Contents lists available at ScienceDirect

## **Discrete Mathematics**

journal homepage: www.elsevier.com/locate/disc

## On *b*-coloring of the Kneser graphs<sup>☆</sup>

### Ramin Javadi, Behnaz Omoomi

Department of Mathematical Sciences, Isfahan University of Technology, 84156-83111, Isfahan, Iran

#### ARTICLE INFO

Article history: Received 15 April 2008 Received in revised form 20 January 2009 Accepted 22 January 2009 Available online 23 February 2009

Keywords: b-chromatic number b-coloring Dominating coloring b-continuous graph Kneser graph Steiner triple system

#### 1. Introduction

#### ABSTRACT

A *b*-coloring of a graph *G* by *k* colors is a proper *k*-coloring of *G* such that in each color class there exists a vertex having neighbors in all the other k - 1 color classes. The *b*-chromatic number of a graph *G*, denoted by  $\varphi(G)$ , is the maximum *k* for which *G* has a *b*-coloring by *k* colors. It is obvious that  $\chi(G) \leq \varphi(G)$ . A graph *G* is *b*-continuous if for every *k* between  $\chi(G)$  and  $\varphi(G)$  there is a *b*-coloring of *G* by *k* colors. In this paper, we study the *b*-coloring of Kneser graphs K(n, k) and determine  $\varphi(K(n, k))$  for some values of *n* and *k*. Moreover, we prove that K(n, 2) is *b*-continuous for n > 17.

© 2009 Elsevier B.V. All rights reserved.

Let *G* be a graph without loops and multiple edges with vertex set *V*(*G*) and edge set *E*(*G*). A proper *k*-coloring of *G* is a function *c* defined from *V*(*G*) onto a set of colors  $C = \{1, 2, ..., k\}$  such that every two adjacent vertices have different colors. In fact, for every *i*,  $1 \le i \le k$ , the set  $c^{-1}(i)$  is a nonempty independent set of vertices which is called *color class i*. The minimum cardinality *k* for which *G* has a proper *k*-coloring is the *chromatic number* of *G*, denoted by  $\chi(G)$ .

A *b*-coloring of *G* by *k* colors is a proper *k*-coloring of the vertices of *G* such that in each color class *i* there exists a vertex  $x_i$  having neighbors in all the other k - 1 color classes. Such a vertex  $x_i$  is called a *b*-dominating vertex, and the set of vertices  $\{x_1, x_2, \ldots, x_k\}$  is called a *b*-dominating system. The *b*-chromatic number of *G*, denoted by  $\varphi(G)$ , is the maximum *k* for which *G* has a *b*-coloring by *k* colors. It is an elementary exercise to observe that every proper coloring with  $\chi(G)$  colors is a *b*-coloring. The *b*-chromatic number was introduced by R.W. Irving and D.F. Manlove in [4]. (See also [5,6].)

Immediate and useful bound for  $\varphi(G)$  is:

$$\chi(G) \le \varphi(G) \le \Delta(G) + 1,$$

where  $\Delta(G)$  is the maximum degree of vertices in *G*.

The graph *G* is *b*-continuous if for every *k* between  $\chi(G)$  and  $\varphi(G)$  there is a *b*-coloring with *k* colors. A peculiar characteristic of *b*-coloring is that not all graphs are *b*-continuous. For example, the 3-dimensional cube  $Q_3$  is not *b*-continuous:  $\chi(Q_3) = 2$  and  $\varphi(Q_3) = 4$ , but  $Q_3$  has no *b*-coloring with three colors [4]. Only a few classes of graphs are known to be *b*-continuous [1,3].

Let  $S = \{1, 2, ..., n\}$  and let V be the set of all k-subsets of S, where  $k \le \frac{n}{2}$ . The *Kneser graph* with parameters n and k, denoted by K(n, k), is the graph with vertex set V such that two vertices are adjacent if and only if the corresponding subsets are disjoint. It is known that  $\chi(K(n, k)) = n - 2k + 2$  [8]. In this paper, we study b-coloring of Kneser graphs. We determine  $\varphi(K(2k + 1, k))$  for every k and  $\varphi(K(n, 2))$  for every n. Also, we prove that K(n, 2) is b-continuous for  $n \ge 17$ .



(1)

The research is supported by Isfahan University of Technology. *E-mail address:* bomoomi@cc.iut.ac.ir (B. Omoomi).

<sup>0012-365</sup>X/\$ – see front matter s 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2009.01.017

#### 2. Steiner triple systems

In this section, we recall some necessary definitions and constructions of Steiner triple systems which will be used in the proofs of our main theorems.

A *quasigroup* of order *n* is a pair  $(Q, \circ)$ , where *Q* is a set of size *n* and " $\circ$ " is a binary operation on *Q* such that for every pair of elements  $a, b \in Q$ , the equations  $a \circ x = b$  and  $y \circ a = b$  have unique solutions. A quasigroup  $(Q, \circ)$  with  $Q = \{1, 2, ..., n\}$  is said to be *idempotent* if  $i \circ i = i$ , for  $1 \le i \le n$  and *commutative* if  $i \circ j = j \circ i$ , for all  $1 \le i, j \le n$ . A quasigroup  $(Q, \circ)$  with  $Q = \{1, 2, ..., n\}$  is said to be *half-idempotent* if for  $1 \le i \le n$ ,  $i \circ i = (n \circ i) \circ (n \circ i) = i$ . A quasigroup  $(Q', \circ)$ , where  $Q' \subseteq Q$ , is called a sub-quasigroup of quasigroup  $(Q, \circ)$ .

**Example 1.** Let n = 2k + 1 and consider the additive group  $(\mathbb{Z}_n, +)$ . Since n is odd, for each  $i, j \in \mathbb{Z}_n$  where  $i \neq j$ , we have  $2i \neq 2j$ . Therefore, there is a permutation  $\sigma$  on the set  $\{1, 2, ..., n\}$  such that for each  $i \in \mathbb{Z}_n$ ,  $\sigma(2i) = i$ . Now we define the quasigroup  $(Q_1, \circ)$  where  $Q_1 = \mathbb{Z}_n$  and  $i \circ j = \sigma(i + j)$  for every  $i, j \in Q_1$ . This quasigroup is an idempotent commutative quasigroup.

Let n = 2k and consider the additive group  $(\mathbb{Z}_n, +)$ . In this case for each  $i, 1 \le i \le k, i + i = (i + k) + (i + k) = 2i$ . We consider a permutation  $\sigma$  on the set  $\{1, 2, ..., n\}$  such that for each  $i, 1 \le i \le k, \sigma(2i) = i$ . Now we define the quasigroup  $(Q_2, \circ)$  where  $Q_2 = \mathbb{Z}_n$  and  $i \circ j = \sigma(i+j)$  for every  $i, j \in Q_2$ . This quasigroup is a half-idempotent commutative quasigroup.

A design with parameters  $t - (n, k, \lambda)$  is an ordered pair  $(S, \mathcal{B})$ , where S is a set of *n* points or symbols and  $\mathcal{B}$  is a family of *k*-subsets of S called *blocks*, such that every *t* elements of S occur together in exactly  $\lambda$  blocks of  $\mathcal{B}$ . When  $\lambda = 1$ , it is called a *Steiner system*, and when k = 3, it is called a *triple system*. A design with parameters t = 2, k = 3 and  $\lambda = 1$  with *n* points is called a *Steiner triple system of order n*, denoted by STS(n).

It is known that a Steiner triple system of order *n* exists if and only if  $n \equiv 1, 3 \pmod{6}$  [7].

2.1. The Bose Construction:  $n \equiv 3 \pmod{6}$ 

Let n = 6k + 3 and  $(Q, \circ)$  be an idempotent commutative quasigroup of order 2k + 1 and define  $S = Q \times \{1, 2, 3\}$ . We denote an ordinary element of *S* by  $x_i$ , where  $x \in Q$  and  $i \in \{1, 2, 3\}$  and define  $\mathcal{B}$  to contain the following two types of triples:

Type 1: for  $1 \le i \le 2k + 1$ ,  $\{i_1, i_2, i_3\} \in \mathcal{B}$ ,

Type 2: for  $1 \le i < j \le 2k + 1$ ,  $\{i_1, j_1, (i \circ j)_2\}$ ,  $\{i_2, j_2, (i \circ j)_3\}$ ,  $\{i_3, j_3, (i \circ j)_1\} \in \mathcal{B}$ .

Then  $(S, \mathcal{B})$  is a Steiner triple system of order 6k + 3 [7].

#### 2.2. The Skolem Construction: $n \equiv 1 \pmod{6}$

Let n = 6k + 1 and  $(Q, \circ)$  be a half-idempotent commutative quasigroup of order 2k and define  $S = \{\infty\} \cup (Q \times \{1, 2, 3\})$ . We denote an ordinary point in  $Q \times \{1, 2, 3\}$  by  $x_i$ , where  $x \in Q$  and  $i \in \{1, 2, 3\}$  and define  $\mathcal{B}$  as follows:

Type 1: for  $1 \le i \le k$ ,  $\{i_1, i_2, i_3\} \in \mathcal{B}$ ,

Type 2: for  $1 \le i \le k$ , { $\infty$ ,  $(k+i)_1, i_2$ }, { $\infty$ ,  $(k+i)_2, i_3$ }, { $\infty$ ,  $(k+i)_3, i_1$ }  $\in \mathcal{B}$ ,

Type 3: for  $1 \le i < j \le 2k$ ,  $\{i_1, j_1, (i \circ j)_2\}$ ,  $\{i_2, j_2, (i \circ j)_3\}$ ,  $\{i_3, j_3, (i \circ j)_1\} \in \mathcal{B}$ .

Then  $(S, \mathcal{B})$  is a Steiner triple system of order 6k + 1 [7].

Above we have constructed Steiner triple systems of all orders  $n \equiv 1, 3 \pmod{6}$ . Although no STS(6k + 5) exists, we can get very close.

A pairwise balanced design or simply PBD is an ordered pair  $(S, \mathcal{B})$ , where S is a finite set of points and  $\mathcal{B}$  is a collection of subsets of S called blocks, such that each pair of distinct elements of S occurs together in exactly one block of  $\mathcal{B}$ . When |S| = n it is denoted by PBD(n).

For all  $n \equiv 5 \pmod{6}$ , we produce a *PBD* of order *n* with one block of size 5 and others of size 3, called 3-blocks.

#### 2.3. The n = 6k + 5 Construction

Let  $(Q, \circ)$  be an idempotent commutative quasiqroup of order 2k + 1 and  $\alpha$  be the permutation  $(1, 2)(3, 4) \dots (2k - 1, 2k)(2k + 1)$ . Let  $S = \{\infty_1, \infty_2\} \cup (Q \times \{1, 2, 3\})$ , we denote an ordinary point in  $Q \times \{1, 2, 3\}$  by  $x_i$ , where  $x \in Q$  and  $i \in \{1, 2, 3\}$ . Now define  $\mathcal{B}$  to contain the following blocks:

 $\begin{array}{ll} \text{Type 1:} & \{\infty_1, \infty_2, (2k+1)_1, (2k+1)_2, (2k+1)_3\} \in \mathcal{B}, \\ \text{Type 2:} & \text{for } 1 \leq i \leq k, \{\infty_1, (2i-1)_1, (2i-1)_2\}, \{\infty_1, (2i-1)_3, (2i)_1\}, \{\infty_1, (2i)_2, (2i)_3\}, \\ & \{\infty_2, (2i-1)_2, (2i-1)_3\}, \{\infty_2, (2i)_1, (2i)_2\}, \{\infty_2, (2i-1)_1, (2i)_3\} \in \mathcal{B}, \\ \text{Type 3:} & \text{for } 1 \leq i < j \leq 2k+1, \{i_1, j_1, (i \circ j)_2\}, \{i_2, j_2, (i \circ j)_3\}, \{i_3, j_3, (\alpha(i \circ j))_1\} \in \mathcal{B}. \end{array}$ 

Then  $(S, \mathcal{B})$  is a PBD(6k + 5) with exactly one block of size 5 and all others of size 3 [7].

For results in later sections we need some steiner triple systems containing another Steiner triple system, called subsystem.

#### Theorem A ([2]).

(i) For every two integers  $n, m \equiv 1, 3 \pmod{6}$  such that  $n \ge 2m + 1$ , there is an STS(n) containing a subsystem STS(m).

(ii) For every two integers  $n, m \equiv 5 \pmod{6}$  such that  $n \ge 2m + 1$ , there is a PBD(n) which contains a PBD(m).

A Steiner quasigroup  $(Q, \circ)$  is a commutative quasigroup, where  $i \circ i = i$  and  $(i \circ j) \circ j = i$ , for every  $i, j \in Q$  [2]. Given a Steiner triple system, we can construct a steiner quasigroup by setting  $x \circ y = z$  when  $\{x, y, z\}$  is a block of the design or when x = y = z. Also given a *PBD* with one block of size 5 and others of size 3 and an idempotent commutative quasigroup of order 5,  $(Q', \circ')$ , we can construct an idempotent commutative quasigroup by setting  $x \circ y = z$  when  $\{x, y, z\}$  is a 3-block of the *PBD* or when x = y = z; and  $x \circ y = x \circ' y$  when x, y are both in the block of size 5. Thus we have the following proposition.

**Proposition 1.** For every odd integer  $n, n \neq 5$ , there exists an idempotent commutative quasigroup of order n containing a sub-quasigroup of order 3.

#### 3. *b*-chromatic number of the Kneser graph

In this section, we determine  $\varphi(K(2k + 1, k))$  for every *k* and  $\varphi(K(n, 2))$  for every *n*.

**Theorem 1.** For every integer  $k \ge 3$ ,

 $\varphi(K(2k+1,k)) = k+2.$ 

**Proof.** We know that  $\Delta(K(2k + 1, k)) = k + 1$ , so by Inequality (1),  $\varphi(K(2k + 1, k)) \le k + 2$ . To prove the equality we describe a *b*-coloring of K(2k + 1, k) by k + 2 colors as follows. For  $i, 1 \le i \le k$ , we define the color class *i* to contain the set of vertices

 $\{\{k+1, k+2, \dots, 2k+1\} \setminus \{k+i\}\} \cup \{\{1, 2, \dots, k\} \setminus \{i\} \cup \{k+j\} \mid 1 \le j \le k+1, j \ne i\},\$ 

the color class k + 1 contains the set of vertices

 $\{k + 1, k + 2, \dots, 2k\} \cup \{\{1, 2, \dots, k\} \setminus \{j\} \cup \{k + j\} \mid 1 \le j \le k\}$ 

and the color class k + 2 contains the set  $\{\{1, 2, \dots, k\}\}$ .

Now we complete the coloring as follows. Let  $A \subseteq \{1, 2, ..., 2k + 1\}$  be a vertex distinct from the vertices in the color classes above. If  $2k + 1 \in A$  then we choose an integer  $i \in A^c \cap \{1, 2, ..., k\}$  and add A to the color class i. If  $2k + 1 \notin A$  and  $2k \in A$  then we choose an integer  $i \in A^c \cap \{1, 2, ..., k\}$  and add A to the color class i. If  $2k, 2k + 1 \notin A$  then we add A to the color class k + 2. It is not hard to see that the vertices in each class have mutually nonempty intersections. Hence, such a coloring is a proper coloring.

In this proper coloring the set of vertices  $\{\{k + 1, k + 2, ..., 2k + 1\} \setminus \{k + i\} \mid 1 \le i \le k + 1, \{1, 2, ..., k\}$  is a *b*-dominating system. Because, the vertex  $\{1, 2, ..., k\}$  is adjacent to all vertices  $\{k + 1, k + 2, ..., 2k + 1\} \setminus \{k + i\}$ ,  $1 \le i \le k + 1$ . Moreover, for a fixed integer  $i_0, 1 \le i_0 \le k + 1$ , the vertex  $\{k + 1, k + 2, ..., 2k + 1\} \setminus \{k + i_0\}$  is adjacent to the vertices  $\{1, 2, ..., k\}$  and  $\{1, 2, ..., k\} \setminus \{i\} \cup \{k + i_0\}, 1 \le i \le k, i \ne i_0$  and for  $1 \le i_0 \le k$ , this vertex is adjacent to the vertex  $\{1, 2, ..., k\} \setminus \{i_0\} \cup \{k + i_0\}$ .  $\Box$ 

In the sequel, we are going to determine  $\varphi(K(n, 2))$ . First we mention some facts, terminology and lemmas which will be used in the proof of the main theorem.

**Fact 1.** By the definition of STS(n), it is obvious that every Steiner triple system of order *n* is in fact an edge decomposition of the complete graph  $K_n$  into triangles.

**Fact 2.** Each vertex in K(n, 2) which is a 2-subset of the set  $\{1, 2, ..., n\}$  corresponds to an edge in the complete graph  $K_n$  with vertex set  $\{1, 2, ..., n\}$ . Hence, two vertices of K(n, 2) are nonadjacent if and only if the corresponding edges in  $K_n$  are adjacent.

**Fact 3.** If *A* is an independent set of vertices in K(n, 2), then either all vertices in *A* have a common element, say *a*, or  $A = \{\{a, b\}, \{a, c\}, \{b, c\}\}$ , for some  $a, b, c \in \{1, 2, ..., n\}$ . In other words an independent set of vertices in K(n, 2) corresponds to a star subgraph with center *a* or a triangle subgraph in  $K_n$ . From now on we call the independent set (color class) in K(n, 2) of the first form *starlike* with center *a* and the second form *triangular*. Moreover, for simplicity we denote the independent set  $\{\{a, b\}, \{a, c\}, \{b, c\}\}$  with  $\{a, b, c\}$ . Since every proper coloring is a partition of vertices into independent sets of vertices, we can consider every proper coloring of K(n, 2) as an edge decomposition of the complete graph  $K_n$  into star and triangle subgraphs.

A set of vertices *S* is called a *dominating set*, whenever every vertex not in *S* has a neighbor in *S*. A dominating set *S* in *G* is called an *independent dominating set* when the vertices in *S* are mutually nonadjacent. The following proposition is a fact about dominating sets in Kneser graphs.

**Proposition 2.** Let  $S = \{1, 2, ..., n\}$ . If T is a subset of S of size 2k - 1, then the set of all k-subsets of T is an independent dominating set in the K(n, k).

**Proof.** Let  $T \subseteq S = \{1, 2, ..., n\}$ , |T| = 2k - 1 and A be a vertex in K(n, k) for which  $A \not\subseteq T$ . So  $|A \cap T| \leq k - 1$  and there is a k-subset of T, say B, for which  $A \cap B = \emptyset$ . Therefore, the vertices A and B are adjacent in K(n, k). Obviously, every two k-subsets of T intersect, so they are not adjacent in K(n, k). The statement follows.  $\Box$ 

By the proposition above, when a Steiner system with some special parameters exists, we can find a lower bound for the *b*-chromatic number of K(n, k).

**Theorem 2.** If  $(S, \mathcal{B})$  is a k - (n, 2k - 1, 1) Steiner system, then  $\varphi(K(n, k)) \ge |\mathcal{B}|$ .

**Proof.** Let  $\mathcal{B} = \{B_1, B_2, \dots, B_{|\mathcal{B}|}\}$ . For each  $i, 1 \le i \le |\mathcal{B}|$ , we define the set of all *k*-subsets of  $B_i$  as the color class *i*. Since  $|B_i| = 2k - 1$ , by Proposition 2, each class *i* is an independent set of vertices, so this partition is a proper coloring of K(n, k). Moreover, by Proposition 2, each class *i* is a dominating set. Therefore, each element in a color class *j* has neighbors in all the other color classes. Hence, this partition is a *b*-coloring of K(n, k) by  $|\mathcal{B}|$  colors.  $\Box$ 

**Lemma 1.** Assume that *c* is a proper coloring of K(n, 2) and  $A_1, A_2, \ldots, A_t$ ,  $|A_i| \ge 3$ ,  $1 \le i \le t$ , are the starlike color classes in *c*, with centers  $a_1, a_2, \ldots, a_t$ , respectively. Then *c* is a *b*-coloring of K(n, 2) if and only if the following conditions hold.

(i)  $a_1, a_2, \ldots, a_t$  are distinct,

(ii) every 2-subset of the set  $\{a_1, a_2, \ldots, a_t\}$  is in  $\bigcup_{k=1}^t A_k$ , and

(iii) for each i,  $1 \le i \le t$ , there exists an element  $x_i \notin \{a_1, a_2, \ldots, a_t\}$ , where  $\{a_i, x_i\} \in A_i$ .

**Proof.** Assume that *c* is a *b*-coloring of K(n, 2). Suppose that  $a_i = a_j$  for some  $i \neq j$ . Hence,  $A_i \cup A_j$  is an independent set in K(n, 2). This means that no vertex in the color class  $A_i$  has a neighbor in the color class  $A_j$ , which contradicts that *c* is a *b*-coloring. So  $a_i \neq a_j$  for all  $1 \le i \ne j \le t$ .

Now consider an arbitrary 2-subset  $\{a_i, a_j\}$  of the set  $\{a_1, a_2, \ldots, a_t\}$ . If  $\{a_i, a_j\} \notin \bigcup_{k=1}^t A_k$ , then this vertex is in a triangular color class, say  $\{a_i, a_j, b\}$ . In this color class, the vertices  $\{a_i, a_j\}$  and  $\{a_i, b\}$  are not *b*-dominating vertices because they have no neighbor in the color class  $A_i$ . The vertex  $\{a_j, b\}$  also is not a *b*-dominating vertex since it has no neighbor in the color class  $A_i$ . The vertex  $\{a_i, a_j, b\}$  also is not a *b*-dominating vertex since it has no neighbor in the color class  $A_j$ . This is a contradiction. Thus  $\{a_i, a_j\} \in \bigcup_{k=1}^t A_k$ , for all *i*, *j*. Since in each starlike color class  $A_i$  we must have a *b*-dominating vertex, the property (iii) is obviously concluded.

Now assume that *c* is a proper coloring of K(n, 2) that satisfies (i), (ii) and (iii). It is enough to show that in each color class of *c*, there is a *b*-dominating vertex. In the starlike color classes  $A_i$ ,  $1 \le i \le t$ , the vertex  $\{a_i, x_i\}$  is a *b*-dominating vertex, because in each color class  $A_j$ ,  $j \ne i$ , there exists a vertex  $\{a_j, y\}$  such that  $y \ne a_i$ ,  $x_i$ . Moreover, by Proposition 2 each triangular color class is a dominating set. Therefore, the vertex  $\{a_i, x_i\}$  has neighbors in all color classes. On the other hand for each triangular color class  $\{a, b, c\}$ , by (ii), we have  $|\{a, b, c\} \cap \{a_1, a_2, \ldots, a_t\}| \le 1$ . Hence there exists at least two elements, say *a* and *b*, with *a*,  $b \notin \{a_1, a_2, \ldots, a_t\}$ . Since  $|A_i| \ge 3$ , the vertex  $\{a, b\}$  has neighbors in all starlike color classes. Furthermore, by Proposition 2 each triangular color class is a dominating set. So the vertex  $\{a, b\}$  is a *b*-dominating vertex.  $\Box$ 

**Proposition 3.** *If*  $n \equiv 5 \pmod{6}$  *then*  $\varphi(K(n, 2)) \ge \frac{n(n-1)}{6} - \frac{1}{3}$ .

**Proof.** If  $n \equiv 5 \pmod{6}$  then by the 6k + 5 construction given in Section 2, we have a *PBD*(*n*) with one block of size 5, say {1, 2, 3, 4, 5}, and 3-blocks otherwise. In this construction, number of 3-blocks is  $\frac{n(n-1)}{6} - \frac{10}{3}$ . Now we provide a *b*-coloring of K(n, 2). We consider each 3-block as a triangular color class and define the other color classes as {{1, 2}, {1, 3}, {1, 4}, {1, 5}}, {{2, 3}, {2, 4}, {2, 5}}, and {{3, 4}, {3, 5}, {4, 5}}. This is an edge decomposition of the complete graph  $K_n$  into stars and triangles, so by Fact 3 this is a proper coloring of K(n, 2). Furthermore, this coloring satisfies the conditions of Lemma 1 and so is a *b*-coloring of K(n, 2). Hence

$$\varphi(K(n,2)) \ge \frac{n(n-1)}{6} - \frac{10}{3} + 3 = \frac{n(n-1)}{6} - \frac{1}{3}.$$

**Theorem 3.** For every positive integer  $n, n \neq 8$ , we have:

$$\varphi(K(n,2)) = \begin{cases} \left\lfloor \frac{n(n-1)}{6} \right\rfloor & \text{if } n \text{ is odd,} \\ \left\lfloor \frac{(n-1)(n-2)}{6} \right\rfloor + 3 & \text{if } n \text{ is even.} \end{cases}$$

**Proof.** We prove the theorem for two cases *n* is even and *n* is odd.

Case 1. n is even.

First we find an upper bound for  $\varphi(K(n, 2))$ . Let *c* be a *b*-coloring of K(n, 2) by  $\varphi$  colors and *t* starlike color classes with centers 1, ..., *t* of sizes  $n_1, \ldots, n_t$ , respectively. Then,

$$|V(K(n,2))| = \binom{n}{2} = \sum_{i=1}^{t} n_i + 3(\varphi - t).$$
(2)

By Fact 3, the coloring c corresponds to an edge decomposition of the complete graph  $K_n$  into stars and triangles. For every vertex  $i \in V(K_n)$ , the number of edges incident to i in the triangles of the decomposition is even. Since n is even, there is an edge incident to i in a star subgraph in the decomposition. Therefore, for each i satisfying  $t + 1 \le i \le n$  there is a vertex in K(n, 2) containing i in the starlike color classes 1 to t. Moreover, by Lemma 1, every 2-subset of the set  $\{1, 2, \ldots, t\}$  is in the starlike color classes. Therefore, we have

$$\sum_{i=1}^{t} n_i \ge (n-t) + \frac{t(t-1)}{2} = n + \frac{t(t-3)}{2}.$$

Hence.

$$\binom{n}{2} \ge n + \frac{t(t-9)}{2} + 3\varphi.$$

So

$$\varphi \le \frac{n(n-3)}{6} - \frac{t(t-9)}{6}$$

The minimum of t(t - 9) occurs in t = 4 and t = 5. Therefore,

$$\varphi \le \left\lfloor \frac{n(n-3)}{6} + \frac{10}{3} \right\rfloor = \left\lfloor \frac{(n-1)(n-2)}{6} \right\rfloor + 3.$$
(3)

Now we find a lower bound for  $\varphi(K(n, 2))$ .

*Case* 1.1. n = 6k.

We consider an STS(6k - 3) with the Bose construction. As shown in Section 2, in this construction there are 2k - 1disjoint blocks of Type 1. We denote these blocks by  $\{a_1, b_1, c_1\}, \{a_2, b_2, c_2\}, \ldots, \{a_{2k-1}, b_{2k-1}, c_{2k-1}\}$ . By Fact 1, this STS is an edge decomposition of the complete graph  $K_{n-3}$  into triangles. Now we add three new points a, b, c and then construct a proper coloring of K(n, 2) by  $\varphi_0 = \frac{n(n-3)}{6} + 3$  colors or equivalently an edge decomposition of the complete graph  $K_n$  into  $\varphi_0$  stars and triangles.

We consider every block of Type 2 in the STS(6k - 3) as one triangular color class. The other color classes are defined as follows. Color class A consists of

 $\{a, c_1\}, \{a, c_2\}, \ldots, \{a, c_{2k-1}\}, \{a, b\}.$ 

Color class B consists of

 $\{b, a_1\}, \{b, a_2\}, \ldots, \{b, a_{2k-1}\}, \{b, c\}.$ 

Color class C consists of

 $\{c, b_1\}, \{c, b_2\}, \ldots, \{c, b_{2k-1}\}, \{c, a\}.$ 

Also for each *i*,  $1 \le i \le 2k - 1$ , we define three triangular color classes

$$\{a, a_i, b_i\}, \{b, b_i, c_i\}, \{c, c_i, a_i\}.$$

In the STS(6k - 3) the number of blocks is  $\frac{(n-3)(n-4)}{6}$ , of which  $2k - 1 = \frac{n-3}{3}$  blocks are of Type 1. Therefore, the number of color classes in the given coloring above are  $\frac{(n-3)(n-4)}{6} - \frac{n-3}{3} + 3 + 3\frac{(n-3)}{3} = \frac{n(n-3)}{6} + 3 = \varphi_0$ . For n = 6, it is obvious that this coloring is a *b*-coloring of K(6, 2) by 6 colors. For  $k \ge 2$ , we have only three starlike color

classes and this coloring satisfies the conditions of Lemma 1. Hence, the given coloring is a b-coloring of K(n, 2). Therefore,  $\varphi \ge \frac{n(n-3)}{6} + 3 = \left| \frac{(n-1)(n-2)}{6} \right| + 3.$ 

*Case* 1.2.  $n = 6k + 2, k \ge 2$ , or n = 6k + 4.

We consider an STS(n - 1) with the Bose or the Skolem construction given in Section 2. Moreover, in this construction we consider three disjoint blocks  $\{a, b, c\}$ ,  $\{a', b', c'\}$ , and  $\{a'', b'', c''\}$  in which  $\{a, a', a''\}$  is a block. Now we add a new point d and construct a b-coloring of K(n, 2) by  $\varphi_0 = \frac{(n-1)(n-2)}{6} + 3$  colors as follows.

We consider every block in STS(n - 1) except four blocks  $\{a, b, c\}$ ,  $\{a', b', c'\}$ ,  $\{a'', b'', c''\}$ , and  $\{a, a', a''\}$  as a color class. Moreover, we add the following color classes. Color class A consists of  $\{a, b\}, \{a, c\}, \{a, a'\}$ . Color class B consists of  $\{a', b'\}$ ,  $\{a', c'\}$ ,  $\{a', a''\}$ . Color class *C* consists of  $\{a'', b''\}$ ,  $\{a'', a\}$ . Color class *D* consists of  $\{d, x\}$ ,  $x \notin \{b, b', b'', c, c', c''\}$ . Finally, we add three triangular color classes  $\{b, c, d\}$ ,  $\{b', c', d\}$  and  $\{b'', c'', d\}$ . The number of these color classes is  $\varphi_0 = \frac{(n-1)(n-2)}{6} - 4 + 4 + 3 = \frac{(n-1)(n-2)}{6} + 3$ . We have only four starlike color classes and this coloring satisfies the conditions of Lemma 1. Hence, the given coloring

is a *b*-coloring of K(n, 2). Therefore,  $\varphi \geq \left\lfloor \frac{(n-1)(n-2)}{6} \right\rfloor + 3$ .

Case 2. n is odd.

First we find an upper bound for  $\varphi(K(n, 2))$ . Let *c* be a *b*-coloring of K(n, 2) by  $\varphi = \varphi(K(n, 2))$  colors and *t* starlike color classes with centers 1, ..., t of sizes  $n_1, \ldots, n_t$ , respectively. Then,

$$|V(K(n,2))| = \binom{n}{2} = \sum_{i=1}^{t} n_i + 3(\varphi - t).$$
(4)

By Lemma 1, every 2-subset of the set  $\{1, 2, \ldots, t\}$  is in the color classes 1 to t. Moreover, in the color class i we must have a *b*-dominating vertex, say  $\{i, x\}$ , where  $x \in \{t + 1, t + 2, ..., n\}$ . Hence,

$$\sum_{i=1}^{t} n_i \ge \frac{t(t-1)}{2} + t = \frac{t(t+1)}{2}.$$

Therefore,

$$\binom{n}{2} \ge 3\varphi + \frac{t(t+1)}{2} - 3t = 3\varphi + \frac{t(t-5)}{2}.$$

So

$$\varphi \leq \frac{n(n-1)}{6} - \frac{t(t-5)}{6}$$

The minimum of the expression t(t-5) occurs in t = 2 and t = 3, so  $\varphi \le \frac{n(n-1)}{6} + 1$ . Now we prove that  $\varphi \le \frac{n(n-1)}{6}$ . Suppose  $\varphi = \frac{n(n-1)}{6} + 1$ , hence, t = 2 or t = 3. For every vertex  $i \in V(K_n)$ , the number of edges incident to i in the triangles of the decomposition is even. Since n is odd, the number of edges incident to i in the triangles of the decomposition is even. Since n is odd, the number of edges incident to i in the triangles of the decomposition is even. stars of the decomposition is also even. Equivalently, in the *b*-coloring of K(n, 2) the number of vertices containing *i* in the starlike color classes are even numbers.

If t = 3 then by Lemma 1 (ii) and (iii), the vertices {1, 2}, {1, 3} and {2, 3} in K(n, 2) are in the starlike color classes with centers 1, 2, or 3 and for every i,  $1 \le i \le 3$ , there is a vertex  $\{i, x\}$  in the starlike color classes which  $x \ne 1, 2, 3$ . So by the discussion above, for every *i*,  $1 \le i \le 3$ , at least two vertices  $\{i, x\}$  and  $\{i, y\}$ , where  $x, y \ne 1, 2, 3$ , are in the starlike color classes. Therefore,  $\sum_{i=1}^{3} n_i \ge 3 + 2 \times 3 = 9$ . So by Relation (4),  $\binom{n}{2} \ge 9 + 3(\varphi - 3) = 3\varphi$ . Hence,  $\varphi \le \frac{n(n-1)}{6}$ , which contradicts our assumption.

Now let t = 2. By Lemma 1 (ii) and (iii), the starlike color class with center 1 contains vertex {1, 2} and at least one more vertex, say  $\{1, 3\}$ . By the discussion above, if the vertex  $\{1, i\}$  in K(n, 2) is in the starlike color class with center 1, then the vertex  $\{2, i\}$  is in the starlike color class with center 2. If the vertices  $\{1, 2\}$ ,  $\{1, 3\}$  and  $\{2, 3\}$  are the only vertices in the starlike color classes, then there is no b-dominating vertex in these classes. Therefore, the starlike color class with center 1 and consequently, the starlike color class with center 2 each one contains at least more two vertices. Hence,  $\sum_{i=1}^{2} n_i = 1 + 2 \times 3 = 7$ . Therefore, by Relation (4)

$$\binom{n}{2} \ge 7 + 3(\varphi - 2) = 3\varphi + 1.$$

So  $\varphi \leq \frac{n(n-1)}{6}$ , which contradicts our assumption. Therefore,  $\varphi \leq \left\lfloor \frac{n(n-1)}{6} \right\rfloor$ . If  $n \equiv 1, 3 \pmod{6}$  then an *STS*(*n*) exists. Therefore, by Theorem 2,  $\varphi \geq \frac{n(n-1)}{6}$ . If  $n \equiv 5 \pmod{6}$ then by Proposition 3,  $\varphi \geq \frac{n(n-1)}{6} - \frac{1}{3}$ . Hence,  $\varphi = \left\lfloor \frac{n(n-1)}{6} \right\rfloor$ .  $\Box$ 

Since the Petersen graph is Kneser graph K(5, 2), we get the following result.

**Corollary 1.** If P is the Petersen graph, then  $\varphi(P) = 3$ .

Kneser graph K(8, 2) is an exception.

#### **Proposition 4.** $\varphi(K(8, 2)) = 9$ .

**Proof.** Consider the notations in the proof of Theorem 3 for Case 1. By Inequality (3), we have  $\varphi(K(8, 2)) < 10$  and the equality holds if and only if t = 4 or t = 5. Assume that a b-coloring of K(8, 2) exists with 10 colors and  $A_1, A_2, \ldots, A_t$  are

starlike color classes with centers 1, 2, ..., t, respectively. If t = 4 then by Equality (2),  $\sum_{i=1}^{4} n_i = 10$ . By Lemma 1 (ii) and (iii), every 2-subset of the set  $\{1, 2, 3, 4\}$  is in  $\bigcup_{i=1}^{4} A_i$ and for each  $i, 1 \le i \le 4$ , there exists  $x_i \notin \{1, 2, 3, 4\}$ , where  $\{i, x_i\} \in A_i$ . On the other hand n - t and the number of vertices containing i in triangular color classes are even numbers. So there are at least two vertices  $\{i, x_i\}$ ,  $\{i, y_i\}$  in the starlike color classes, where  $x_i, y_i \notin \{1, 2, 3, 4\}$ . Hence,  $\sum_{i=1}^4 n_i = 10 \ge 6 + 4 \times 2 = 14$ , which is contradiction.

4404

If t = 5 then by Equality (2),  $\sum_{i=1}^{5} n_i = 13$ . On the other hand, similar to the above by Lemma 1 (ii) and (iii),  $\sum_{i=1}^{5} n_i = 13 \ge 10 + 5$ , a contradiction. So  $\varphi(K(8, 2)) \le 9$ .

Now we provide a *b*-coloring of K(8, 2) by 9 colors. First we consider an STS(7) and delete one point of it. What remains is a decomposition of  $K_6$  into 4 triangles and a 1-factor called  $F = \{\{a_1, b_1\}, \{a_2, b_2\}, \{a_3, b_3\}\}$ . Now we add two new points *a* and *b* and define the color classes as all triangles in the decomposition above in addition to the triangular color classes  $\{a, a_1, b_1\}$ ,  $\{a, a_2, b_2\}$  and  $\{b, a_3, b_3\}$  and the starlike color classes  $\{\{a, a_3\}, \{a, b_3\}, \{a, b_3\}\}$  and  $\{\{b, a_1\}, \{b, b_1\}, \{b, b_2\}\}$ . This is a proper coloring of K(8, 2) satisfying the conditions of Lemma 1, so is a *b*-coloring by 9 colors as desired.

By Relation (1),  $\varphi(K(n, k)) \le \Delta + 1 = \binom{n-k}{k} + 1$ . Hence  $\varphi(K(n, k)) = O(n^k)$ . Theorems 2 and 3 motivate us to propose the following conjecture.

**Conjecture 1.** For every integer k, we have  $\varphi(K(n, k)) = \Theta(n^k)$ .

#### 4. *b*-continuity of the Kneser graph K(n, 2)

In this section we prove that K(n, 2) is *b*-continuous when  $n \ge 17$ .

**Lemma 2.** (a) Let n = 6k + 1 or n = 6k + 3 and  $(S, \mathcal{B})$  be an STS(n). Also let T be a subset of  $S = \{1, 2, ..., n\}$  and t be the number of blocks in  $\mathcal{B}$  on the points of T, such that:

(i)  $|T| = m \ge 3$ ,

(ii) for each  $i \in T$ , there exists  $j \in T$  such that the third point of the block containing both i, j is not in T.

Then there exists a b-coloring of K(n, 2) by  $\varphi - (\frac{m(m-3)}{2} - 2t)$  colors, where  $\varphi = \varphi(K(n, 2))$ .

- (b) Let n = 6k + 5 and  $(S, \mathcal{B})$  be a PBD(n) with one block of size 5, say  $\{1, 2, n, n 1, n 2\}$  and the others 3-blocks. Also let T be a subset of  $S = \{1, 2, ..., n\}$  and t be the number of 3-blocks in  $\mathcal{B}$  on the points of T, such that:
  - (i)  $|T| = m \ge 3$ ,
  - (ii)  $1, 2 \in T$  and  $n 2, n 1, n \notin T$ ,

(iii) for each  $i \in T$ ,  $i \neq 1, 2$ , there exists  $j \in T$  such that the third point of the 3-block containing both i, j is not in T. Then there exists a b-coloring of K(n, 2) by  $\varphi - (\frac{m(m-3)}{2} - 2t + 1)$  colors, where  $\varphi = \varphi(K(n, 2))$ .

**Proof.** Let *c* be the *b*-coloring of K(n, 2) by  $\varphi$  colors corresponding to STS(n) or PBD(n) (see Theorem 2 and Proposition 3). In the case n = 6k + 5, we take the centers of starlike color classes as 1 and 2.

Assume  $T = \{1, 2, ..., m\}$ , consider the *b*-coloring *c* and delete all triangular color classes containing a vertex  $\{i, j\} \subseteq T$ .

- (a) Since each vertex  $\{i, j\} \subseteq T$  is contained in a triangular color class and there are exactly t triangles on the points of T, the number of deleted color classes (triangles) is  $\frac{m(m-1)}{2} 3t + t$ . Now we define m new color classes as follows. New color class  $i, 3 \le i \le m 2$ , contains the set of vertices  $\{\{i, j\} \mid i + 1 \le j \le m\}$ . Also new color classes 1, 2, m 1 and m contain respectively the sets  $\{\{1, j\} \mid 2 \le j \le m 2\}$ ,  $\{\{2, j\} \mid 3 \le j \le m 1\}$ ,  $\{\{m 1, m\}, \{m 1, 1\}\}$  and  $\{\{m, 1\}, \{m, 2\}\}$ . Moreover, if a vertex  $\{i, x\}$ , where  $i \in T$  and  $x \notin T$  is in a deleted color class, then we add this vertex to the color class i. These m new color classes together with the old color classes give us a new proper coloring of K(n, 2) by  $\varphi (\frac{m(m-1)}{2} 2t) + m$  colors.
- (b) Since each vertex  $\{i, j\} \subseteq T$  except  $\{1, 2\}$  is contained in a triangular color class and there are exactly t triangular color classes on the points of T, the number of deleted triangles is  $\frac{m(m-1)}{2} 1 3t + t$ . Now we define m 2 new color classes as follows. Color class  $i, 3 \le i \le m$ , contains the set of vertices  $\{\{i, j\} \mid i + 1 \le j \le m\} \cup \{\{i, 1\}, \{i, 2\}\}$ . Moreover, if a vertex  $\{i, x\}$ , where  $i \in T$  and  $x \notin T$  is in a deleted color class, then we add this vertex to the color class i. These m 2 new color classes together with the old color classes give us a new proper coloring by  $\varphi (\frac{m(m-1)}{2} 1 2t) + m 2$  colors.

The obtained colorings in (a) and (b) satisfy the conditions of Lemma 1, so they are *b*-colorings.

**Lemma 3.** Let  $n \ge 13$  be an odd integer and let  $k = \lfloor \frac{n}{6} \rfloor$ . For every odd integer  $m, 5 \le m \le k + 5$  and for every integer  $t, 0 \le t \le \frac{3m-11}{2}$ , where  $(m, t) \ne (5, 2), (7, 5), (k + 5, 0)$ , there exists an STS(n) or PBD(n) and a set T satisfying the conditions of Lemma 2.

**Proof.** Let  $l = \lfloor \frac{n}{3} \rfloor$ . Depending on *n*, using the Bose construction, the Skolem construction or the 6k + 5 construction given in Section 2 and the quasigroups of Example 1, construct an STS(n) or a PBD(n).

If t = 0, then it is easy to find a set T with parameters (m, t). Assume  $5 \le m \le k + 5$  and m is odd.

(a) If  $1 \le t \le \frac{m-5}{2}$ , then define

 $T = \{l_1, i_1, (l-i)_1 \mid 1 \le i \le t\} \cup \{j_1 \mid t+1 \le j \le m-4-t\} \cup \{(\sigma(l))_2, 1_3, (\sigma^{-1}(k+2)-1)_3\}.$ 

(b) If  $\frac{m-5}{2} < t < m - 5$ , then define

$$T = \left\{ l_1, i_1, (l-i)_1 \mid 1 \le i \le \frac{m-5}{2} \right\} \cup \{ (\sigma(l))_2, (\sigma(2(m-5-t)))_2, (\sigma(m-5))_2, (\sigma(2l-m+5))_2 \}$$

(c) If  $m - 5 \le t < 3(\frac{m-5}{2})$ , then define

$$T = \left\{ l_1, i_1, (l-i)_1 \mid 1 \le i \le \frac{m-5}{2} \right\} \cup \{ (\sigma(l))_2, (\sigma(1))_2, (\sigma(3(m-5)-2t))_2, (\sigma(2l-m+5))_2 \}$$

(d) If  $3(\frac{m-5}{2}) \le t \le 2m - 11$ , then define

$$T = \left\{ l_1, i_1, (l-i)_1 \mid 1 \le i \le \frac{m-5}{2} \right\} \cup \{ (\sigma(l))_2, (\sigma(1))_2, (\sigma(l-1))_2, (\sigma(4(m-5)-2t))_2 \}$$

The set *T* given above satisfies the conditions of Lemma 2 (with an appropriate renaming of elements of *S*). If  $m \ge 11$  then  $2m - 11 \ge \frac{3m-11}{2}$ , hence, for each  $11 \le m \le k + 5$  and  $0 \le t \le \frac{3m-11}{2}$ , we are done. Moreover, by the construction above there exists such a set *T* for (m, t) = (5, 0),  $(m = 7, 0 \le t \le 3)$ ,  $(m = 9, 0 \le t \le 7)$ . For (m, t) = (5, 1), let  $T = \{1_1, (l-1)_1, (\sigma(l))_2, 1_2, (l-1)_2\}$ . For (m, t) = (7, 4), let  $T = \{1_1, (l-1)_1, 2_1, (l-2)_1, (\sigma(l))_2, (\sigma(l-1))_2\}$ .

Now we construct a set *T* with parameters (m, t) = (9, 8). Since  $m \le k+5$ , we have  $n \ge 25$ . Now if  $n \equiv 1, 3 \pmod{6}$ , then by Theorem A there is an *STS*(*n*) containing an *STS*(9) on the set  $T_0 = \{1, 2, ..., 9\}$ . So the set  $T = T_0 \cup \{10\} - \{9\}$  is the desired set with parameters (m, t) = (9, 8). If  $n \equiv 5 \pmod{6}$ , then we consider an idempotent commutative quasigroup containing a sub-quasigroup of order 3 (see Proposition 1). Without loss of generality we can assume that  $\{1, 2, 3\}$  is the sub-quasigroup of order 3. Then by applying this quasigroup to the 6k + 5 construction (see Section 2), we construct a *PBD*(*n*) and define  $T = \{\infty_1, \infty_2, 3_1, i_1, i_2, i_3 \mid i = 1, 2\}$ . The set *T* is the desired set (with an appropriate renaming of elements of *S*).

**Lemma 4.** Let  $n \ge 13$  be an odd integer and  $k = \lfloor \frac{n}{6} \rfloor$ . For every even integer  $m, 4 \le m \le k + 5$  and every integer  $t, 0 \le t \le m - 4$ , there exists an STS(n) or PBD(n) and a set T satisfying the conditions of Lemma 2. Moreover, when  $n \ge 19$  and  $n \ne 6k + 5$  such an STS and a set T exist for  $(m, t) \in \{(6, 4), (8, 8)\}$ ,

**Proof.** Let  $l = \lfloor \frac{n}{3} \rfloor$ . Consider the *STS*(*n*) or *PBD*(*n*) as in the proof of Lemma 3.

If t = 0, then it is easy to find a set T with parameters (m, t). Assume  $4 \le m \le k + 5$  and m is even.

(a) If  $1 \le t \le \frac{m-4}{2}$ , then define

$$T = \{l_1, i_1, (l-i)_1 \mid 1 \le i \le t\} \cup \{j_1 \mid t+1 \le j \le m-4-t\} \cup \{(\sigma(l))_2, 1_3, (\sigma^{-1}(k+2)-1)_3\}$$

(b) If  $\frac{m-4}{2} < t < m - 4$ , then define

$$T = \left\{ l_1, i_1, (l-i)_1 \mid 1 \le i \le \frac{m-4}{2} \right\} \cup \{ (\sigma(l))_2, (\sigma(2(m-4-t)))_2, (\sigma(m-4))_2 \}.$$

(c) If t = m - 4, then define

$$T = \left\{ l_1, i_1, (l-i)_1 \mid 1 \le i \le \frac{m-4}{2} \right\} \{ (\sigma(l))_2, (\sigma(1))_2, (\sigma(m-4))_2 \}.$$

The set *T* given above satisfies the conditions of Lemma 2 (with an appropirate renaming of elements of *S*). Now, assume  $n \ge 19$  and  $n \ne 6k + 5$ , we construct sets *T* with parameters (m, t) = (6, 4), (8, 8). By Theorem A there is an *STS*(*n*) containing the *STS*(7) on points  $\{1, 2, ..., 7\}$ . Now let  $T = \{1, 2, ..., 6\}$ , it is clear that *T* is a set satisfying the conditions of Lemma 2 with parameters (m, t) = (6, 4). Also there is an *STS*(*n*) containing the *STS*(9) on points  $\{1, 2, ..., 9\}$ . Now let  $T = \{1, 2, ..., 6\}$ , it is clear that *T* is a set satisfying the conditions of Lemma 2 with parameters (m, t) = (6, 4). Also there is an *STS*(*n*) containing the *STS*(9) on points  $\{1, 2, ..., 9\}$ . Now let  $T = \{1, 2, ..., 8\}$ , it is clear that *T* is a set satisfying the conditions of Lemma 2 with parameters (m, t) = (8, 8).

**Theorem 4.** For every integer  $n, n \ge 17$ , Kneser graph K(n, 2) is b-continuous.

**Proof.** We prove the theorem for two cases *n* odd and *n* even. Let X(n) be the set of numbers *x* for which there is a *b*-coloring of K(n, 2) by *x* colors.

Case 1. n is odd.

In this case we prove the theorem by induction on *n*. Assume for an odd integer  $n, n \ge 19$ , that K(n-2, 2) is *b*-continuous. Therefore, by the definition and Theorem 3, for every integer  $x, n-4 \le x \le \lfloor \frac{(n-2)(n-3)}{6} \rfloor$ , we have  $x \in X(n-2)$ . We consider a *b*-coloring of K(n-2, 2) with *x* colors and provide a *b*-coloring of K(n, 2) by x + 2 colors. For this purpose, we add two new color classes  $\{\{n, i\} \mid 1 \le i \le n-1\}, \{\{n-1, i\} \mid 1 \le i \le n-2\}$ . This coloring satisfies the conditions of Lemma 1, so it is a *b*-coloring. To prove the *b*-continuity of K(n, 2) it is enough to prove  $x \in X(n)$  for every integer *x*,  $3 + \lfloor \frac{(n-2)(n-3)}{6} \rfloor \le x \le \lfloor \frac{n(n-1)}{6} \rfloor = \varphi$ . For this purpose, let  $\psi = \lfloor \frac{n(n-1)}{6} \rfloor - \lfloor \frac{(n-2)(n-3)}{6} \rfloor - 3$ .

# **Table 1** The values are $\frac{m(m-3)}{2} - 2t + 1$ .

| t | m |   |   |    |    |
|---|---|---|---|----|----|
|   | 3 | 4 | 5 | 6  | 7  |
| 0 | 1 | 3 | 6 | 10 | -  |
| 1 |   |   | 4 | 8  | 13 |
| 2 |   |   |   | 6  | 11 |
| 3 |   |   |   |    | 9  |
| 4 |   |   |   |    | 7  |

**Claim.** For every integer *x*,  $1 \le x \le \psi$ , we have  $\varphi - x \in X(n)$ .

**Proof of claim.** Let  $\mathcal{A}$  be the set of all positive integers x such that there exists a set  $T \subseteq \{1, 2, ..., n\}$  which satisfies the assumptions of Lemma 2 with parameters (m, t), and  $\frac{m(m-3)}{2} - 2t = x$ .

*Case* 1.1. n = 6k + 1 or n = 6k + 3,  $k \ge 3$ .

By Lemma 2(a), it is enough to show that for every  $x, 1 \le x \le \psi, x \in A$ . By Lemma 4 there exists a set T with parameters (m, t) = (6, 4), (m, t) = (8, 8). Therefore,  $1, 4 \in A$ . Moreover, by Lemma 3, for every odd integer  $m, 5 \le m \le k+5$ , we have  $\frac{m(m-3)}{2}, \frac{m(m-3)}{2}-2, \ldots, \frac{m(m-3)}{2}-(3m-11) = \frac{(m-3)(m-6)}{2}+2 \in A$ . Also by Lemma 4, for every even integer  $m, 4 \le m \le k+5$ , we have  $\frac{m(m-3)}{2}, \frac{m(m-3)}{2}-2, \ldots, \frac{m(m-3)}{2}-(m-4) = \frac{(m-1)(m-4)}{2}+2 \in A$ . Therefore,  $1, 2, 3, 4, \ldots, \frac{(k+3)k}{2}+1 \in A$ . Since  $\frac{(k+3)k}{2}+1 \ge 4k-2 \ge \psi$ , we are done.

*Case* 1.2. n = 6k + 5.

By Lemma 2(b), it is enough to show that for every integer  $x, 0 \le x \le \psi - 1, x \in A$ . All things in Case 1.1 hold in this case as well, except the set T with parameters (m, t) = (6, 4), (8, 8). So we have  $\{1, 2, 3, \dots, \psi - 1\} - \{1, 4\} \subseteq A$ . Also there exists a set T with parameters (m, t) = (3, 0) satisfying Lemma 2(b). Thus  $0 \in A$ .

To complete the proof, we show that  $\varphi - 2$  and  $\varphi - 5$  are in X(n). Consider the quasigroup of Example 1 and construct a *PBD*(*n*) using the 6k + 5 construction. Let *c* be the *b*-coloring of K(n, 2) corresponding to this *PBD* by  $\varphi$  colors (see Proposition 3) where  $\infty_1, \infty_2$  are the centers of the starlike color classes. Now let  $T = \{\infty_1, \infty_2, (2k + 1)_1, 2_1, 1_2\}$ , delete all triangular color classes containing a vertex  $\{i, j\} \subseteq T$  and define 3 new starlike color classes with centers  $(2k+1)_1, 2_1, 1_2$ , delete color classes are triangles  $\{(2k + 1)_1, 2_1, 1_2\}, \{\infty_1, 2_1, 1_3\}, \{\infty_2, 2_1, 2_2\}, \{\infty_1, 1_2, 1_1\}$  and  $\{\infty_2, 1_2, 1_3\}$ . Thus new coloring is a *b*-coloring by  $\varphi - 5 + 3$  colors. Now let  $T = \{\infty_1, \infty_2, 2_1, 2_2, 2_3, (2k+1)_2, (2k+1)_3\}$ , delete all triangular color classes containing a vertex  $\{i, j\} \subseteq T$  and define 5 new starlike color classes with centers  $2_1, 2_2, 2_3, (2k + 1)_2, (2k + 1)_3$ . Since we have deleted 10 triangular color classes, we obtain a *b*-coloring of K(n, 2) by  $\varphi - 5$  colors. So the claim is proved.

To complete the induction we need to show that K(17, 2) is *b*-continuous. By Lemmas 3 and 4, there is a set *T* satisfying the conditions of Lemma 2 with parameters (m, t) shown in Table 1. The values in the table are  $x = \frac{m(m-3)}{2} - 2t + 1$ . Therefore, by Lemma 2(b) for the values *x* given in Table 1,  $\varphi(K(17, 2)) - x = 45 - x \in X(17)$ . Moreover, as it is proved in Cases 1.2,  $\varphi(K(17, 2)) - 2$  and  $\varphi(K(17, 2)) - 5$  are in X(17). Hence, for every *i*,  $34 \le i \le 45$ ,  $i \in X(17)$ .

Similarly, by Lemma 2(a) for the values x given in Table 1,  $\varphi(K(15, 2)) - x - 1 = 34 - x \in X(15)$ . Therefore, for every *i*,  $25 \le i \le 35$  and  $i \ne 31, 34, i \in X(15)$ . By a similar discussion, for every *i*,  $16 \le i \le 26$  and  $i \ne 22, 25, i \in X(13)$ . We have already proved that  $x \in X(n - 2)$  implies  $x + 2 \in X(n)$ . Therefore, for every *i*,  $20 \le i \le 37$  and  $i \ne 26, 33, i \in X(17)$ . By Lemma 3, for n = 13, 15, 17 there is a set  $T \subseteq \{1, 2, ..., n\}$  with parameters (m, t) = (9, 8). Thus, by Lemma 2,  $33 \in X(17)$ ,  $24 \in X(15)$  and  $15 \in X(13)$ , so  $26, 19 \in X(17)$ . Finally, for n = 13 there is a set T with parameters (m, t) = (7, 1), (9, 7), so  $14, 13 \in X(13)$ , thus  $18, 17 \in X(17)$ . We can easily see that  $16 \in X(17)$  by constructing a *b*-coloring with 16 starlike color classes. This assures *b*-continuity of K(17, 2).

#### Case 2. n is even.

Let  $n \ge 18$  be an even integer. Then K(n-1, 2) is *b*-continuous and  $x \in X(n-1)$  holds whenever  $n-3 \le x \le \lfloor \frac{(n-1)(n-2)}{6} \rfloor$ . Now we add a new color class  $\{\{n, i\} \mid 1 \le i \le n-1\}$  to this coloring. This is a *b*-coloring of K(n, 2) by x + 1 colors. Hence  $y \in X(n)$  for every integer y with  $n-2 \le y \le \lfloor \frac{(n-1)(n-2)}{6} \rfloor + 1 = \varphi - 2$ . It is enough to prove  $\varphi - 1 = \lfloor \frac{(n-1)(n-2)}{6} \rfloor + 2 \in X(n)$ . For this purpose, consider the *b*-coloring of K(n, 2) by  $\varphi$  colors in the proof of Theorem 3. Assume that  $\{a, x, y\}$  and  $\{b, x, z\}$  are two triangular color classes, where a and b are the centers of some starlike color classes, A and B. We delete them and add a new starlike color class  $\{\{x, y\}, \{x, z\}, \{x, a\}, \{x, b\}\}$ . Finally, we add vertex  $\{a, y\}$  to the starlike color class A and the vertex  $\{b, z\}$  to the starlike color class B. The obtained coloring satisfies the conditions of Lemma 1 therefore, is a b-coloring of K(n, 2) by  $\varphi - 1$  colors.

#### References

<sup>[1]</sup> D. Barth, J. Cohen, T. Faik, On the *b*-continuity property of graphs, Discrete Applied Mathematics 155 (13) (2007) 1761–1768.

<sup>[2]</sup> C.J. Colbourn, A. Rosa, Triple Systems, Oxford Science Publications, 1999.

- [3] T. Faik, About the *b*-continuity of graphs, Electronic Notes in Discrete Mathematics 17 (2004) 151–156.
  [4] R.W. Irving, D.F. Manlove, The *b*-chromatic number of a graph, Discrete Applied Mathematics 91 (1999) 127–141.
  [5] R. Javadi, B. Omoomi, On *b*-coloring of cartesian product of graphs, Ars Combinatoria (in press).
  [6] M. Kouider, M. Mahéo, Some bounds for the *b*-chromatic number of a graph, Discrete Mathematics 256 (2002) 267–277.

- [7] C.C. Lindner, C.A. Rodger, Design Theory, CRC perss, 1997.
   [8] L. Lovász, Kneser's conjecture, chromatic number, and homotopy, Journal of Combinatorial Theory. Series A 25 (1978) 319–324.