On b-coloring of the Kneser graphs ${ }^{\star}$

Ramin Javadi, Behnaz Omoomi
Department of Mathematical Sciences, Isfahan University of Technology, 84156-83111, Isfahan, Iran

ARTICLE INFO

Article history:
Received 15 April 2008
Received in revised form 20 January 2009
Accepted 22 January 2009
Available online 23 February 2009

Keywords:

b-chromatic number
b-coloring
Dominating coloring
b-continuous graph
Kneser graph
Steiner triple system

Abstract

A b-coloring of a graph G by k colors is a proper k-coloring of G such that in each color class there exists a vertex having neighbors in all the other $k-1$ color classes. The b-chromatic number of a graph G, denoted by $\varphi(G)$, is the maximum k for which G has a b-coloring by k colors. It is obvious that $\chi(G) \leq \varphi(G)$. A graph G is b-continuous if for every k between $\chi(G)$ and $\varphi(G)$ there is a b-coloring of G by k colors. In this paper, we study the b-coloring of Kneser graphs $K(n, k)$ and determine $\varphi(K(n, k))$ for some values of n and k. Moreover, we prove that $K(n, 2)$ is b-continuous for $n \geq 17$.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph without loops and multiple edges with vertex set $V(G)$ and edge set $E(G)$. A proper k-coloring of G is a function c defined from $V(G)$ onto a set of colors $C=\{1,2, \ldots, k\}$ such that every two adjacent vertices have different colors. In fact, for every $i, 1 \leq i \leq k$, the set $c^{-1}(i)$ is a nonempty independent set of vertices which is called color class i. The minimum cardinality k for which G has a proper k-coloring is the chromatic number of G, denoted by $\chi(G)$.

A b-coloring of G by k colors is a proper k-coloring of the vertices of G such that in each color class i there exists a vertex x_{i} having neighbors in all the other $k-1$ color classes. Such a vertex x_{i} is called a b-dominating vertex, and the set of vertices $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is called a b-dominating system. The b-chromatic number of G, denoted by $\varphi(G)$, is the maximum k for which G has a b-coloring by k colors. It is an elementary exercise to observe that every proper coloring with $\chi(G)$ colors is a b-coloring. The b-chromatic number was introduced by R.W. Irving and D.F. Manlove in [4]. (See also [5,6].)

Immediate and useful bound for $\varphi(G)$ is:

$$
\begin{equation*}
\chi(G) \leq \varphi(G) \leq \Delta(G)+1, \tag{1}
\end{equation*}
$$

where $\Delta(G)$ is the maximum degree of vertices in G.
The graph G is b-continuous if for every k between $\chi(G)$ and $\varphi(G)$ there is a b-coloring with k colors. A peculiar characteristic of b-coloring is that not all graphs are b-continuous. For example, the 3 -dimensional cube Q_{3} is not b-continuous: $\chi\left(Q_{3}\right)=2$ and $\varphi\left(Q_{3}\right)=4$, but Q_{3} has no b-coloring with three colors [4]. Only a few classes of graphs are known to be b-continuous $[1,3]$.

Let $S=\{1,2, \ldots, n\}$ and let V be the set of all k-subsets of S, where $k \leq \frac{n}{2}$. The Kneser graph with parameters n and k, denoted by $K(n, k)$, is the graph with vertex set V such that two vertices are adjacent if and only if the corresponding subsets are disjoint. It is known that $\chi(K(n, k))=n-2 k+2$ [8]. In this paper, we study b-coloring of Kneser graphs. We determine $\varphi(K(2 k+1, k))$ for every k and $\varphi(K(n, 2))$ for every n. Also, we prove that $K(n, 2)$ is b-continuous for $n \geq 17$.

[^0]
2. Steiner triple systems

In this section, we recall some necessary definitions and constructions of Steiner triple systems which will be used in the proofs of our main theorems.

A quasigroup of order n is a pair (Q, \circ), where Q is a set of size n and " \circ " is a binary operation on Q such that for every pair of elements $a, b \in Q$, the equations $a \circ x=b$ and $y \circ a=b$ have unique solutions. A quasigroup (Q, \circ) with $Q=\{1,2, \ldots, n\}$ is said to be idempotent if $i \circ i=i$, for $1 \leq i \leq n$ and commutative if $i \circ j=j \circ i$, for all $1 \leq i, j \leq n$. A quasigroup (Q, o) with $Q=\{1,2, \ldots, 2 n\}$ is said to be half-idempotent if for $1 \leq i \leq n, i \circ i=(n \circ i) \circ(n \circ i)=i$. A quasigroup (Q^{\prime}, \circ), where $Q^{\prime} \subseteq Q$, is called a sub-quasigroup of quasigroup (Q, \circ).
Example 1. Let $n=2 k+1$ and consider the additive group $\left(\mathbb{Z}_{n},+\right.$). Since n is odd, for each $i, j \in \mathbb{Z}_{n}$ where $i \neq j$, we have $2 i \neq 2 j$. Therefore, there is a permutation σ on the set $\{1,2, \ldots, n\}$ such that for each $i \in \mathbb{Z}_{n}, \sigma(2 i)=i$. Now we define the quasigroup $\left(Q_{1}, \circ\right)$ where $Q_{1}=\mathbb{Z}_{n}$ and $i \circ j=\sigma(i+j)$ for every $i, j \in Q_{1}$. This quasigroup is an idempotent commutative quasigroup.

Let $n=2 k$ and consider the additive group $\left(\mathbb{Z}_{n},+\right)$. In this case for each $i, 1 \leq i \leq k, i+i=(i+k)+(i+k)=2 i$. We consider a permutation σ on the set $\{1,2, \ldots, n\}$ such that for each $i, 1 \leq i \leq k, \sigma(2 i)=i$. Now we define the quasigroup $\left(Q_{2}, \circ\right)$ where $Q_{2}=\mathbb{Z}_{n}$ and $i \circ j=\sigma(i+j)$ for every $i, j \in Q_{2}$. This quasigroup is a half-idempotent commutative quasigroup.

A design with parameters $t-(n, k, \lambda)$ is an ordered pair (S, \mathscr{B}), where S is a set of n points or symbols and \mathscr{B} is a family of k-subsets of S called blocks, such that every t elements of S occur together in exactly λ blocks of \mathscr{B}. When $\lambda=1$, it is called a Steiner system, and when $k=3$, it is called a triple system. A design with parameters $t=2, k=3$ and $\lambda=1$ with n points is called a Steiner triple system of order n, denoted by STS (n).

It is known that a Steiner triple system of order n exists if and only if $n \equiv 1,3(\bmod 6)$ [7].

2.1. The Bose Construction: $n \equiv 3(\bmod 6)$

Let $n=6 k+3$ and (Q, o) be an idempotent commutative quasigroup of order $2 k+1$ and define $S=Q \times\{1,2,3\}$. We denote an ordinary element of S by x_{i}, where $x \in Q$ and $i \in\{1,2,3\}$ and define \mathscr{B} to contain the following two types of triples:

Type 1: for $1 \leq i \leq 2 k+1,\left\{i_{1}, i_{2}, i_{3}\right\} \in \mathscr{B}$,
Type 2: for $1 \leq i<j \leq 2 k+1,\left\{i_{1}, j_{1},(i \circ j)_{2}\right\},\left\{i_{2}, j_{2},(i \circ j)_{3}\right\},\left\{i_{3}, j_{3},(i \circ j)_{1}\right\} \in \mathscr{B}$.
Then (S, \mathscr{B}) is a Steiner triple system of order $6 k+3$ [7].

2.2. The Skolem Construction: $n \equiv 1(\bmod 6)$

Let $n=6 k+1$ and (Q, \circ) be a half-idempotent commutative quasigroup of order $2 k$ and define $S=\{\infty\} \cup(Q \times\{1,2,3\})$. We denote an ordinary point in $Q \times\{1,2,3\}$ by x_{i}, where $x \in Q$ and $i \in\{1,2,3\}$ and define \mathscr{B} as follows:

```
Type 1: for 1\leqi\leqk,{\mp@subsup{i}{1}{},\mp@subsup{i}{2}{},\mp@subsup{i}{3}{}}\in\mathscr{B},
Type 2: for 1\leqi\leqk,{\infty,(k+i)
Type 3: for 1\leqi<j\leq2k,{\mp@subsup{i}{1}{},\mp@subsup{j}{1}{},(i\circj\mp@subsup{)}{2}{}},{\mp@subsup{i}{2}{},\mp@subsup{j}{2}{},(i\circj\mp@subsup{)}{3}{}},{\mp@subsup{i}{3}{},\mp@subsup{j}{3}{},(i\circj\mp@subsup{)}{1}{}}\in\mathcal{B}.
```

Then (S, \mathscr{B}) is a Steiner triple system of order $6 k+1$ [7].
Above we have constructed Steiner triple systems of all orders $n \equiv 1,3(\bmod 6)$. Although no $S T S(6 k+5)$ exists, we can get very close.

A pairwise balanced design or simply $P B D$ is an ordered pair (S, \mathscr{B}), where S is a finite set of points and \mathscr{B} is a collection of subsets of S called blocks, such that each pair of distinct elements of S occurs together in exactly one block of \mathscr{B}. When $|S|=n$ it is denoted by $\operatorname{PBD}(n)$.

For all $n \equiv 5(\bmod 6)$, we produce a $P B D$ of order n with one block of size 5 and others of size 3, called 3-blocks.

2.3. The $n=6 k+5$ Construction

Let (Q, \circ) be an idempotent commutative quasiqroup of order $2 k+1$ and α be the permutation $(1,2)(3,4) \ldots(2 k-$ $1,2 k)(2 k+1)$. Let $S=\left\{\infty_{1}, \infty_{2}\right\} \cup(Q \times\{1,2,3\})$, we denote an ordinary point in $Q \times\{1,2,3\}$ by x_{i}, where $x \in Q$ and $i \in\{1,2,3\}$. Now define \mathscr{B} to contain the following blocks:

```
Type 1: \(\left\{\infty_{1}, \infty_{2},(2 k+1)_{1},(2 k+1)_{2},(2 k+1)_{3}\right\} \in \mathscr{B}\),
Type 2: for \(1 \leq i \leq k,\left\{\infty_{1},(2 i-1)_{1},(2 i-1)_{2}\right\},\left\{\infty_{1},(2 i-1)_{3},(2 i)_{1}\right\},\left\{\infty_{1},(2 i)_{2},(2 i)_{3}\right\}\),
    \(\left\{\infty_{2},(2 i-1)_{2},(2 i-1)_{3}\right\},\left\{\infty_{2},(2 i)_{1},(2 i)_{2}\right\},\left\{\infty_{2},(2 i-1)_{1},(2 i)_{3}\right\} \in \mathscr{B}\),
Type 3: for \(1 \leq i<j \leq 2 k+1,\left\{i_{1}, j_{1},(i \circ j)_{2}\right\},\left\{i_{2}, j_{2},(i \circ j)_{3}\right\},\left\{i_{3}, j_{3},(\alpha(i \circ j))_{1}\right\} \in \mathcal{B}\).
```

Then (S, \mathscr{B}) is a $\operatorname{PBD}(6 k+5)$ with exactly one block of size 5 and all others of size 3 [7].
For results in later sections we need some steiner triple systems containing another Steiner triple system, called subsystem.

Theorem A ([2]).

(i) For every two integers $n, m \equiv 1,3(\bmod 6)$ such that $n \geq 2 m+1$, there is an $\operatorname{STS}(n)$ containing a subsystem STS (m).
(ii) For every two integers $n, m \equiv 5(\bmod 6)$ such that $n \geq 2 m+1$, there is a $\operatorname{PBD}(n)$ which contains a $\operatorname{PBD}(m)$.

A Steiner quasigroup (Q, \circ) is a commutative quasigroup, where $i \circ i=i$ and $(i \circ j) \circ j=i$, for every $i, j \in Q[2]$.
Given a Steiner triple system, we can construct a steiner quasigroup by setting $x \circ y=z$ when $\{x, y, z\}$ is a block of the design or when $x=y=z$. Also given a PBD with one block of size 5 and others of size 3 and an idempotent commutative quasigroup of order $5,\left(Q^{\prime}, o^{\prime}\right)$, we can construct an idempotent commutative quasigroup by setting $x \circ y=z$ when $\{x, y, z\}$ is a 3-block of the PBD or when $x=y=z$; and $x \circ y=x \circ^{\prime} y$ when x, y are both in the block of size 5 . Thus we have the following proposition.
Proposition 1. For every odd integer $n, n \neq 5$, there exists an idempotent commutative quasigroup of order n containing a sub-quasigroup of order 3.

3. b-chromatic number of the Kneser graph

In this section, we determine $\varphi(K(2 k+1, k))$ for every k and $\varphi(K(n, 2))$ for every n.
Theorem 1. For every integer $k \geq 3$,

$$
\varphi(K(2 k+1, k))=k+2 .
$$

Proof. We know that $\Delta(K(2 k+1, k))=k+1$, so by Inequality (1), $\varphi(K(2 k+1, k)) \leq k+2$. To prove the equality we describe a b-coloring of $K(2 k+1, k)$ by $k+2$ colors as follows. For $i, 1 \leq i \leq k$, we define the color class i to contain the set of vertices

$$
\{\{k+1, k+2, \ldots, 2 k+1\} \backslash\{k+i\}\} \cup\{\{1,2, \ldots, k\} \backslash\{i\} \cup\{k+j\} \mid 1 \leq j \leq k+1, j \neq i\}
$$

the color class $k+1$ contains the set of vertices

$$
\{k+1, k+2, \ldots, 2 k\} \cup\{\{1,2, \ldots, k\} \backslash\{j\} \cup\{k+j\} \mid 1 \leq j \leq k\}
$$

and the color class $k+2$ contains the set $\{\{1,2, \ldots, k\}\}$.
Now we complete the coloring as follows. Let $A \subseteq\{1,2, \ldots, 2 k+1\}$ be a vertex distinct from the vertices in the color classes above. If $2 k+1 \in A$ then we choose an integer $i \in A^{c} \cap\{1,2, \ldots, k\}$ and add A to the color class i. If $2 k+1 \notin A$ and $2 k \in A$ then we choose an integer $i \in A^{c} \cap\{1,2, \ldots, k\}, i \neq k$, and add A to the color class i. If $2 k, 2 k+1 \notin A$ then we add A to the color class $k+2$. It is not hard to see that the vertices in each class have mutually nonempty intersections. Hence, such a coloring is a proper coloring.

In this proper coloring the set of vertices $\{\{k+1, k+2, \ldots, 2 k+1\} \backslash\{k+i\} \mid 1 \leq i \leq k+1,\{1,2, \ldots, k\}\}$ is a b-dominating system. Because, the vertex $\{1,2, \ldots, k\}$ is adjacent to all vertices $\{k+1, k+2, \ldots, 2 k+1\} \backslash\{k+i\}$, $1 \leq i \leq k+1$. Moreover, for a fixed integer $i_{0}, 1 \leq i_{0} \leq k+1$, the vertex $\{k+1, k+2, \ldots, 2 k+1\} \backslash\left\{k+i_{0}\right\}$ is adjacent to the vertices $\{1,2, \ldots, k\}$ and $\{1,2, \ldots, k\} \backslash\{i\} \cup\left\{k+i_{0}\right\}, 1 \leq i \leq k, i \neq i_{0}$ and for $1 \leq i_{0} \leq k$, this vertex is adjacent to the vertex $\{1,2, \ldots, k\} \backslash\left\{i_{0}\right\} \cup\left\{k+i_{0}\right\}$.

In the sequel, we are going to determine $\varphi(K(n, 2))$. First we mention some facts, terminology and lemmas which will be used in the proof of the main theorem.

Fact 1. By the definition of $\operatorname{STS}(n)$, it is obvious that every Steiner triple system of order n is in fact an edge decomposition of the complete graph K_{n} into triangles.

Fact 2. Each vertex in $K(n, 2)$ which is a 2 -subset of the set $\{1,2, \ldots, n\}$ corresponds to an edge in the complete graph K_{n} with vertex set $\{1,2, \ldots, n\}$. Hence, two vertices of $K(n, 2)$ are nonadjacent if and only if the corresponding edges in K_{n} are adjacent.

Fact 3. If A is an independent set of vertices in $K(n, 2)$, then either all vertices in A have a common element, say a, or $A=\{\{a, b\},\{a, c\},\{b, c\}\}$, for some $a, b, c \in\{1,2, \ldots, n\}$. In other words an independent set of vertices in $K(n, 2)$ corresponds to a star subgraph with center a or a triangle subgraph in K_{n}. From now on we call the independent set (color class) in $K(n, 2)$ of the first form starlike with center a and the second form triangular. Moreover, for simplicity we denote the independent set $\{\{a, b\},\{a, c\},\{b, c\}\}$ with $\{a, b, c\}$. Since every proper coloring is a partition of vertices into independent sets of vertices, we can consider every proper coloring of $K(n, 2)$ as an edge decomposition of the complete graph K_{n} into star and triangle subgraphs.

A set of vertices S is called a dominating set, whenever every vertex not in S has a neighbor in S. A dominating set S in G is called an independent dominating set when the vertices in S are mutually nonadjacent. The following proposition is a fact about dominating sets in Kneser graphs.

Proposition 2. Let $S=\{1,2, \ldots, n\}$. If T is a subset of S of size $2 k-1$, then the set of all k-subsets of T is an independent dominating set in the $K(n, k)$.

Proof. Let $T \subseteq S=\{1,2, \ldots, n\},|T|=2 k-1$ and A be a vertex in $K(n, k)$ for which $A \nsubseteq T$. So $|A \cap T| \leq k-1$ and there is a k-subset of T, say B, for which $A \cap B=\emptyset$. Therefore, the vertices A and B are adjacent in $K(n, k)$. Obviously, every two k-subsets of T intersect, so they are not adjacent in $K(n, k)$. The statement follows.

By the proposition above, when a Steiner system with some special parameters exists, we can find a lower bound for the b-chromatic number of $K(n, k)$.

Theorem 2. If (S, \mathcal{B}) is a $k-(n, 2 k-1,1)$ Steiner system, then $\varphi(K(n, k)) \geq|\mathcal{B}|$.
Proof. Let $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{|\mathcal{B}|}\right\}$. For each $i, 1 \leq i \leq|\mathcal{B}|$, we define the set of all k-subsets of B_{i} as the color class i. Since $\left|B_{i}\right|=2 k-1$, by Proposition 2, each class i is an independent set of vertices, so this partition is a proper coloring of $K(n, k)$. Moreover, by Proposition 2, each class i is a dominating set. Therefore, each element in a color class j has neighbors in all the other color classes. Hence, this partition is a b-coloring of $K(n, k)$ by $|\mathfrak{B}|$ colors.

Lemma 1. Assume that c is a proper coloring of $K(n, 2)$ and $A_{1}, A_{2}, \ldots, A_{t},\left|A_{i}\right| \geq 3,1 \leq i \leq t$, are the starlike color classes in c, with centers $a_{1}, a_{2}, \ldots, a_{t}$, respectively. Then c is a b-coloring of $K(n, 2)$ if and only if the following conditions hold.
(i) $a_{1}, a_{2}, \ldots, a_{t}$ are distinct,
(ii) every 2-subset of the set $\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$ is in $\cup_{k=1}^{t} A_{k}$, and
(iii) for each $i, 1 \leq i \leq t$, there exists an element $x_{i} \notin\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$, where $\left\{a_{i}, x_{i}\right\} \in A_{i}$.

Proof. Assume that c is a b-coloring of $K(n, 2)$. Suppose that $a_{i}=a_{j}$ for some $i \neq j$. Hence, $A_{i} \cup A_{j}$ is an independent set in $K(n, 2)$. This means that no vertex in the color class A_{i} has a neighbor in the color class A_{j}, which contradicts that c is a b-coloring. So $a_{i} \neq a_{j}$ for all $1 \leq i \neq j \leq t$.

Now consider an arbitrary 2 -subset $\left\{a_{i}, a_{j}\right\}$ of the set $\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$. If $\left\{a_{i}, a_{j}\right\} \notin \cup_{k=1}^{t} A_{k}$, then this vertex is in a triangular color class, say $\left\{a_{i}, a_{j}, b\right\}$. In this color class, the vertices $\left\{a_{i}, a_{j}\right\}$ and $\left\{a_{i}, b\right\}$ are not b-dominating vertices because they have no neighbor in the color class A_{i}. The vertex $\left\{a_{j}, b\right\}$ also is not a b-dominating vertex since it has no neighbor in the color class A_{j}. This is a contradiction. Thus $\left\{a_{i}, a_{j}\right\} \in \cup_{k=1}^{t} A_{k}$, for all i, j. Since in each starlike color class A_{i} we must have a b-dominating vertex, the property (iii) is obviously concluded.

Now assume that c is a proper coloring of $K(n, 2)$ that satisfies (i), (ii) and (iii). It is enough to show that in each color class of c, there is a b-dominating vertex. In the starlike color classes $A_{i}, 1 \leq i \leq t$, the vertex $\left\{a_{i}, x_{i}\right\}$ is a b-dominating vertex, because in each color class $A_{j}, j \neq i$, there exists a vertex $\left\{a_{j}, y\right\}$ such that $y \neq a_{i}, x_{i}$. Moreover, by Proposition 2 each triangular color class is a dominating set. Therefore, the vertex $\left\{a_{i}, x_{i}\right\}$ has neighbors in all color classes. On the other hand for each triangular color class $\{a, b, c\}$, by (ii), we have $\left|\{a, b, c\} \cap\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}\right| \leq 1$. Hence there exists at least two elements, say a and b, with $a, b \notin\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$. Since $\left|A_{i}\right| \geq 3$, the vertex $\{a, b\}$ has neighbors in all starlike color classes. Furthermore, by Proposition 2 each triangular color class is a dominating set. So the vertex $\{a, b\}$ is a b-dominating vertex.
Proposition 3. If $n \equiv 5(\bmod 6)$ then $\varphi(K(n, 2)) \geq \frac{n(n-1)}{6}-\frac{1}{3}$.
Proof. If $n \equiv 5(\bmod 6)$ then by the $6 k+5$ construction given in Section 2, we have a $\operatorname{PBD}(n)$ with one block of size 5 , say $\{1,2,3,4,5\}$, and 3 -blocks otherwise. In this construction, number of 3 -blocks is $\frac{n(n-1)}{6}-\frac{10}{3}$. Now we provide a b-coloring of $K(n, 2)$. We consider each 3-block as a triangular color class and define the other color classes as $\{\{1,2\},\{1,3\},\{1,4\},\{1,5\}\},\{\{2,3\},\{2,4\},\{2,5\}\}$, and $\{\{3,4\},\{3,5\},\{4,5\}\}$. This is an edge decomposition of the complete graph K_{n} into stars and triangles, so by Fact 3 this is a proper coloring of $K(n, 2)$. Furthermore, this coloring satisfies the conditions of Lemma 1 and so is a b-coloring of $K(n, 2)$. Hence

$$
\varphi(K(n, 2)) \geq \frac{n(n-1)}{6}-\frac{10}{3}+3=\frac{n(n-1)}{6}-\frac{1}{3} .
$$

Theorem 3. For every positive integer $n, n \neq 8$, we have:

$$
\varphi(K(n, 2))= \begin{cases}\left\lfloor\frac{n(n-1)}{6}\right\rfloor & \text { if } n \text { is odd } \\ \left\lfloor\frac{(n-1)(n-2)}{6}\right\rfloor+3 & \text { if } n \text { is even }\end{cases}
$$

Proof. We prove the theorem for two cases n is even and n is odd.
Case 1. n is even.
First we find an upper bound for $\varphi(K(n, 2))$. Let c be a b-coloring of $K(n, 2)$ by φ colors and t starlike color classes with centers $1, \ldots, t$ of sizes n_{1}, \ldots, n_{t}, respectively. Then,

$$
\begin{equation*}
|V(K(n, 2))|=\binom{n}{2}=\sum_{i=1}^{t} n_{i}+3(\varphi-t) \tag{2}
\end{equation*}
$$

By Fact 3, the coloring c corresponds to an edge decomposition of the complete graph K_{n} into stars and triangles. For every vertex $i \in V\left(K_{n}\right)$, the number of edges incident to i in the triangles of the decomposition is even. Since n is even, there is an edge incident to i in a star subgraph in the decomposition. Therefore, for each i satisfying $t+1 \leq i \leq n$ there is a vertex in $K(n, 2)$ containing i in the starlike color classes 1 to t. Moreover, by Lemma 1 , every 2 -subset of the set $\{1,2, \ldots, t\}$ is in the starlike color classes. Therefore, we have

$$
\sum_{i=1}^{t} n_{i} \geq(n-t)+\frac{t(t-1)}{2}=n+\frac{t(t-3)}{2}
$$

Hence,

$$
\binom{n}{2} \geq n+\frac{t(t-9)}{2}+3 \varphi
$$

So

$$
\varphi \leq \frac{n(n-3)}{6}-\frac{t(t-9)}{6}
$$

The minimum of $t(t-9)$ occurs in $t=4$ and $t=5$. Therefore,

$$
\begin{equation*}
\varphi \leq\left\lfloor\frac{n(n-3)}{6}+\frac{10}{3}\right\rfloor=\left\lfloor\frac{(n-1)(n-2)}{6}\right\rfloor+3 \tag{3}
\end{equation*}
$$

Now we find a lower bound for $\varphi(K(n, 2))$.
Case 1.1. $n=6 k$.
We consider an STS $(6 k-3)$ with the Bose construction. As shown in Section 2, in this construction there are $2 k-1$ disjoint blocks of Type 1 . We denote these blocks by $\left\{a_{1}, b_{1}, c_{1}\right\},\left\{a_{2}, b_{2}, c_{2}\right\}, \ldots,\left\{a_{2 k-1}, b_{2 k-1}, c_{2 k-1}\right\}$. By Fact 1 , this STS is an edge decomposition of the complete graph K_{n-3} into triangles. Now we add three new points a, b, c and then construct a proper coloring of $K(n, 2)$ by $\varphi_{0}=\frac{n(n-3)}{6}+3$ colors or equivalently an edge decomposition of the complete graph K_{n} into φ_{0} stars and triangles.

We consider every block of Type 2 in the $\operatorname{STS}(6 k-3)$ as one triangular color class. The other color classes are defined as follows. Color class A consists of

$$
\left\{a, c_{1}\right\},\left\{a, c_{2}\right\}, \ldots,\left\{a, c_{2 k-1}\right\},\{a, b\}
$$

Color class B consists of

$$
\left\{b, a_{1}\right\},\left\{b, a_{2}\right\}, \ldots,\left\{b, a_{2 k-1}\right\},\{b, c\}
$$

Color class C consists of

$$
\left\{c, b_{1}\right\},\left\{c, b_{2}\right\}, \ldots,\left\{c, b_{2 k-1}\right\},\{c, a\}
$$

Also for each $i, 1 \leq i \leq 2 k-1$, we define three triangular color classes

$$
\left\{a, a_{i}, b_{i}\right\},\left\{b, b_{i}, c_{i}\right\},\left\{c, c_{i}, a_{i}\right\}
$$

In the $\operatorname{STS}(6 k-3)$ the number of blocks is $\frac{(n-3)(n-4)}{6}$, of which $2 k-1=\frac{n-3}{3}$ blocks are of Type 1 . Therefore, the number of color classes in the given coloring above are $\frac{(n-3)(n-4)}{6}-\frac{n-3}{3}+3+3 \frac{(n-3)}{3}=\frac{n(n-3)}{6}+3=\varphi_{0}$.

For $n=6$, it is obvious that this coloring is a b-coloring of $K(6,2)$ by 6 colors. For $k \geq 2$, we have only three starlike color classes and this coloring satisfies the conditions of Lemma 1 . Hence, the given coloring is a b-coloring of $K(n, 2)$. Therefore, $\varphi \geq \frac{n(n-3)}{6}+3=\left\lfloor\frac{(n-1)(n-2)}{6}\right\rfloor+3$.
Case 1.2. $n=6 k+2, k \geq 2$, or $n=6 k+4$.
We consider an STS $(n-1)$ with the Bose or the Skolem construction given in Section 2. Moreover, in this construction we consider three disjoint blocks $\{a, b, c\},\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, and $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$ in which $\left\{a, a^{\prime}, a^{\prime \prime}\right\}$ is a block. Now we add a new point d and construct a b-coloring of $K(n, 2)$ by $\varphi_{0}=\frac{(n-1)(n-2)}{6}+3$ colors as follows.

We consider every block in $\operatorname{STS}(n-1)$ except four blocks $\{a, b, c\},\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\},\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$, and $\left\{a, a^{\prime}, a^{\prime \prime}\right\}$ as a color class. Moreover, we add the following color classes. Color class A consists of $\{a, b\},\{a, c\},\left\{a, a^{\prime}\right\}$. Color class B consists of $\left\{a^{\prime}, b^{\prime}\right\},\left\{a^{\prime}, c^{\prime}\right\},\left\{a^{\prime}, a^{\prime \prime}\right\}$. Color class C consists of $\left\{a^{\prime \prime}, b^{\prime \prime}\right\},\left\{a^{\prime \prime}, c^{\prime \prime}\right\},\left\{a^{\prime \prime}, a\right\}$. Color class D consists of $\{d, x\}, x \notin$ $\left\{b, b^{\prime}, b^{\prime \prime}, c, c^{\prime}, c^{\prime \prime}\right\}$. Finally, we add three triangular color classes $\{b, c, d\},\left\{b^{\prime}, c^{\prime}, d\right\}$ and $\left\{b^{\prime \prime}, c^{\prime \prime}, d\right\}$. The number of these color classes is $\varphi_{0}=\frac{(n-1)(n-2)}{6}-4+4+3=\frac{(n-1)(n-2)}{6}+3$.

We have only four starlike color classes and this coloring satisfies the conditions of Lemma 1 . Hence, the given coloring is a b-coloring of $K(n, 2)$. Therefore, $\varphi \geq\left\lfloor\frac{(n-1)(n-2)}{6}\right\rfloor+3$.

Case 2. n is odd.
First we find an upper bound for $\varphi(K(n, 2))$. Let c be a b-coloring of $K(n, 2)$ by $\varphi=\varphi(K(n, 2))$ colors and t starlike color classes with centers $1, \ldots, t$ of sizes n_{1}, \ldots, n_{t}, respectively. Then,

$$
\begin{equation*}
|V(K(n, 2))|=\binom{n}{2}=\sum_{i=1}^{t} n_{i}+3(\varphi-t) \tag{4}
\end{equation*}
$$

By Lemma 1, every 2-subset of the set $\{1,2, \ldots, t\}$ is in the color classes 1 to t. Moreover, in the color class i we must have a b-dominating vertex, say $\{i, x\}$, where $x \in\{t+1, t+2, \ldots, n\}$. Hence,

$$
\sum_{i=1}^{t} n_{i} \geq \frac{t(t-1)}{2}+t=\frac{t(t+1)}{2}
$$

Therefore,

$$
\binom{n}{2} \geq 3 \varphi+\frac{t(t+1)}{2}-3 t=3 \varphi+\frac{t(t-5)}{2}
$$

So

$$
\varphi \leq \frac{n(n-1)}{6}-\frac{t(t-5)}{6}
$$

The minimum of the expression $t(t-5)$ occurs in $t=2$ and $t=3$, so $\varphi \leq \frac{n(n-1)}{6}+1$.
Now we prove that $\varphi \leq \frac{n(n-1)}{6}$. Suppose $\varphi=\frac{n(n-1)}{6}+1$, hence, $t=2$ or $t=3$. For every vertex $i \in V\left(K_{n}\right)$, the number of edges incident to i in the triangles of the decomposition is even. Since n is odd, the number of edges incident to i in the stars of the decomposition is also even. Equivalently, in the b-coloring of $K(n, 2)$ the number of vertices containing i in the starlike color classes are even numbers.

If $t=3$ then by Lemma 1 (ii) and (iii), the vertices $\{1,2\},\{1,3\}$ and $\{2,3\}$ in $K(n, 2)$ are in the starlike color classes with centers 1,2 , or 3 and for every $i, 1 \leq i \leq 3$, there is a vertex $\{i, x\}$ in the starlike color classes which $x \neq 1,2$, 3 . So by the discussion above, for every $i, 1 \leq i \leq 3$, at least two vertices $\{i, x\}$ and $\{i, y\}$, where $x, y \neq 1,2,3$, are in the starlike color classes. Therefore, $\sum_{i=1}^{3} n_{i} \geq 3+2 \times 3=9$. So by Relation (4), $\binom{n}{2} \geq 9+3(\varphi-3)=3 \varphi$. Hence, $\varphi \leq \frac{n(n-1)}{6}$, which contradicts our assumption.

Now let $t=2$. By Lemma 1 (ii) and (iii), the starlike color class with center 1 contains vertex $\{1,2\}$ and at least one more vertex, say $\{1,3\}$. By the discussion above, if the vertex $\{1, i\}$ in $K(n, 2)$ is in the starlike color class with center 1 , then the vertex $\{2, i\}$ is in the starlike color class with center 2 . If the vertices $\{1,2\},\{1,3\}$ and $\{2,3\}$ are the only vertices in the starlike color classes, then there is no b-dominating vertex in these classes. Therefore, the starlike color class with center 1 and consequently, the starlike color class with center 2 each one contains at least more two vertices. Hence, $\sum_{i=1}^{2} n_{i}=1+2 \times 3=7$. Therefore, by Relation (4)

$$
\binom{n}{2} \geq 7+3(\varphi-2)=3 \varphi+1
$$

So $\varphi \leq \frac{n(n-1)}{6}$, which contradicts our assumption.
Therefore, $\varphi \leq\left\lfloor\frac{n(n-1)}{6}\right\rfloor$. If $n \equiv 1,3(\bmod 6)$ then $\operatorname{an} \operatorname{STS}(n)$ exists. Therefore, by Theorem $2, \varphi \geq \frac{n(n-1)}{6}$. If $n \equiv 5(\bmod 6)$ then by Proposition 3, $\varphi \geq \frac{n(n-1)}{6}-\frac{1}{3}$. Hence, $\varphi=\left\lfloor\frac{n(n-1)}{6}\right\rfloor$.

Since the Petersen graph is Kneser graph $K(5,2)$, we get the following result.
Corollary 1. If P is the Petersen graph, then $\varphi(P)=3$.
Kneser graph $K(8,2)$ is an exception.
Proposition 4. $\varphi(K(8,2))=9$.
Proof. Consider the notations in the proof of Theorem 3 for Case 1. By Inequality (3), we have $\varphi(K(8,2)) \leq 10$ and the equality holds if and only if $t=4$ or $t=5$. Assume that a b-coloring of $K(8,2)$ exists with 10 colors and $A_{1}, A_{2}, \ldots, A_{t}$ are starlike color classes with centers $1,2, \ldots, t$, respectively.

If $t=4$ then by Equality (2), $\sum_{i=1}^{4} n_{i}=10$. By Lemma 1 (ii) and (iii), every 2 -subset of the set $\{1,2,3,4\}$ is in $\cup_{i=1}^{4} A_{i}$ and for each $i, 1 \leq i \leq 4$, there exists $x_{i} \notin\{1,2,3,4\}$, where $\left\{i, x_{i}\right\} \in A_{i}$. On the other hand $n-t$ and the number of vertices containing i in triangular color classes are even numbers. So there are at least two vertices $\left\{i, x_{i}\right\},\left\{i, y_{i}\right\}$ in the starlike color classes, where $x_{i}, y_{i} \notin\{1,2,3,4\}$. Hence, $\sum_{i=1}^{4} n_{i}=10 \geq 6+4 \times 2=14$, which is contradiction.

If $t=5$ then by Equality (2), $\sum_{i=1}^{5} n_{i}=13$. On the other hand, similar to the above by Lemma 1 (ii) and (iii), $\sum_{i=1}^{5} n_{i}=13 \geq 10+5$, a contradiction. So $\varphi(K(8,2)) \leq 9$.

Now we provide a b-coloring of $K(8,2)$ by 9 colors. First we consider an STS (7) and delete one point of it. What remains is a decomposition of K_{6} into 4 triangles and a 1-factor called $F=\left\{\left\{a_{1}, b_{1}\right\},\left\{a_{2}, b_{2}\right\},\left\{a_{3}, b_{3}\right\}\right\}$. Now we add two new points a and b and define the color classes as all triangles in the decomposition above in addition to the triangular color classes $\left\{a, a_{1}, b_{1}\right\}$, $\left\{a, a_{2}, b_{2}\right\}$ and $\left\{b, a_{3}, b_{3}\right\}$ and the starlike color classes $\left\{\left\{a, a_{3}\right\},\left\{a, b_{3}\right\},\{a, b\}\right\}$ and $\left\{\left\{b, a_{1}\right\},\left\{b, b_{1}\right\},\left\{b, a_{2}\right\},\left\{b, b_{2}\right\}\right\}$. This is a proper coloring of $K(8,2)$ satisfying the conditions of Lemma 1 , so is a b-coloring by 9 colors as desired.

By Relation (1), $\varphi(K(n, k)) \leq \Delta+1=\binom{n-k}{k}+1$. Hence $\varphi(K(n, k))=O\left(n^{k}\right)$. Theorems 2 and 3 motivate us to propose the following conjecture.

Conjecture 1. For every integer k, we have $\varphi(K(n, k))=\Theta\left(n^{k}\right)$.

4. b-continuity of the Kneser graph $K(n, 2)$

In this section we prove that $K(n, 2)$ is b-continuous when $n \geq 17$.
Lemma 2. (a) Let $n=6 k+1$ or $n=6 k+3$ and (S, \mathcal{B}) be an $\operatorname{STS}(n)$. Also let T be a subset of $S=\{1,2, \ldots, n\}$ and t be the number of blocks in \mathfrak{B} on the points of T, such that:
(i) $|T|=m \geq 3$,
(ii) for each $i \in T$, there exists $j \in T$ such that the third point of the block containing both i, j is not in T.

Then there exists a b-coloring of $K(n, 2)$ by $\varphi-\left(\frac{m(m-3)}{2}-2 t\right)$ colors, where $\varphi=\varphi(K(n, 2))$.
(b) Let $n=6 k+5$ and (S, \mathcal{B}) be a $\operatorname{PBD}(n)$ with one block of size 5 , say $\{1,2, n, n-1, n-2\}$ and the others 3 -blocks. Also let T be a subset of $S=\{1,2, \ldots, n\}$ and t be the number of 3 -blocks in \mathfrak{B} on the points of T, such that:
(i) $|T|=m \geq 3$,
(ii) $1,2 \in T$ and $n-2, n-1, n \notin T$,
(iii) for each $i \in T, i \neq 1$, 2, there exists $j \in T$ such that the third point of the 3-block containing both i, j is not in T.

Then there exists a b-coloring of $K(n, 2)$ by $\varphi-\left(\frac{m(m-3)}{2}-2 t+1\right)$ colors, where $\varphi=\varphi(K(n, 2))$.
Proof. Let c be the b-coloring of $K(n, 2)$ by φ colors corresponding to $\operatorname{STS}(n)$ or $\operatorname{PBD}(n)$ (see Theorem 2 and Proposition 3). In the case $n=6 k+5$, we take the centers of starlike color classes as 1 and 2 .

Assume $T=\{1,2, \ldots, m\}$, consider the b-coloring c and delete all triangular color classes containing a vertex $\{i, j\} \subseteq T$.
(a) Since each vertex $\{i, j\} \subseteq T$ is contained in a triangular color class and there are exactly t triangles on the points of T, the number of deleted color classes (triangles) is $\frac{m(m-1)}{2}-3 t+t$. Now we define m new color classes as follows. New color class $i, 3 \leq i \leq m-2$, contains the set of vertices $\{\{i, j\} \mid i+1 \leq j \leq m\}$. Also new color classes $1,2, m-1$ and m contain respectively the sets $\{\{1, j\} \mid 2 \leq j \leq m-2\},\{\{2, j\} \mid 3 \leq j \leq m-1\},\{\{m-1, m\},\{m-1,1\}\}$ and $\{\{m, 1\},\{m, 2\}\}$. Moreover, if a vertex $\{i, x\}$, where $i \in T$ and $x \notin T$ is in a deleted color class, then we add this vertex to the color class i. These m new color classes together with the old color classes give us a new proper coloring of $K(n, 2)$ by $\varphi-\left(\frac{m(m-1)}{2}-2 t\right)+m$ colors.
(b) Since each vertex $\{i, j\} \subseteq T$ except $\{1,2\}$ is contained in a triangular color class and there are exactly t triangular color classes on the points of T, the number of deleted triangles is $\frac{m(m-1)}{2}-1-3 t+t$. Now we define $m-2$ new color classes as follows. Color class $i, 3 \leq i \leq m$, contains the set of vertices $\{\{i, j\} \mid i+1 \leq j \leq m\} \cup\{\{i, 1\},\{i, 2\}\}$. Moreover, if a vertex $\{i, x\}$, where $i \in T$ and $x \notin T$ is in a deleted color class, then we add this vertex to the color class i. These $m-2$ new color classes together with the old color classes give us a new proper coloring by $\varphi-\left(\frac{m(m-1)}{2}-1-2 t\right)+m-2$ colors.

The obtained colorings in (a) and (b) satisfy the conditions of Lemma 1 , so they are b-colorings.
Lemma 3. Let $n \geq 13$ be an odd integer and let $k=\left\lfloor\frac{n}{6}\right\rfloor$. For every odd integer $m, 5 \leq m \leq k+5$ and for every integer t, $0 \leq t \leq \frac{3 m-11}{2}$, where $(m, t) \neq(5,2),(7,5),(k+5,0)$, there exists an $\operatorname{STS}(n)$ or $\operatorname{PBD}(n)$ and a set T satisfying the conditions of Lemma 2.
Proof. Let $l=\left\lfloor\frac{n}{3}\right\rfloor$. Depending on n, using the Bose construction, the Skolem construction or the $6 k+5$ construction given in Section 2 and the quasigroups of Example 1, construct an $\operatorname{STS}(n)$ or a $\operatorname{PBD}(n)$.

If $t=0$, then it is easy to find a set T with parameters (m, t). Assume $5 \leq m \leq k+5$ and m is odd.
(a) If $1 \leq t \leq \frac{m-5}{2}$, then define

$$
T=\left\{l_{1}, i_{1},(l-i)_{1} \mid 1 \leq i \leq t\right\} \cup\left\{j_{1} \mid t+1 \leq j \leq m-4-t\right\} \cup\left\{(\sigma(l))_{2}, 1_{3},\left(\sigma^{-1}(k+2)-1\right)_{3}\right\} .
$$

(b) If $\frac{m-5}{2}<t<m-5$, then define

$$
T=\left\{l_{1}, i_{1},(l-i)_{1} \left\lvert\, 1 \leq i \leq \frac{m-5}{2}\right.\right\} \cup\left\{(\sigma(l))_{2},(\sigma(2(m-5-t)))_{2},(\sigma(m-5))_{2},(\sigma(2 l-m+5))_{2}\right\}
$$

(c) If $m-5 \leq t<3\left(\frac{m-5}{2}\right)$, then define

$$
T=\left\{l_{1}, i_{1},(l-i)_{1} \left\lvert\, 1 \leq i \leq \frac{m-5}{2}\right.\right\} \cup\left\{(\sigma(l))_{2},(\sigma(1))_{2},(\sigma(3(m-5)-2 t))_{2},(\sigma(2 l-m+5))_{2}\right\}
$$

(d) If $3\left(\frac{m-5}{2}\right) \leq t \leq 2 m-11$, then define

$$
T=\left\{l_{1}, i_{1},(l-i)_{1} \left\lvert\, 1 \leq i \leq \frac{m-5}{2}\right.\right\} \cup\left\{(\sigma(l))_{2},(\sigma(1))_{2},(\sigma(l-1))_{2},(\sigma(4(m-5)-2 t))_{2}\right\}
$$

The set T given above satisfies the conditions of Lemma 2 (with an appropriate renaming of elements of S). If $m \geq 11$ then $2 m-11 \geq \frac{3 m-11}{2}$, hence, for each $11 \leq m \leq k+5$ and $0 \leq t \leq \frac{3 m-11}{2}$, we are done. Moreover, by the construction above there exists such a set T for $(m, t)=(5,0),(m=7,0 \leq t \leq 3),(m=9,0 \leq t \leq 7)$. For $(m, t)=(5,1)$, let $T=\left\{1_{1},(l-1)_{1},(\sigma(l))_{2}, 1_{2},(l-1)_{2}\right\}$. For $(m, t)=(7,4)$, let $T=\left\{1_{1},(l-1)_{1}, 2_{1},(l-2)_{1},(\sigma(l))_{2},(\sigma(1))_{2},(\sigma(l-1))_{2}\right\}$.

Now we construct a set T with parameters $(m, t)=(9,8)$. Since $m \leq k+5$, we have $n \geq 25$. Now if $n \equiv 1,3(\bmod 6)$, then by Theorem A there is an STS (n) containing an $\operatorname{STS}(9)$ on the set $T_{0}=\{1,2, \ldots, 9\}$. So the set $T=T_{0} \cup\{10\}-\{9\}$ is the desired set with parameters $(m, t)=(9,8)$. If $n \equiv 5(\bmod 6)$, then we consider an idempotent commutative quasigroup containing a sub-quasigroup of order 3 (see Proposition 1). Without loss of generality we can assume that $\{1,2,3\}$ is the sub-quasigroup of order 3. Then by applying this quasigroup to the $6 k+5$ construction (see Section 2), we construct a $P B D(n)$ and define $T=\left\{\infty_{1}, \infty_{2}, 3_{1}, i_{1}, i_{2}, i_{3} \mid i=1,2\right\}$. The set T is the desired set (with an appropirate renaming of elements of S).

Lemma 4. Let $n \geq 13$ be an odd integer and $k=\left\lfloor\frac{n}{6}\right\rfloor$. For every even integer $m, 4 \leq m \leq k+5$ and every integer t, $0 \leq t \leq m-4$, there exists an $\operatorname{STS}(n)$ or $\operatorname{PBD}(n)$ and a set T satisfying the conditions of Lemma 2 . Moreover, when $n \geq 19$ and $n \neq 6 k+5$ such an STS and a set T exist for $(m, t) \in\{(6,4),(8,8)\}$,
Proof. Let $l=\left\lfloor\frac{n}{3}\right\rfloor$. Consider the $\operatorname{STS}(n)$ or $\operatorname{PBD}(n)$ as in the proof of Lemma 3.
If $t=0$, then it is easy to find a set T with parameters (m, t). Assume $4 \leq m \leq k+5$ and m is even.
(a) If $1 \leq t \leq \frac{m-4}{2}$, then define

$$
T=\left\{l_{1}, i_{1},(l-i)_{1} \mid 1 \leq i \leq t\right\} \cup\left\{j_{1} \mid t+1 \leq j \leq m-4-t\right\} \cup\left\{(\sigma(l))_{2}, 1_{3},\left(\sigma^{-1}(k+2)-1\right)_{3}\right\}
$$

(b) If $\frac{m-4}{2}<t<m-4$, then define

$$
T=\left\{l_{1}, i_{1},(l-i)_{1} \left\lvert\, 1 \leq i \leq \frac{m-4}{2}\right.\right\} \cup\left\{(\sigma(l))_{2},(\sigma(2(m-4-t)))_{2},(\sigma(m-4))_{2}\right\}
$$

(c) If $t=m-4$, then define

$$
T=\left\{l_{1}, i_{1},(l-i)_{1} \left\lvert\, 1 \leq i \leq \frac{m-4}{2}\right.\right\}\left\{(\sigma(l))_{2},(\sigma(1))_{2},(\sigma(m-4))_{2}\right\}
$$

The set T given above satisfies the conditions of Lemma 2 (with an appropirate renaming of elements of S). Now, assume $n \geq 19$ and $n \neq 6 k+5$, we construct sets T with parameters $(m, t)=(6,4),(8,8)$. By Theorem A there is an $\operatorname{STS}(n)$ containing the $\operatorname{STS}(7)$ on points $\{1,2, \ldots, 7\}$. Now let $T=\{1,2, \ldots, 6\}$, it is clear that T is a set satisfying the conditions of Lemma 2 with parameters $(m, t)=(6,4)$. Also there is an $\operatorname{STS}(n)$ containing the $\operatorname{STS}(9)$ on points $\{1,2, \ldots, 9\}$. Now let $T=\{1,2, \ldots, 8\}$, it is clear that T is a set satisfying the conditions of Lemma 2 with parameters $(m, t)=(8,8)$.

Theorem 4. For every integer $n, n \geq 17$, $\operatorname{Kneser} \operatorname{graph} K(n, 2)$ is b-continuous.
Proof. We prove the theorem for two cases n odd and n even. Let $X(n)$ be the set of numbers x for which there is a b-coloring of $K(n, 2)$ by x colors.
Case 1. n is odd.
In this case we prove the theorem by induction on n. Assume for an odd integer $n, n \geq 19$, that $K(n-2,2)$ is b-continuous. Therefore, by the definition and Theorem 3, for every integer $x, n-4 \leq x \leq\left\lfloor\frac{(n-2)(n-3)}{6}\right\rfloor$, we have $x \in X(n-2)$. We consider a b-coloring of $K(n-2,2)$ with x colors and provide a b-coloring of $K(n, 2)$ by $x+2$ colors. For this purpose, we add two new color classes $\{\{n, i\} \mid 1 \leq i \leq n-1\}$, $\{\{n-1, i\} \mid 1 \leq i \leq n-2\}$. This coloring satisfies the conditions of Lemma 1, so it is a b-coloring. To prove the b-continuity of $K(n, 2)$ it is enough to prove $x \in X(n)$ for every integer x, $3+\left\lfloor\frac{(n-2)(n-3)}{6}\right\rfloor \leq x \leq\left\lfloor\frac{n(n-1)}{6}\right\rfloor=\varphi$. For this purpose, let $\psi=\left\lfloor\frac{n(n-1)}{6}\right\rfloor-\left\lfloor\frac{(n-2)(n-3)}{6}\right\rfloor-3$.

Table 1
The values are $\frac{m(m-3)}{2}-2 t+1$.

t	m			
	3	4	5	6
0	1	3	6	-
1			8	8
2			6	10
3			11	
4		9		

Claim. For every integer $x, 1 \leq x \leq \psi$, we have $\varphi-x \in X(n)$.
Proof of claim. Let \mathcal{A} be the set of all positive integers x such that there exists a set $T \subseteq\{1,2, \ldots, n\}$ which satisfies the assumptions of Lemma 2 with parameters (m, t), and $\frac{m(m-3)}{2}-2 t=x$.

Case 1.1. $n=6 k+1$ or $n=6 k+3, k \geq 3$.
By Lemma 2(a), it is enough to show that for every $x, 1 \leq x \leq \psi, x \in \mathcal{A}$. By Lemma 4 there exists a set T with parameters $(m, t)=(6,4),(m, t)=(8,8)$. Therefore, $1,4 \in \mathcal{A}$. Moreover, by Lemma 3, for every odd integer $m, 5 \leq m \leq k+5$, we have $\frac{m(m-3)}{2}, \frac{m(m-3)}{2}-2, \ldots, \frac{m(m-3)}{2}-(3 m-11)=\frac{(m-3)(m-6)}{2}+2 \in \mathcal{A}$. Also by Lemma 4, for every even integer $m, 4 \leq m \leq k+5$, we have $\frac{m(m-3)}{2}, \frac{m(m-3)}{2}-2, \ldots, \frac{m(m-3)}{2}-(m-4)=\frac{(m-1)(m-4)}{2}+2 \in \mathcal{A}$. Therefore, $1,2,3,4, \ldots, \frac{(k+3) k}{2}+1 \in \mathcal{A}$. Since $\frac{(k+3) k}{2}+1 \geq 4 k-2 \geq \psi$, we are done.
Case 1.2. $n=6 k+5$.
By Lemma 2(b), it is enough to show that for every integer $x, 0 \leq x \leq \psi-1, x \in \mathcal{A}$. All things in Case 1.1 hold in this case as well, except the set T with parameters $(m, t)=(6,4),(8,8)$. So we have $\{1,2,3, \ldots, \psi-1\}-\{1,4\} \subseteq \mathcal{A}$. Also there exists a set T with parameters $(m, t)=(3,0)$ satisfying Lemma $2(b)$. Thus $0 \in \mathcal{A}$.

To complete the proof, we show that $\varphi-2$ and $\varphi-5$ are in $X(n)$. Consider the quasigroup of Example 1 and construct a $\operatorname{PBD}(n)$ using the $6 k+5$ construction. Let c be the b-coloring of $K(n, 2)$ corresponding to this $P B D$ by φ colors (see Proposition 3) where ∞_{1}, ∞_{2} are the centers of the starlike color classes. Now let $T=\left\{\infty_{1}, \infty_{2},(2 k+1)_{1}, 2_{1}, 1_{2}\right\}$, delete all triangular color classes containing a vertex $\{i, j\} \subseteq T$ and define 3 new starlike color classes with centers $(2 k+1)_{1}, 2_{1}, 1_{2}$. Deleted color classes are triangles $\left\{(2 k+1)_{1}, 2_{1}, 1_{2}\right\},\left\{\infty_{1}, 2_{1}, 1_{3}\right\},\left\{\infty_{2}, 2_{1}, 2_{2}\right\},\left\{\infty_{1}, 1_{2}, 1_{1}\right\}$ and $\left\{\infty_{2}, 1_{2}, 1_{3}\right\}$. Thus new coloring is a b-coloring by $\varphi-5+3$ colors. Now let $T=\left\{\infty_{1}, \infty_{2}, 2_{1}, 2_{2}, 2_{3},(2 k+1)_{2},(2 k+1)_{3}\right\}$, delete all triangular color classes containing a vertex $\{i, j\} \subseteq T$ and define 5 new starlike color classes with centers $2_{1}, 2_{2}, 2_{3},(2 k+1)_{2},(2 k+1)_{3}$. Since we have deleted 10 triangular color classes, we obtain a b-coloring of $K(n, 2)$ by $\varphi-5$ colors. So the claim is proved.

To complete the induction we need to show that $K(17,2)$ is b-continuous. By Lemmas 3 and 4 , there is a set T satisfying the conditions of Lemma 2 with parameters (m, t) shown in Table 1 . The values in the table are $x=\frac{m(m-3)}{2}-2 t+1$. Therefore, by Lemma 2(b) for the values x given in Table $1, \varphi(K(17,2))-x=45-x \in X(17)$. Moreover, as it is proved in Cases 1.2, $\varphi(K(17,2))-2$ and $\varphi(K(17,2))-5$ are in $X(17)$. Hence, for every $i, 34 \leq i \leq 45, i \in X(17)$.

Similarly, by Lemma 2(a) for the values x given in Table 1, $\varphi(K(15,2))-x-1=34-x \in X(15)$. Therefore, for every i, $25 \leq i \leq 35$ and $i \neq 31,34, i \in X(15)$. By a similar discussion, for every $i, 16 \leq i \leq 26$ and $i \neq 22,25, i \in X(13)$. We have already proved that $x \in X(n-2)$ implies $x+2 \in X(n)$. Therefore, for every $i, 20 \leq i \leq 37$ and $i \neq 26,33, i \in X(17)$. By Lemma 3 , for $n=13,15,17$ there is a set $T \subseteq\{1,2, \ldots, n\}$ with parameters $(m, t)=(9,8)$. Thus, by Lemma $2,33 \in X(17)$, $24 \in X(15)$ and $15 \in X(13)$, so $26,19 \in X(17)$. Finally, for $n=13$ there is a set T with parameters $(m, t)=(7,1),(9,7)$, so $14,13 \in X(13)$, thus $18,17 \in X(17)$. We can easily see that $16 \in X(17)$ by constructing a b-coloring with 16 starlike color classes. This assures b-continuity of $K(17,2)$.
Case 2. n is even.
Let $n \geq 18$ be an even integer. Then $K(n-1,2)$ is b-continuous and $x \in X(n-1)$ holds whenever $n-3 \leq x \leq\left\lfloor\frac{(n-1)(n-2)}{6}\right\rfloor$. Now we add a new color class $\{\{n, i\} \mid 1 \leq i \leq n-1\}$ to this coloring. This is a b-coloring of $K(n, 2)$ by $x+1$ colors. Hence $y \in X(n)$ for every integer y with $n-2 \leq y \leq\left\lfloor\frac{(n-1)(n-2)}{6}\right\rfloor+1=\varphi-2$. It is enough to prove $\varphi-1=\left\lfloor\frac{(n-1)(n-2)}{6}\right\rfloor+2 \in X(n)$. For this purpose, consider the b-coloring of $K(n, 2)$ by φ colors in the proof of Theorem 3. Assume that $\{a, x, y\}$ and $\{b, x, z\}$ are two triangular color classes, where a and b are the centers of some starlike color classes, A and B. We delete them and add a new starlike color class $\{\{x, y\},\{x, z\},\{x, a\},\{x, b\}\}$. Finally, we add vertex $\{a, y\}$ to the starlike color class A and the vertex $\{b, z\}$ to the starlike color class B. The obtained coloring satisfies the conditions of Lemma 1 therefore, is a b-coloring of $K(n, 2)$ by $\varphi-1$ colors.

References

[1] D. Barth, J. Cohen, T. Faik, On the b-continuity property of graphs, Discrete Applied Mathematics 155 (13) (2007) 1761-1768.
[2] C.J. Colbourn, A. Rosa, Triple Systems, Oxford Science Publications, 1999.
[3] T. Faik, About the b-continuity of graphs, Electronic Notes in Discrete Mathematics 17 (2004) 151-156.
[4] R.W. Irving, D.F. Manlove, The b-chromatic number of a graph, Discrete Applied Mathematics 91 (1999) 127-141.
[5] R. Javadi, B. Omoomi, On b-coloring of cartesian product of graphs, Ars Combinatoria (in press).
[6] M. Kouider, M. Mahéo, Some bounds for the b-chromatic number of a graph, Discrete Mathematics 256 (2002) 267-277.
[7] C.C. Lindner, C.A. Rodger, Design Theory, CRC press, 1997.
[8] L. Lovász, Kneser's conjecture, chromatic number, and homotopy, Journal of Combinatorial Theory. Series A 25 (1978) 319-324.

[^0]: The research is supported by Isfahan University of Technology.
 E-mail address: bomoomi@cc.iut.ac.ir (B. Omoomi).

