ m ≤ k+ 5 andm is even.

(a) If 1 ≤ t ≤ m−4
2 , then define

T = {l1, i1, (l− i)1 | 1 ≤ i ≤ t} ∪ {j1 | t + 1 ≤ j ≤ m− 4− t} ∪ {(σ (l))2, 13, (σ−1(k+ 2)− 1)3}.

(b) If m−42 < t < m− 4, then define

T =
{
l1, i1, (l− i)1 | 1 ≤ i ≤

m− 4
2

}
∪ {(σ (l))2, (σ (2(m− 4− t)))2, (σ (m− 4))2}.

(c) If t = m− 4, then define

T =
{
l1, i1, (l− i)1 | 1 ≤ i ≤

m− 4
2

}
{(σ (l))2, (σ (1))2, (σ (m− 4))2}.

The set T given above satisfies the conditions of Lemma 2 (with an appropirate renaming of elements of S). Now, assume
n ≥ 19 and n 6= 6k + 5, we construct sets T with parameters (m, t) = (6, 4), (8, 8). By Theorem A there is an STS(n)
containing the STS(7) on points {1, 2, . . . , 7}. Now let T = {1, 2, . . . , 6}, it is clear that T is a set satisfying the conditions
of Lemma 2 with parameters (m, t) = (6, 4). Also there is an STS(n) containing the STS(9) on points {1, 2, . . . , 9}. Now let
T = {1, 2, . . . , 8}, it is clear that T is a set satisfying the conditions of Lemma 2 with parameters (m, t) = (8, 8). �

Theorem 4. For every integer n, n ≥ 17, Kneser graph K(n, 2) is b-continuous.

Proof. Weprove the theorem for two cases n odd and n even. Let X(n) be the set of numbers x for which there is a b-coloring
of K(n, 2) by x colors.
Case 1. n is odd.
In this casewe prove the theoremby induction on n. Assume for an odd integer n, n ≥ 19, that K(n−2, 2) is b-continuous.

Therefore, by the definition and Theorem 3, for every integer x, n − 4 ≤ x ≤
⌊
(n−2)(n−3)

6

⌋
, we have x ∈ X(n − 2). We

consider a b-coloring of K(n − 2, 2) with x colors and provide a b-coloring of K(n, 2) by x + 2 colors. For this purpose, we
add two new color classes {{n, i} | 1 ≤ i ≤ n − 1}, {{n − 1, i} | 1 ≤ i ≤ n − 2}. This coloring satisfies the conditions
of Lemma 1, so it is a b-coloring. To prove the b-continuity of K(n, 2) it is enough to prove x ∈ X(n) for every integer x,
3+

⌊
(n−2)(n−3)

6

⌋
≤ x ≤

⌊
n(n−1)
6

⌋
= ϕ. For this purpose, let ψ =

⌊
n(n−1)
6

⌋
−

⌊
(n−2)(n−3)

6

⌋
− 3.
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Table 1
The values are m(m−3)2 − 2t + 1.

t m
3 4 5 6 7

0 1 3 6 10 –
1 4 8 13
2 6 11
3 9
4 7

Claim. For every integer x, 1 ≤ x ≤ ψ , we have ϕ − x ∈ X(n).

Proof of claim. Let A be the set of all positive integers x such that there exists a set T ⊆ {1, 2, . . . , n} which satisfies the
assumptions of Lemma 2 with parameters (m, t), and m(m−3)2 − 2t = x.

Case 1.1. n = 6k+ 1 or n = 6k+ 3, k ≥ 3.
By Lemma 2(a), it is enough to show that for every x, 1 ≤ x ≤ ψ , x ∈ A. By Lemma 4 there exists a set T with parameters

(m, t) = (6, 4), (m, t) = (8, 8). Therefore, 1, 4 ∈ A. Moreover, by Lemma3, for every odd integerm, 5 ≤ m ≤ k+5,we have
m(m−3)
2 , m(m−3)2 −2, . . . , m(m−3)2 −(3m−11) = (m−3)(m−6)

2 +2 ∈ A. Also by Lemma4, for every even integerm, 4 ≤ m ≤ k+5,
we have m(m−3)2 , m(m−3)2 − 2, . . . , m(m−3)2 − (m− 4) = (m−1)(m−4)

2 + 2 ∈ A. Therefore, 1, 2, 3, 4, . . . , (k+3)k2 + 1 ∈ A. Since
(k+3)k
2 + 1 ≥ 4k− 2 ≥ ψ , we are done.

Case 1.2. n = 6k+ 5.
By Lemma 2(b), it is enough to show that for every integer x, 0 ≤ x ≤ ψ − 1, x ∈ A. All things in Case 1.1 hold in this

case as well, except the set T with parameters (m, t) = (6, 4), (8, 8). So we have {1, 2, 3, . . . , ψ − 1} − {1, 4} ⊆ A. Also
there exists a set T with parameters (m, t) = (3, 0) satisfying Lemma 2(b). Thus 0 ∈ A.
To complete the proof, we show that ϕ − 2 and ϕ − 5 are in X(n). Consider the quasigroup of Example 1 and construct

a PBD(n) using the 6k + 5 construction. Let c be the b-coloring of K(n, 2) corresponding to this PBD by ϕ colors (see
Proposition 3) where∞1,∞2 are the centers of the starlike color classes. Now let T = {∞1,∞2, (2k+ 1)1, 21, 12}, delete
all triangular color classes containing a vertex {i, j} ⊆ T and define 3 new starlike color classes with centers (2k+1)1, 21, 12.
Deleted color classes are triangles {(2k + 1)1, 21, 12}, {∞1, 21, 13}, {∞2, 21, 22}, {∞1, 12, 11} and {∞2, 12, 13}. Thus new
coloring is a b-coloring by ϕ−5+3 colors. Now let T = {∞1,∞2, 21, 22, 23, (2k+1)2, (2k+1)3}, delete all triangular color
classes containing a vertex {i, j} ⊆ T and define 5 new starlike color classes with centers 21, 22, 23, (2k + 1)2, (2k + 1)3.
Since we have deleted 10 triangular color classes, we obtain a b-coloring of K(n, 2) by ϕ − 5 colors. So the claim is proved.
To complete the induction we need to show that K(17, 2) is b-continuous. By Lemmas 3 and 4, there is a set T satisfying

the conditions of Lemma 2 with parameters (m, t) shown in Table 1. The values in the table are x = m(m−3)
2 − 2t + 1.

Therefore, by Lemma 2(b) for the values x given in Table 1, ϕ(K(17, 2))− x = 45− x ∈ X(17). Moreover, as it is proved in
Cases 1.2, ϕ(K(17, 2))− 2 and ϕ(K(17, 2))− 5 are in X(17). Hence, for every i, 34 ≤ i ≤ 45, i ∈ X(17).
Similarly, by Lemma 2(a) for the values x given in Table 1, ϕ(K(15, 2))− x− 1 = 34− x ∈ X(15). Therefore, for every i,

25 ≤ i ≤ 35 and i 6= 31, 34, i ∈ X(15). By a similar discussion, for every i, 16 ≤ i ≤ 26 and i 6= 22, 25, i ∈ X(13). We have
already proved that x ∈ X(n − 2) implies x + 2 ∈ X(n). Therefore, for every i, 20 ≤ i ≤ 37 and i 6= 26, 33, i ∈ X(17). By
Lemma 3, for n = 13, 15, 17 there is a set T ⊆ {1, 2, . . . , n}with parameters (m, t) = (9, 8). Thus, by Lemma 2, 33 ∈ X(17),
24 ∈ X(15) and 15 ∈ X(13), so 26, 19 ∈ X(17). Finally, for n = 13 there is a set T with parameters (m, t) = (7, 1), (9, 7),
so 14, 13 ∈ X(13), thus 18, 17 ∈ X(17). We can easily see that 16 ∈ X(17) by constructing a b-coloring with 16 starlike
color classes. This assures b-continuity of K(17, 2).
Case 2. n is even.
Letn ≥ 18be an even integer. ThenK(n−1, 2) is b-continuous and x ∈ X(n−1)holdswhenevern−3 ≤ x ≤

⌊
(n−1)(n−2)

6

⌋
.

Now we add a new color class {{n, i} | 1 ≤ i ≤ n− 1} to this coloring. This is a b-coloring of K(n, 2) by x+ 1 colors. Hence
y ∈ X(n) for every integer ywith n−2 ≤ y ≤

⌊
(n−1)(n−2)

6

⌋
+1 = ϕ−2. It is enough to proveϕ−1 =

⌊
(n−1)(n−2)

6

⌋
+2 ∈ X(n).

For this purpose, consider the b-coloring of K(n, 2) by ϕ colors in the proof of Theorem 3. Assume that {a, x, y} and {b, x, z}
are two triangular color classes, where a and b are the centers of some starlike color classes, A and B. We delete them and
add a new starlike color class {{x, y}, {x, z}, {x, a}, {x, b}}. Finally, we add vertex {a, y} to the starlike color class A and the
vertex {b, z} to the starlike color class B. The obtained coloring satisfies the conditions of Lemma 1 therefore, is a b-coloring
of K(n, 2) by ϕ − 1 colors. �
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