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A µ-simultaneous edge coloring of graph G is a set of µ proper edge colorings of G with
a same color set such that for each vertex, the sets of colors appearing on the edges
incident to that vertex are the same in each coloring and no edge receives the same color
in any two colorings. The µ-simultaneous edge coloring of bipartite graphs has a close
relation with µ-way Latin trades. Mahdian et al. (2000) conjectured that every bridgeless
bipartite graph is 2-simultaneous edge colorable. Luo et al. (2004) showed that every
bipartite graphic sequence S with all its elements greater than one, has a realization that
admits a 2-simultaneous edge coloring. In this paper, the µ-simultaneous edge coloring of
graphs is studied. Moreover, the properties of the extremal counterexample to the above
conjecture are investigated. Also, a relation between 2-simultaneous edge coloring of a
graph and a cycle double cover with certain properties is shown and using this relation,

some results about 2-simultaneous edge colorable graphs are obtained.

Keywords: Simultaneous edge coloring; cycle double cover; oriented cycle double cover;
Latin trades.

1. Introduction

In this paper, all graphs we consider are finite and simple. For notations and defini-
tions, we refer to [5]. This section deals with a brief review of some concepts related
to the main subject of the paper.

Let S be a nonempty proper subset of V (G). The subset [S, S] = {uv ∈ E(G) :
u ∈ S, v ∈ S} of E(G) is called an edge cut. A k-edge cut is an edge cut [S, S], where
|[S, S]| = k. An edge cut F , is called trivial if one of the component in G\F is an
isolated vertex. The edge connectivity of G, κ′(G), is the minimum k for which G has
a k-edge cut and G is said to be k-edge-connected if κ′(G) ≥ k. A 2-edge-connected
graph is called a bridgeless graph. Take any subgraph of a graph G, and contract
some of its edges; the resulting graph will be called a minor of G.
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A proper edge coloring of a graph G is a labeling from E(G) to the color set
[l] = {1, . . . , l} such that adjacent edges have different colors. The edge chromatic

number of G, χ′(G), is the least l such that G admits a proper edge coloring with
color set [l]. A k-factor of graph G is a k-regular spanning subgraph of G, and G is k-

factorable if there are edge disjoint k-factors H1, . . . , Hl such that G = H1∪· · ·∪Hl.
Note that an r-regular graph G is 1-factorable if and only if χ′(G) = r.

We use the term circuit for a connected 2-regular graph and the term cycle (or
even graph) for a graph that all its vertices have even degrees. A cycle double cover

(CDC), C, of a graph G is a collection of its cycles such that every edge of G is
contained in precisely two cycles in C and a k-cycle double cover (k-CDC) of G is
a CDC of G such that consisting of at most k cycles of G. Note that the cycles
are not necessarily distinct. A necessary condition for a graph to have a CDC is
the bridgeless property. Seymour [20] in 1979 conjectured that this condition is also
sufficient.

Conjecture 1 ([20]). (CDC conjecture) Every bridgeless graph has a CDC.

No counterexample to the CDC conjecture is known. It is proved that the min-
imal counterexample to the CDC conjecture is a bridgeless cubic graph with edge
chromatic number equal to 4, which is called a snark. The CDC conjecture has many
stronger forms, one of which is the following conjecture. An oriented cycle double

cover (OCDC) of a graph G is a CDC of G in which every circuit can be oriented
in such a way that every edge of the graph is covered by two directed circuits in
two different directions.

Conjecture 2 ([13]). (OCDC conjecture) Every bridgeless graph has an OCDC.

The concept of CDC has a relation with nowhere-zero flow in graphs. Some
necessary relations of these two concepts are presented in what follows.

Let G be a simple graph and (D, f) be an ordered pair, where D is an orientation
of E(G) and f is a weight on E(G) to Z. For each v ∈ V (G), denote

f+(v) =
∑

f(e) and f−(v) =
∑

f(e),

where the summation is taken over all directed edges of G (under the orientation D)
with heads and tails, respectively, at the vertex v. An integer flow of G is an ordered
pair (D, f) such that for every vertex v ∈ V (G), f+(v) = f−(v). The support of f ,
supp(f), is the set of the edge e ∈ E(G) that f(e) �= 0. A nowhere-zero k-flow of G

is an integer flow (D, f) such that supp(f) = E(G) and −k < f(e) < k, for every
e ∈ E(G) and is denoted by k-NZF.

Theorem A ([24]). (i) If every edge of a graph G is contained in a circuit of
length at most 4, then G admits a 4-NZF.

(ii) A graph G admits a 4-NZF if and only if G has a 4-CDC.
(iii) A graph G admits a 4-NZF if and only if G has an OCDC consists of four

directed cycles.
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Let G be a bipartite graph with bipartition (X, Y ). The bipartite degree sequence
of G is the sequence (x1, x2, . . . , xn; y1, y2, . . . , ym), where (x1, x2, . . . , xn) are the
degrees of vertices in X and (y1, y2, . . . , ym) are the degrees of vertices in Y . A
sequence S of positive integers is called a bipartite graphic sequence if there exists a
bipartite graph G whose bipartite degree sequence is S; if so then the graph G is
called a realization of S.

Definition 1 ([16]). A µ-simultaneous edge coloring of graph G is a set of µ proper
edge colorings of G with the color set [l], say (c1, c2, . . . , cµ), such that

• for each vertex, the sets of colors appearing on the edges incident to that vertex
are the same in each coloring;

• no edge receives the same color in any two colorings.

If G has a µ-simultaneous edge coloring, then G is called a µ-simultaneous edge

colorable graph. The minimum l that there exists a µ-simultaneous edge coloring
of G with the color set [l], is called µ − SE chromatic number of G and denoted by
χ′

µ−SE(G).

Note that in every µ-simultaneous edge coloring of a graph G, µ ≤ degG(v), for
every v ∈ V (G), because every edge e = uv ∈ E(G) admits µ different colors, which
appeared on the edges incident to v.

Observation. If G is a µ-simultaneous edge colorable graph, then µ ≤ δ(G), where
δ(G) is the minimum degree of G. Moreover,

∆(G) ≤ χ′(G) = χ′
1−SE(G) ≤ χ′

2−SE(G) ≤ · · · ≤ χ′
µ−SE(G).

There are some graphs G with χ′(G) < χ′
µ−SE(G); for example in the next

section we show that for graph G shown in Fig. 1, χ′
2−SE(G) ≤ 4, and by a case

study, it can be checked that G has no 2-simultaneous edge coloring with three
colors. Thus, χ′

2−SE(G) = 4 while χ′(G) = 3. In this case, χ′
2−SE(G) = ∆(G) + 1.

This is a natural question: Is it true that ∆(G) ≤ χ′
2−SE(G) ≤ ∆(G) + 1?

At the 16th British Combinatorial Conference (1997), Cameron introduced the
concept 2-simultaneous edge coloring. He use this concept to reformulate a conjecture
of Keedwell (1994) on the existence of critical partial Latin squares of given type.

Fig. 1. χ′(G) = 3 and χ′
2−SE(G) = 4.
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In fact, he conjectured (called SE conjecture) that for each bipartite graphic sequence
S with all its elements greater than one, there exists a 2-simultaneous edge colorable
realization.

Mahdian et al. in [16] showed that the 2-simultaneous edge coloring of every
bipartite graph is equivalent to an OCDC of that graph. Also, they conjectured
that every bridgeless bipartite graph is 2-simultaneous edge colorable.

Theorem B ([16]). Every bipartite graph G is 2-simultaneous edge colorable if
and only if G has an OCDC.

Conjecture 3 ([16]). (Strong SE conjecture) Every bridgeless bipartite graph is
2-simultaneous edge colorable.

Luo et al. in [15] showed that every bipartite graphic sequence S with all its
elements greater than one, has a realization that admits a 4-NZF. Thus, by Theo-
rems A(iii) and B, they proved that the SE conjecture is true.

In Sec. 2, we see the relation between µ-simultaneous edge coloring and µ-way
Latin trade, also, we give some sufficient conditions for graphs to be µ-simultaneous
edge colorable. In Sec. 3, we consider the case µ = 2. First, some properties for the
extremal counterexample to the strong SE conjecture are given; then, we discuss on
2-simultaneous edge coloring for general graphs and introduce some 2-simultaneous
edge colorable graphs and some graphs which have no 2-simultaneous edge coloring.

2. µ-Simultaneous Edge Coloring and µ-Way Latin Trade

A partial Latin square P of order n is an n × n array of elements from the set
[n] = {1, . . . , n}, where each element of [n] appears at most once in each row and
at most once in each column. We can represent each partial Latin square, P , as a
subset of [n] × [n] × [n],

P = {(i, j; k) : element k is located in position (i, j)}.
The partial Latin square P is called symmetric if (i, j; k) ∈ P if and only if (j, i; k) ∈
P . The set SP = {(i, j) : (i, j; k) ∈ P, 1 ≤ k ≤ n} of the partial Latin square P is
called the shape of P and |SP | is called the volume of P . By Ri

P and Cj
P , we mean

the set of entries in row i and column j, respectively of P .
A µ-way Latin trade, (T1, . . . , Tµ), of volume s and order n is a collection of µ

partial Latin squares T1, . . . , Tµ of order n, containing exactly the same s filled cells,
such that if cell (i, j) is filled, it contains a different entry in each of the µ partial
Latin squares, and row i in each of the µ partial Latin squares contains, set-wise,
the same symbols and column j, likewise. If µ = 2, (T1, T2) is called a Latin bitrade.
The volume spectrum Sµ for all µ-way Latin trades is the set of possible volumes of
µ-way Latin trades. For a survey on this topic, see [3, 6, 14].

For every µ-way Latin trade T = (T1, . . . , Tµ) of volume s, there exists a µ-
simultaneous edge colorable bipartite graph G with s edges and bipartite degree
sequence S = (|R1

T |, . . . , |Rn
T |; |C1

T |, . . . , |Cm
T |). In fact, G = (X, Y ) is a bipartite
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graph, where X = {x1, . . . , xn} and Y = {y1, . . . , ym} such that for every filled
cell (i, j) in T , there is an edge between xi and yj and the element that located in
position (i, j) of Tk is the color of edge xiyj in the kth coloring of µ-simultaneous
edge coloring of G, for 1 ≤ k ≤ µ.

In general, for every symmetric µ-way Latin trade T = (T1, . . . , Tµ) of volume
s that (i, i) /∈ ST , for every i, there exists a µ-simultaneous edge colorable graph
G with 1

2s edges and degree sequence S = (|R1
T |, . . . , |Rn

T |). In fact, G is a graph,
where V (G) = {v1, . . . , vn} such that for every filled cell (i, j) in T , there is an
edge between vi and vj and the element that located in position (i, j) of Tk is the
color of edge vivj in the kth coloring of µ-simultaneous edge coloring of G, for
1 ≤ k ≤ µ.

In Fig. 2, a Latin bitrade, T = (T1, T2), of volume 10 is demonstrated. (• means
the cell is empty.) In fact, T is the Latin bitrade corresponding to a 2-simultaneous
edge coloring of the graph G that showed in Fig. 1. Therefore, χ′

2−SE(G) ≤ 4.
Since Luo et al. in [15] showed that each bipartite graphic sequence S with all its

elements greater than 1, has a 2-simultaneous edge colorable bipartite realization,
we have

S2 = N\{1, 2, 3, 5}.
Theorem C ([1, 2]). The volume spectrums for all µ-way Latin trades, µ = 3, 4, 5
are

S3 = N\([1, 8] ∪ {10, 11, 13, 14});
S4 = N\([1, 15] ∪ {17, 18, 19, 21, 22, 26});
S5 = N\([1, 24] ∪ [26, 29] ∪ {31, 32, 33, 37, 38}).

Let S = (3, 3, 3, 4; 3, 3, 3, 4) be a bipartite graphic sequence. By Theorem C,
there is no 3-way Latin trade of volume 3 + 3 + 3 + 4 = 13. Thus, the bipartite
graph G = (X, Y ) with X = {x1, x2, x3, x4} and Y = {y1, y2, y3, y4} and E(G) =
{xiyj : 1 ≤ i �= j ≤ 4}∪{x4y4} is not 3-simultaneous edge colorable. Note that G is
a 3-edge-connected bipartite graph. Therefore, the generalization of the strong SE
conjecture and SE conjecture are not true.

One can ask the following two natured questions related to this concept.

Fig. 2. T = (T1, T2) a Latin bitrade of volume 10.
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Question 1. Is there a positive integer sµ such that every µ-edge-connected bipar-
tite graph with at least sµ edges admits a µ-simultaneous edge coloring?

Question 2. Is there a positive integer sµ such that each bipartite graphic sequence
S = (x1, . . . , xn; y1, . . . , ym) with all its elements greater than µ−1 and

∑
1≤i≤n xi ≥

sµ, there exists a µ-simultaneous edge colorable bipartite realization?

In [7], Edmonds showed that every graphic degree sequence, with all degrees at
least µ ≥ 2, has a µ-edge-connected realization. In [10], Hajiaghaee et al. proved
that every bipartite graphic sequence, with all degrees at least 2µ (µ ≥ 1), has a
2µ-edge-connected realization. In the following theorem, we prove a generalization
of these theorems; every bipartite graphic sequence, with all elements greater than
µ − 1, has a µ-edge-connected bipartite realization. Therefore, if the response of
Question 1 is positive, then the response of Question 2 is also positive. For this
purpose, we need the following theorem.

Theorem D ([16]). For every bipartite graphic sequence S with all its elements
greater than one, there exists a 2-edge-connected realization.

Theorem 1. Every bipartite graphic sequence S with all its elements greater than
µ − 1, µ ≥ 3, has a µ-edge-connected realization.

Proof. Let r be the maximum edge connectivity among all realizations of the
bipartite graphic sequence S and r ≤ µ − 1. By Theorem D, r ≥ 2. Also, let
G = (X, Y ) be a bipartite realization of S with the edge connectivity κ′(G) = r,

and G has the minimum number of r-edge cuts. Assume that F = {e1, e2, . . . , er}
is an r-edge cut of G. Therefore, G\F has exactly two components G1 and G2.

First, we show that G1 and G2 are bridgeless. Otherwise, without loss of gen-
erality, assume that e = uv ∈ E(G1) is a cut edge of G1 and G11 and G12 are
components of G1\{e}.

If r = 2 and S1 is the bipartite degree sequence of G1, then by Theorem D,
there is a bridgeless bipartite graph G′

1 with the degree sequence S1. Thus, G′ =
(G\E(G1))∪E(G′

1) is a realization of S with the same edge connectivity as G and
the number of its r-edge cuts is less than the number of r-edge cuts of G, which is
a contradiction.

If r ≥ 3 and Fi is the edges between G1i and G2, i = 1, 2, then F = F1 ∪F2 and
for some i, say i = 2, |F2| ≥ 2. Therefore, F ′ = F1 ∪ {e} is an edge cut of size at
most r − 1, which is a contradiction. Thus, G1 and G2 are bridgeless. Hence, in the
bridgeless components G1 and G2, every edge lies in a circuit.

Since δ(G) ≥ µ, for every vi ∈ V (Gi), i = 1, 2, there exists a vertex v′i ∈ V (Gi)∩
NG(vi) such that NG(v′i) ⊆ V (Gi); so, there exists a vertex v′′i ∈ V (Gi) ∩ NG(v′i)
such that NG(v′′i ) ⊆ V (Gi).

Let vi ∈ V (Gi) ∩ X and Ci be a circuit in Gi such that ei = v′iv
′′
i ∈ E(Ci),

i = 1, 2. Now by switching two edges e1 and e2 with two edges v′1v′′2 and v′2v′′1 , we
obtain a bipartite graph G′ with the same degree sequence as G in which F is not
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an r-edge cut anymore, and no new r-edge cut is appeared. This contradicts the
minimality of the number of r-edge cuts in G. Therefore, r ≥ µ and this completes
the proof.

Mahdian et al. showed that there exists an infinite family of µ-simultaneous
edge colorable graphs. In the rest of this section, we consider µ-simultaneous edge
colorings of complete graphs, complete bipartite graphs and some graph operations
such as join and graph product.

Theorem E ([16]). Every r-regular 1-factorable graph is µ-simultaneous edge col-
orable for every µ ≤ r.

For example, every complete graph K2l, l ≥ 2, is µ-simultaneous edge colorable
for every µ ≤ 2l− 1; every complete bipartite graph Kn,n, n ≥ 2, is µ-simultaneous
edge colorable for every µ ≤ n; every complete multipartite graph Kr1,r2,...,rn , when
r1 = · · · = rn = r, n ≥ 2, and rn is even, is µ-simultaneous edge colorable for every
µ ≤ (n−1)r; and every hypercube graph Qn, n ≥ 1, is µ-simultaneous edge colorable
for every µ ≤ n.

An m × n µ-way Latin trade is a µ-way Latin trade of order n, (T1, . . . , Tµ),
containing exactly the same n − m empty rows, for n ≥ m ≥ µ.

Theorem F ([1]). If µ ≤ m ≤ n, then there exists an m× n µ-way Latin trade of
volume mn.

Corollary 1. Every Km,n admits a µ-simultaneous edge coloring, for µ ≤ m ≤ n.
Moreover, χ′

µ−SE(Km,n) = n.

The join of two simple graphs G and H , G ∨ H , is the graph obtained from the
disjoint union of G and H by adding the edges {uv : u ∈ V (G), v ∈ V (H)}.

Theorem 2. Let Gi be a µ-simultaneous edge colorable graph of order ni ≥ 2. The
join graph G1 ∨ G2 has a µ-simultaneous edge coloring.

Proof. Since Gi’s has a µ-simultaneous edge coloring, for µ ≤ min{n1, n2}, by
Corollary 1, Kn1,n2 has a µ-simultaneous edge coloring. Now we define a µ-
simultaneous edge coloring of G1 ∨ G2 by a µ-simultaneous edge coloring of the
copy Gi in G1 ∨ G2 with the color set {1, . . . , χ′

µ−SE(Gi)}, i = 1, 2, and a µ-
simultaneous edge coloring of the copy Kn1,n2 in G1 ∨ G2 with the color set
{r + 1, . . . , r + ∆(Kn1,n2)}, where r = max{χ′

µ−SE(G1), χ′
µ−SE(G2)}.

Proposition 1. The complete graphs K7 and K9 admit a µ-simultaneous edge
coloring, for µ = 2, 3.

Proof. Let V (K7) = {v1, v2, . . . , v7} be the vertex set of K7. The following color-
ings, (c1, c2, c3), is a 3-simultaneous edge coloring of K7, where cµ, is a proper edge
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coloring of K7 with color set {1, 2, . . . , 7}, and vivj : l1, l2, l3 means cµ(vivj) = lµ,
µ = 1, 2, 3.

v1v2 : 5, 7, 6; v1v3 : 2, 3, 1; v1v4 : 3, 2, 7; v1v5 : 6, 1, 5;

v1v6 : 7, 6, 3; v1v7 : 1, 5, 2;

v2v3 : 7, 2, 5; v2v4 : 6, 1, 4; v2v5 : 1, 6, 7; v2v6 : 4, 5, 2; v2v7 : 2, 4, 1;

v3v4 : 1, 7, 2; v3v5 : 4, 5, 3; v3v6 : 5, 4, 7; v3v7 : 3, 1, 4;

v4v5 : 7, 4, 1; v4v6 : 2, 3, 6; v4v7 : 4, 6, 3;

v5v6 : 3, 7, 4; v5v7 : 5, 3, 6;

v6v7 : 6, 2, 5.

Let V (K9) = {v1, v2, . . . , v9} be the vertex set of K9. The following colorings,
(c1, c2, c3), are a 3-simultaneous edge coloring of K9, where cµ, is a proper edge
coloring of K9 with color set {1, 2, . . . , 9}, and vivj : l1, l2, l3 means cµ(vivj) = lµ,
µ = 1, 2, 3.

v1v2 : 2, 3, 4; v1v3 : 1, 4, 3; v1v4 : 4, 1, 2; v1v5 : 3, 2, 6; v1v6 : 6, 7, 8;

v1v7 : 7, 8, 5; v1v8 : 8, 5, 1; v1v9 : 5, 6, 7;

v2v3 : 9, 5, 6; v2v4 : 5, 9, 7; v2v5 : 6, 7, 8; v2v6 : 3, 8, 9;

v2v7 : 8, 4, 2; v2v8 : 4, 6, 5; v2v9 : 7, 2, 3;

v3v4 : 6, 7, 9; v3v5 : 7, 8, 5; v3v6 : 8, 6, 1; v3v7 : 4, 1, 7;

v3v8 : 5, 3, 8; v3v9 : 3, 9, 4;

v4v5 : 8, 6, 1; v4v6 : 7, 2, 4; v4v7 : 1, 5, 8; v4v8 : 9, 8, 6; v4v9 : 2, 4, 5;

v5v6 : 9, 1, 7; v5v7 : 5, 3, 9; v5v8 : 2, 9, 3; v5v9 : 1, 5, 2;

v6v7 : 2, 9, 3; v6v8 : 1, 4, 2; v6v9 : 4, 3, 6;

v7v8 : 3, 2, 4; v7v9 : 9, 7, 1;

v8v9 : 6, 1, 9.

Theorem 3. Every complete graph Kn, except for n = 2, 3, 5 admits a µ-
simultaneous edge coloring, for µ = 2, 3.

Proof. It is easy to check that K2 and K3 are not 2-simultaneous edge colorable. By
Proposition 2 in Sec. 3, we will show that K5, has no 2-simultaneous edge coloring.
By Theorem E, K2l, l ≥ 2 admits a µ-simultaneous edge coloring, µ = 2, 3. Since
Kn = Kn−4∨K4, by induction on n and by Proposition 1 and Theorem 2, for every
n ≥ 10, Kn admits a µ-simultaneous edge coloring, µ = 2, 3.

The Cartesian product of two graphs G and H , denoted by G�H , is the graph
with vertex set V (G)×V (H) and two vertices (u, v) and (u′, v′) are adjacent if and
only if either u = u′ and vv′ ∈ E(H) or uu′ ∈ E(G) and v = v′.
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In the following theorems, we present some sufficient conditions for µ-
simultaneous edge colorable of G�H in general.

Theorem 4. Let G and H be r-regular and s-regular graphs, respectively. If H is
1-factorable, then G�H is µ-simultaneous edge colorable for every µ ≤ r + s.

Proof. Suppose that G and H are r-regular and s-regular graphs, respectively.
Therefore, G�H is an (r+s)-regular graph. Since H is 1-factorable, we have χ′(H) =
∆(H) and by a theorem in [17], χ′(G�H) = ∆(G�H) = r+s. Thus by Theorem E,
G�H is µ-simultaneous edge colorable for every µ ≤ r + s.

Corollary 2. (i) For every positive integers n ≥ 2 and m ≥ 3, C2n�Cm is µ-
simultaneous edge colorable for every µ ≤ 4.

(ii) Let G be r-regular. Then, G�K2n, n ≥ 1, is µ-simultaneous edge colorable for
every µ ≤ r + 2n − 1.

Theorem 5. Let G and H be two µ-simultaneous edge colorable graphs. The
Cartesian product G�H is also µ-simultaneous edge colorable. In particular,
χ′

µ−SE(G�H) ≤ χ′
µ−SE(G) + χ′

µ−SE(H).

Proof. Suppose that G and H be two µ-simultaneous edge colorable graphs. It is
sufficient to consider for each copy of G in G�H a µ-simultaneous edge coloring with
color set {1, . . . , χ′

µ−SE(G)} and for each copy of H in G�H a µ-simultaneous edge
coloring with color set {χ′

µ−SE(G) + 1, χ′
µ−SE(G) + 2, . . . , χ′

µ−SE(G) + χ′
µ−SE(H)}.

Obviously, these colorings form a µ-simultaneous edge coloring of G�H .

The lexicographic product of two simple graphs G and H is the simple graph
G[H ] whose vertex set is V (G) × V (H), and two vertices (u, v) and (u′, v′) are
adjacent if and only if uu′ ∈ E(G), or u = u′ and vv′ ∈ E(H).

Theorem 6. If H is µ-simultaneous edge colorable, then for every simple graph G,

G[H ] is also µ-simultaneous edge colorable.

Proof. Let G and H be two simple graphs, V (G) = {u1, . . . , um}, and V (H) =
{v1, . . . , vn}. The graph G[H ] consists of copies H1, . . . , Hm of H , in which the
edge between Hi and Hj are isomorph to a copy of Kn,n, whenever uiuj ∈ E(G).
Let Jij denote the copy of Kn,n corresponds to the edges between Hi and Hj

and cG : E(G) → {1, . . . , χ′(G)} be a proper edge coloring of G. Now for every
Hi, 1 ≤ i ≤ m, define a µ-simultaneous edge coloring the same as µ-simultaneous
edge coloring of H by color set {1, . . . , χ′

µ−SE(H)}. Since by Corollary 1, every
Kn,n has a µ-simultaneous edge coloring, for every Jij define a µ-simultaneous edge
coloring by color set {χ′

µ−SE(H)+(cG(uiuj)−1)n+1, χ′
µ−SE(H)+(cG(uiuj)−1)n+

2, . . . , χ′
µ−SE(H)+(cG(uiuj)−1)n+n}. It is easy to check that these colorings form

a µ-simultaneous edge coloring of G[H ].
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3. 2-Simultaneous Edge Coloring

In this section, we are concerned on the 2-simultaneous edge coloring. First, we
study the properties of the extremal counterexample to the strong SE conjecture.
Then, we consider the 2-simultaneous edge coloring for graphs in general.

If the strong SE conjecture is false, then it must have a minimal counterexam-
ple. We consider the family of counterexamples to the strong SE conjecture with
maximum number of vertices among ones with minimum number of edges.

Theorem 7. Let G be a bridgeless bipartite graph that is not 2-simultaneous edge
colorable with maximum number of vertices among ones with minimum number of
edges, then

(i) G is 2-connected ;
(ii) δ(G) = 2 and ∆(G) = 3;
(iii) G has no nontrivial edge cut of size 2;
(iv) for each v ∈ V (G), which deg(v) = 2, G − v is bridgeless ;
(v) for each v ∈ V (G), if N(v) = {u, w}, then N(u) ∩ N(w) = {v}.

Proof. Let V (G) = X ∪ Y . By Theorem B, G is a bridgeless bipartite graph
with no OCDC while every bridgeless bipartite graph G′ with |E(G′)| < |E(G)| or
|E(G′)| = |E(G)| and |V (G′)| > |V (G)| has an OCDC.

(i) Let v ∈ V (G) be a cut vertex of G. By the minimality of G, every block B of G

has an OCDC, CB. Therefore,

C =
⋃

B is a block of G

CB

is an OCDC of G, which is a contradiction.

(ii) Let v ∈ V (G) be a vertex of degree greater than 3. By Fleischner’s vertex-
splitting lemma [8], there exist two edges e1 = uv and e2 = wv ∈ E(G) such that
G ∪ {uw}\{e1, e2} is bridgeless. Let G′ be the new graph obtained by subdividing
the edge uw in vertex v′. Thus, G′ is bridgeless bipartite graph such that |V (G′)| =
|V (G)|+1 and |E(G′)| = |E(G)|. Therefore, G′ has an OCDC, C′. Let C′

1 and C′
2 be

two directed circuits in C′ that include the directed paths uv′w and wv′u, respec-
tively. Define C1 = C′

1 ∪ {uv, vw}\{uv′, v′w} and C2 = C′
2 ∪ {wv, vu}\{wv′, v′u}.

Then,

C = C′ ∪ {C1, C2}\{C′
1, C

′
2},

is an OCDC of G, which is a contradiction.
If δ(G) �= 2, since G is a bridgeless graph and ∆(G) ≤ 3, G is 3-regular. There-

fore, G is 1-factorable. Thus by Theorem E, G is 2-simultaneous colorable, which
is a contradiction. Hence, δ(G) = 2 and by the same reason ∆(G) = 3.

(iii) Let F = {e1 = ab, e2 = cd} be a disjoint vertex edge cut of G and G1 and G2

be two nontrivial components of G\F such that a, c ∈ V (G1). Note that the case

1450049-10
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a = c or b = d does not occur because if so then we get a bridge in G. We consider
two following cases.

• a, d ∈ X and b, c ∈ Y . If |{ac, bd} ∩ E(G)| = 0, then define G′
1 = G1 ∪ {ac}

and G′
2 = G2 ∪ {bd}. By the edge minimality of G, G′

1 and G′
2 have OCDCs, C1

and C2, respectively. Let C1
1 and C2

1 be two directed circuits in C1 that include
the directed edge ac and ca, respectively. Assume that C1

2 and C2
2 be two directed

circuits in C2 that include the directed edges db and bd, respectively. Define C1 =
C1

1 ∪ C1
2 ∪ {ab, dc}\{ac, db} and C2 = C2

1 ∪ C2
2 ∪ {ba, cd}\{ca, bd}, where uv means

a directed edge from u to v. Thus,

C = C1 ∪ C2 ∪ {C1, C2}\{C1
1 , C2

1 , C1
2 , C2

2},
is an OCDC of G, which is a contradiction.

If |{ac, bd}∩E(G)| = 1, then without loss of generality, assume that ac ∈ E(G)
and define G′

2 = G2 ∪ {bd}. By the edge minimality of G, G1 and G′
2 have OCDCs,

C1 and C2, respectively. Let C1
1 be the directed circuit in C1 that include the directed

edge ac. Assume that C1
2 and C2

2 be two directed circuits in C2 that include the
directed edges db and bd, respectively. Define C1 = C1

1 ∪ C1
2 ∪ {ab, dc}\{ac, db}

and C2 = C2
2 ∪ {ba, ac, cd}\{bd}, where uv means a directed edge from u to v.

Thus,

C = C1 ∪ C2 ∪ {C1, C2}\{C1
1 , C1

2 , C2
2},

is an OCDC of G, which is a contradiction.
If |{ac, bd} ∩ E(G)| = 2, then by the edge minimality of G, G1 and G2 have

OCDCs, C1 and C2, respectively. Let C1
1 be the directed circuit in C1 that include

the directed edge ac. Assume that C1
2 be the directed circuit in C2 that include the

directed edge db. Define C1 = C1
1 ∪C1

2 ∪ {ab, dc}\{ac, db} and C2 = {ac, cd, db, ba},
where uv means a directed edge from u to v. Thus,

C = C1 ∪ C2 ∪ {C1, C2}\{C1
1 , C1

2},
is an OCDC of G, which is a contradiction.

• a, c ∈ X and b, d ∈ Y . Let G′
1 be the graph obtained from G1 by joining a new

vertex v1 to a and c, and G′
2 be the graph obtained from G2 by joining a new

vertex v2 to b and d. By the edge minimality of G, bipartite graphs G′
1 and G′

2

have OCDCs, C1 and C2, respectively. Let C1
1 and C2

1 be two directed circuits in
C1 that include the directed paths av1c and cv1a, respectively. Assume that C1

2

and C2
2 be two directed circuits in C2 that include the directed paths dv2b and

bv2d, respectively. Define C1 = C1
1 ∪ C1

2 ∪ {ab, dc}\{av1, v1c, dv2, v2b} and C2 =
C2

1 ∪C2
2 ∪{ba, cd}\{v1a, cv1, v2d, bv2}, where uv means a directed edge from u to v.

Thus,

C = C1 ∪ C2 ∪ {C1, C2}\{C1
1 , C2

1 , C1
2 , C2

2},
is an OCDC of G, which is a contradiction.
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(iv) If deg(v) = 2, then every bridge in G − v with one of the edges incident on v

forms a nontrivial edge cut of size 2, which is a contradiction.

(v) Suppose that N(v) = {u, w} and v′ ∈ (N(u) ∩ N(w))\{v}. By (iv) and the
minimality of G, G − v has an OCDC, C′. Since degG(v′) ≤ 3, without loss of
generality, there exists a directed circuit C ∈ C′ that include the directed edges uv′

and v′w. Let C1 = C ∪ {uv, vw}\{v′} and C2 = vuv′wv. Then,

C = C′ ∪ {C1, C2}\{C},
is an OCDC of G, which is a contradiction.

In the rest of this section, we consider the 2-simultaneous edge coloring for
graphs in general. For example, the following two colorings is a 2-simultaneous
edge coloring for wheel Wn, n ≥ 3. Assume that V (Wn) = {u, v0, v1, . . . , vn−1}
and E(Wn) = {uvi, vivi+1 (mod n) : 0 ≤ i ≤ n − 1}. Define two edge coloring
fj : E(Wn) → {0, 1, . . . , n − 1}, j = 1, 2, f1(uvi) = i, f1(vivi+1) = i + 2, and
f2(uvi) = i + 2, f2(vivi+1) = i + 1, where the colors and subscripts are reduced
modulo n. It is easy to check that (f1, f2) forms a 2-simultaneous edge coloring of
Wn.

Theorem 8. Let G be a 2-simultaneous edge colorable graph. If G′ is a graph
obtained from G by replacing an edge xy ∈ E(G) with simple path xv1v2 . . . v2ky

such that vi /∈ V (G), 1 ≤ i ≤ 2k, then G′ is also 2-simultaneous edge colorable.

Proof. Let (f1, f2) be a 2-simultaneous edge coloring of G. Without loss of gener-
ality, suppose that fj(xy) = j, j = 1, 2. Define two proper edge colorings f ′

1 and f ′
2

of G′ as follows. f ′
j(xv1) = f ′

j(v2iv2i+1) = f ′
j(v2ky) = j, f ′

j(v2i−1v2i) = 3−j (mod 2),
and f ′

j(e) = fj(e) for e ∈ E(G)\{xy}, 1 ≤ i ≤ k−1, and j = 1, 2. Therefore, (f ′
1, f

′
2)

is a 2-simultaneous edge coloring of G′.

Theorem 9. Let G be a bridgeless graph with girth at least 2k − 1, k ≥ 2. If G is
2-simultaneous edge colorable, then |E(G)| ≥ kχ′(G).

Proof. Let (f1, f2) be a 2-simultaneous edge coloring of G and f j
i = {e ∈ E(G) :

fi(e) = j}, i = 1, 2. Since χ′(G) ≤ χ′
2−SE(G), if |E(G)| < kχ′(G), then for some

j, 1 ≤ j ≤ χ′
2−SE(G), |f j

i | ≤ k − 1 for i = 1, 2. Therefore, the induced subgraph by
f j
1 ∪f j

2 is a union of even circuits of length at most 2k−2, which is a contradiction.

In the following, we provide a relation between 2-simultaneous edge colorings
of a graph with a CDC with certain properties. Then, using this relation, we show
some 2-simultaneous edge colorable graph and also some graph which has no 2-
simultaneous edge coloring.

Theorem 10. A bridgeless graph G is a 2-simultaneous edge colorable if and only
if G has a CDC, C, that satisfies the following properties.
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(i) Every circuit of C is an even circuit.
(ii) C has a partition to at least χ′(G) classes, such that every class is 2-regular.
(iii) Every circuit in C has a proper 2-edge coloring, such that each edge e ∈ E(G)

in different circuits admits two different colors.

Proof. Suppose that (f1, f2) is a 2-simultaneous edge coloring of graph G. Let
f j

i = {e ∈ E(G) : fi(e) = j} for 1 ≤ j ≤ χ′
2−SE(G) and i = 1, 2. The induced

subgraph by Cj = f j
1 ∪f j

2 is a disjoint union of even circuits, for 1 ≤ j ≤ χ′
2−SE(G).

Therefore, C = {Cj : 1 ≤ j ≤ χ′
2−SE(G)} is a CDC of G with properties (i) and (ii).

Now for every edge e in a circuit of Cj , let cj(e) = i, where fi(e) = j, i = 1, 2, one
can see that cj satisfies the property (iii).

Conversely, let C be a CDC, where C1, C2, . . . , Ct is a partition of C such that
Ci, 1 ≤ i ≤ t, is 2-regular and ci is a proper edge coloring of Ci satisfies condition
(iii). Now we define two edge colorings (f1, f2) as follows. For every edge e, if e ∈ Cj

and cj(e) = i, then set fi(e) = j. By the assumption, it is clear that fi, i = 1, 2, is
a proper edge coloring and f1(e) �= f2(e) for every e ∈ E(G). It is enough to show
that the set of colors appear on the edges incident to each vertex are the same. Let
v be an arbitrary vertex of G and u ∈ V (G) be an arbitrary neighbor of v. Without
loss of generality, suppose that f1(uv) = j, 1 ≤ j ≤ t, uv ∈ Cj and cj(uv) = 1. Since
Cj is 2-regular and cj is a proper 2-edge coloring, there exists an edge vw ∈ Cj that
cj(vw) = 2. Therefore, f2(vw) = j. Thus, (f1, f2) is a 2-simultaneous edge coloring
of G.

Szekeres showed that the Petersen graph does not have an even circuit double
cover [22]. Thus we have the following corollary.

Corollary 3. The Petersen graph is not 2-simultaneous edge colorable.

Proposition 2. The complete graph K5 has no 2-simultaneous edge coloring.

Proof. Let (f1, f2) be a 2-simultaneous edge coloring of K5 and f j
i = {e ∈ E(G) :

fi(e) = j}, i = 1, 2 and 1 ≤ j ≤ 5. Since χ′(K5) = 5 and |E(K5)| = 10, the induced
subgraph by f j

1 ∪ f j
2 is a circuit of length 4, for 1 ≤ j ≤ 5. By the isomorphic, there

is exactly one CDC of K5 with even circuits, see Fig. 3. It is easy to check that the
condition (iii) of Theorem 10 does not hold for this CDC, which is a contradiction.

Fig. 3. A CDC of K5 with even circuits.

1450049-13



2nd Reading

August 14, 2014 14:24 WSPC/S1793-8309 257-DMAA 1450049

B. Bagheri Gh. & B. Omoomi

Theorem 11. Let C be an even Hamiltonian circuit of G and G\E(C) be a bipartite
graph. If G\E(C) has an OCDC, then G has a 2-simultaneous edge coloring.

Proof. By Theorem B, G\E(C) is 2-simultaneous edge colorable. Therefore by
Theorem 10, it has a CDC, C′, of even circuits that has a partition to even 2-regular
subgraphs and a proper 2-edge coloring such that each edge of G\E(C) admits two
different colors. Now let C = C′ ∪ {C, C}. It is easily seen that, C satisfies three
conditions of Theorem 10. Thus, G is 2-simultaneous edge colorable.

By Theorem A(i) and (iii), we have the following corollary.

Corollary 4. Let C be an even Hamiltonian circuit of G and G\E(C) be a bipartite
graph. If every edge of G\E(C) is contained in a circuit of length 4 in G\E(C),
then G is a 2-simultaneous edge colorable graph.

An even circuit decomposition (ECD) of a graph G is a partition of E(G) into
circuits of even length [18]. If G has an ECD, then two copies of this decomposition
satisfies three conditions of Theorem 10. Hence, G is 2-simultaneous edge colorable.

Evidently, every even bipartite graph has an ECD. Seymour in [21] proved that
every 2-connected loopless even planar graph with an even number of edges also
admits an ECD. Later, Zhang in [23] generalized this to graphs with no K5-minor.

Markström in [18] considered the existence of ECDs in 4-regular graphs. A class
of 4-regular graphs is the line graphs of cubic graphs. He conjectured that 4-regular
line graphs of 2-connected cubic graphs have ECDs.

Theorem G ([18]). If a cubic graph G has an even circuit double cover, then
L(G) has an ECD.

Theorem H ([18]). If G is a three edge colorable cubic graph, then L(G) has an
ECD.

Now we can conclude the following corollary.

Corollary 5. (i) Every even bipartite graph has a 2-simultaneous edge coloring.
(ii) Every 2-connected even planar graph with an even number of edges is 2-

simultaneous edge colorable.
(iii) The line graph of every 1-factorable cubic graph has a 2-simultaneous edge

coloring.
(iv) The line graph of every 2-simultaneous edge colorable cubic graph also is 2-

simultaneous edge colorable.

It is an immediate consequence of the configuration model for random regular
graphs that almost all cubic graphs are three edge colorable [4]. We say that a
property holds asymptotically almost surely if the probability that a graph on n

vertices has the property tends to 1 as n → ∞.
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Corollary 6. If G is a random cubic graph then asymptotically almost surely L(G)
has a 2-simultaneous edge coloring.

Conjecture 4 ([18]). If G is a 2-connected cubic graph, then L(G) has an ECD.

Conjecture 5. The line graph of every 2-connected cubic graph admits a 2-
simultaneous edge coloring.

By Corollary 5(iii), Conjecture 5 is true for three edge colorable graph. One way
of quantifying how far a cubic graph is from being three edge colorable is by its
oddness. A 2-connected cubic graph G has oddness o(G) = k if k is the smallest
number of odd circuits in a 2-factor of G.

By Petersen’s theorem every 2-connected cubic graph has at least three 2-factors
[19]. A three edge colorable graph has oddness 0, since the edges of the first two
colors induce a bipartite 2-factor. It is proved that cubic graphs of oddness at most
4 have circuit double covers [9, 11, 12].

Theorem I ([18]). If G is a 2-connected cubic graph with o(G) = 2, then L(G)
has an ECD.

Corollary 7. The line graph of every 2-connected cubic graph with oddness at most
2 admits a 2-simultaneous edge coloring.
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