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A set W ⊆ V (G) is called a resolving set, if for each pair of distinct vertices u, v ∈ V (G)
there exists t ∈ W such that d(u, t) �= d(v, t), where d(x, y) is the distance between
vertices x and y. The cardinality of a minimum resolving set for G is called the metric
dimension of G and is denoted by dimM (G). A k-tree is a chordal graph all of whose
maximal cliques are the same size k + 1 and all of whose minimal clique separators
are also all the same size k. A k-path is a k-tree with maximum degree 2k, where for
each integer j, k ≤ j < 2k, there exists a unique pair of vertices, u and v, such that
deg(u) = deg(v) = j. In this paper, we prove that if G is a k-path, then dimM (G) = k.
Moreover, we provide a characterization of all 2-trees with metric dimension two.
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1. Introduction

Throughout this paper, all graphs are finite, simple and undirected. The notions δ,
∆ and NG(v) stand for minimum degree, maximum degree and the set of neighbors
of vertex v in G, respectively.

For an ordered set W = {w1, w2, . . . , wk} of vertices and a vertex v in a con-
nected graph G, the k-vector r(v |W ) := (d(v, w1), d(v, w2), . . . , d(v, wk)) is called
the metric representation of v with respect to W , where d(x, y) is the distance
between two vertices x and y. The set W is called a resolving set for G if dis-
tinct vertices of G have distinct representations with respect to W . We say a set
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S ⊆ V (G) resolves a set T ⊆ V (G) if for each pair of distinct vertices u and v in
T there is a vertex s ∈ S such that d(u, s) �= d(v, s). A minimum resolving set is
called a basis and the metric dimension of G, dimM (G), is the cardinality of a basis
for G. A graph with metric dimension k is called k-dimensional.

The concept of the resolving set has various applications in diverse areas includ-
ing coin weighing problems [10], network discovery and verification [1], robot
navigation [8], mastermind game [3], problems of pattern recognition and image
processing [9], and combinatorial search and optimization [10].

These concepts were introduced by Slater in [11]. He described the usefulness
of these concepts when working with U.S. Sonar and Coast Guard Loran stations.
Independently, Harary and Melter [6] discovered these concepts. In [8], it is proved
that determining the metric dimension of a graph in general is an NP -complete
problem, but the metric dimension of trees can be obtained by a polynomial time
algorithm.

It is obvious that for every graph G of order n, 1 ≤ dimM (G) ≤ n−1. Chartrand
et al. [4] proved that for n ≥ 2, dimM (G) = n − 1 if and only if G is the complete
graph Kn. They also provided a characterization of graphs of order n and metric
dimension n − 2 [4]. Graphs with metric dimension n − 3 are characterized in [7].
Khuller et al. [8] and Chartrand et al. [4] proved that dimM (G) = 1 if and only if G

is a path. Moreover, in [12] some properties of two-dimensional graphs are obtained.

Theorem 1.1 ([12]). Let G be a two-dimensional graph. If {a, b} is a basis for G,

then

(1) There is a unique shortest path P between a and b,

(2) The degrees of a and b are at most three,
(3) The degree of each internal vertex on P is at most five.

A chordal graph is a graph with no induced cycle of length greater than three. A
k-tree is a chordal graph that all of whose maximal cliques are the same size k + 1
and all of whose minimal clique separators are also all the same size k. In other
words, a k-tree may be formed by starting with a set of k + 1 pairwise adjacent
vertices and then repeatedly adding vertices in such a way that each added vertex
has exactly k neighbors that form a k-clique.

By the above definition, it is clear that if G is a k-tree, then δ(G) = k. 1-trees
are the same as trees; 2-trees are maximal series-parallel graphs [5] and include also
the maximal outerplanar graphs. These graphs can be used to model series and
parallel electric circuits. Planar 3-trees are also known as Apollonian networks [2].

A k-path is a k-tree with maximum degree 2k, where for each integer j, k ≤ j <

2k, there exists a unique pair of vertices, u and v, such that deg(u) = deg(v) = j.
On the other hand, regards to the recursive construction of k-trees, a k-path G

can be considered as a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set
E(G) = {vivj : |i − j| ≤ k}. For instance, two different representations of a 2-path
G with seven vertices v1, . . . , v7 are shown in Fig. 1.

1750027-2

D
is

cr
et

e 
M

at
h.

 A
lg

or
ith

m
. A

pp
l. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 F
U

D
A

N
 U

N
IV

E
R

SI
T

Y
 o

n 
03

/1
5/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

March 10, 2017 15:11 WSPC/S1793-8309 257-DMAA 1750027

A characterization of some graphs with metric dimension two

Fig. 1. Two different representations of a 2-path.

In this paper, we show that the metric dimension of each k-path (as a gener-
alization of a path) is k. Whereas, there are some examples of 2-trees with metric
dimension two that are not 2-path. This fact motivates us to study the structure
of two-dimensional 2-trees. As a main result, we characterize the class of all 2-trees
with metric dimension two.

2. Main Results

In this section, we first prove that the metric dimension of each k-path is k. Then,
we introduce a class of graphs which shows that the inverse of this fact is not true
in general. Later on, we concern on the case k = 2 and toward to investigating all
2-trees with metric dimension two, we construct a family F of 2-trees with metric
dimension two. Finally, as the main result, we prove that the metric dimension of
a 2-tree G is two if and only if G belongs to F .

Theorem 2.1. If G is a k-path, then dim
M

(G) = k.

Proof. Let G be a k-path with vertex set V (G) = {v1, v2, . . . , vn} and edge set
E(G) = {vivj : |i − j| ≤ k}. Therefore, the distance between two vertices vr and vs

in G is given by d(vr , vs) = � |r−s|
k �.

At first, let W = {v1, v2, . . . , vk} and vi, vj be two distinct vertices of G with
k < i < j. By the division algorithm, there exist integers r and s such that i = rk+s,
1 ≤ s ≤ k. Thus, we have

d(vi, vs) =
⌈ |i − s|

k

⌉
=

⌈
rk

k

⌉
= r,

and

d(vj , vs) =
⌈ |j − s|

k

⌉
=

⌈
rk + (j − i)

k

⌉
= r +

⌈
j − i

k

⌉
≥ r + 1.

This means W is a resolving set for G. Hence, dimM (G) ≤ |W | = k.
Now, we show that dimM (G) ≥ k. Let W be a basis of the k-path G, and

let X = {v1, v2, . . . , vk+1}. Assume that |W ∩ X | = s and X\W = {vi1 , vi2 , . . . ,

vik+1−s
}, where 1 ≤ i1 < i2 < · · · < ik+1−s ≤ k + 1. For convince, let X ′ =

{x1, x2, . . . , xk+1−s}, where xr = vir , for each r, 1 ≤ r ≤ k+1−s. Since each vertex
vi of the k-path G is adjacent to the next k consecutive vertices {vi+1, . . . , vi+k},
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the induced subgraph on X is a (k + 1)-clique. Each vertex in W ∩ X is adjacent
to each vertex in X ′. Thus, each pair of vertices in X ′ should be resolved by some
element of W\X . Assume that W ′ = {w1, w2, . . . , wt} is a minimum subset of W\X
which resolves vertices in X ′. Thus, for each wj ∈ W ′ there exists {xr, xs} ⊆ X ′

such that d(wj , xr) �= d(wj , xs). For each j, 1 ≤ j ≤ t, let

rj = min{r : d(wj , xr) �= d(wj , xr+1)},
and, let

Aj = {x1, x2, . . . , xrj}, Bj = {xrj+1, xrj+2, . . . , xk+1−s}.
Note that Aj ∪Bj = X ′, Aj ∩Bj = ∅, x1 ∈ Aj and xk+1−s ∈ Bj . Also, the structure
of G implies that

d(wj , x1) = d(wj , x2) = · · · = d(wj , xrj ),

and

d(wj , xrj+1) = d(wj , xrj+2) = · · · = d(wj , xk+1−s).

Since W ′ has the minimum size, for each 1 ≤ j < j′ ≤ t, we have Aj �= Aj′

(otherwise, wj and wj′ resolve the same pair of vertices in X ′) and hence, |Aj | �=
|Aj′ |. Moreover, for each r, 1 ≤ r ≤ k−s, there exists wj ∈ W ′ such that d(wj , xr) �=
d(wj , xr+1) which implies |Aj | = r. Therefore,

t = |{|A1|, |A2|, . . . , |At|}| = |{1, 2, . . . , k − s}| = k − s.

Hence,

|W | = |W\X |+ |W ∩ X | ≥ |W ′| + s = (k − s) + s = k,

which completes the proof.

Definition 2.2. Let G and H be two 2-trees. We say that H is a branch in G on
{u, v}, for convenience say a (u, v)-branch, if V (H) ∩ V (G) = {u, v}, where uv is
an edge of G belonging to only one of the triangles in H . The length of a branch in
a 2-tree is the number of it’s triangles, which is equal to the number of vertices of
the branch minus 2. A cane is a 2-path with a branch of length one on a specific
edge as shown in Fig. 2.

In the following proposition, we provide some 2-trees with metric dimension two
other than 2-paths.

Fig. 2. A cane.
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Proposition 2.3. If G is a 2-tree of metric dimension two with a basis whose
elements are adjacent, then G is a 2-path or a cane.

Proof. We prove the statement by induction on n, the order of G. If n = 3, then
G = K3 and the statement holds. Let G be a 2-tree of order n > 3 with a basis
B = {a, b}, such that d(a, b) = 1. Since each 2-tree of order greater than three has
two non-adjacent vertices of degree two, there exists a vertex x ∈ V (G)\B of degree
two. Moreover, B is a basis for G\{x}.

Now, by the induction hypothesis, G\{x} is a path or a cane and by Theo-
rem 1.1(2), the degrees of a and b are at most three. Therefore, B = {a, b} is one of
the possible cases shown in Fig. 3. Note that dashed edges could be absent. It can
be checked that in cases (b) and (c) the bold vertices get the same metric represen-
tation with respect to B. Thus, B is one of the cases (a) or (d), where the metric
representations of vertices are denoted in Fig. 3.

Regards to the metric representation of vertices in G, x could be adjacent to
the vertices by metric representation (t, t+1) and (t, t) (in the case of not existence
of dashed edges (t − 1, t) and (t, t)) and in the case (d) to the vertices by metric
representation (1, 0) and (1, 1) as well. This concludes that G is also a path or a
cane.

The above proposition shows that the inverse of Theorem 2.1 is not true. Later
on, we focus on the case k = 2 and construct the family F of all 2-trees with metric
dimension two.

Let F be the family of 2-trees, where each member G of F consists of a 2-tree
G0 and some branches on it that, in the case of existence, satisfying the following
conditions.

(1) G0 is a 2-path or a 2-tree that is obtained by identifying two specific edges of
two disjoint 2-paths as shown in Fig. 4.

(a) (b) (b) (b)

Fig. 3. The possible cases for basis {a, b} in 2-tree G.
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(a) (b)

Fig. 4. Two different forms of G0.

(2) On every edge there is at most one branch.
(3) G avoids any (ai, ai+1)-branch.
(4) Each branch is either a 2-path or a cane.
(5) In each (ai, bi)-branch the degree of ai is two.
(6) If G0 is as the graph depicted in Fig. 4(b), then G avoids any (am, x)-branch.
(7) G contains at most one branch on the edges of the triangle containing bibi+1

in G0.
(8) The degree of each bi in G is at most 7.
(9) G has at most one branch of length greater than one on the edges of the

triangle containing aiai+1 in G0.
(10) If G0 is of the form of Fig. 4(b), then (bm−1, bm)-branch and (bm, bm+1)-branch

are 2-paths and at most one of them is of length more than one.
(11) For every i, 2 ≤ i ≤ k−1, at most one of the (bi−1, bi)-branches and (bi, bi+1)-

branches is a cane.
(12) All (ai, bi)-branches, (ai, bi+1)-branches and (ai, bi−1)-branches are 2-paths.

Theorem 2.4. If G ∈ F , then dimM (G) = 2.

Proof. Let G ∈ F . Through the proof all of notations are the same as those
which are used to introduce the family F and G0 in Fig. 4. Since G is not a path,
dimM (G) ≥ 2. Let W = {a1, ak}. We show in both possible cases for G0 that W is
a resolving set for G and hence, dimM (G) = 2.

Case 1. G0 is a 2-path as shown in Fig. 4(a).
The metric representation of the vertices {a1, a2, . . . , ak, b1, b2, . . . , bk} are as follows:

r(ai |W ) = (i − 1, k − i), 1 ≤ i ≤ k,

r(b1 |W ) = (1, k),

r(bj |W ) = (j − 1, k − j + 1), 2 ≤ j ≤ k.

Thus, different vertices of G0 have different metric representations. Moreover,
note that

{d1 − d2 : (d1, d2) = r(ai |W ), 1 ≤ i ≤ k}
= {1 − k, 3 − k, 5 − k, . . . , 2i − k − 1, . . . , k − 3, k − 1},
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and

{d1 − d2 : (d1, d2) = r(bi |W ), 1 ≤ i ≤ k}
= {1 − k, 2 − k, 4 − k, . . . , 2i − k − 2, . . . , k − 4, k − 2}.

If G = G0, then we are done. Suppose that G �= G0 and let H be a branch of G on
an edge e of G0. Regards to the structures of graphs in F , we consider the following
different possibilities.

• H is a branch on the vertical edge e = aibi, 2 ≤ i ≤ k − 1.
Note that by the definition of F , H is a 2-path and degH(ai) = 2. Let V (H) =
{x1, x2, . . . , xt}, where x1 = ai, x2 = bi, and E(H) = {xrxs : |r − s| ≤ 2}. If j is
odd, then d(xj , a1) = d(xj , ai) + d(ai, a1) and d(xj , ak) = d(xj , ai) + d(ai, ak). If
j is even, then d(xj , a1) = d(xj , bi)+d(bi, a1) and d(xj , ak) = d(xj , bi)+d(bi, ak).
Hence, we have

r(xj |W ) =




(
i − 1 +

⌊
j

2

⌋
, k − i +

⌊
j

2

⌋)
j is odd

(
i − 1 +

⌊
j

2

⌋
− 1, k − i +

⌊
j

2

⌋)
j is even.

Moreover, note that

{d1 − d2 : (d1, d2) = r(xj |W ), 1 ≤ j ≤ t} = {2i − k − 1, 2i − k − 2}.
• H is a branch on the oblique edge e = aibi+1, 2 ≤ i ≤ k − 1.

By the definition of F , H is a 2-path and degH(ai) = 2. Let V (H) =
{x1, x2, . . . , xt}, where x1 = ai, x2 = bi+1, and E(H) = {xrxs : |r − s| ≤ 2}. If j

is odd, then d(xj , a1) = d(xj , ai) + d(ai, a1) and d(xj , ak) = d(xj , ai) + d(ai, ak).
If j is even, then d(xj , a1) = d(xj , bi+1)+d(bi+1, a1) and d(xj , ak) = d(xj , bi+1)+
d(bi+1, ak). Hence, we have

r(xj |W ) =




(
i − 1 +

⌊
j

2

⌋
, k − i +

⌊
j

2

⌋)
j is odd

(
i − 1 +

⌊
j

2

⌋
, k − i +

⌊
j

2

⌋
− 1

)
j is even.

Moreover, note that

{d1 − d2 : (d1, d2) = r(xj |W ), 1 ≤ j ≤ t} = {2i − k − 1, 2i − k}.
• H is a branch on the horizontal edge e = bibi+1, 1 ≤ i ≤ k − 1.

Using the definition of F , H is either a 2-path or a cane. Generally, assume that

{x1, x2, . . . , xt} ⊆ V (H) ⊆ {x1, x2, . . . , xt} ∪ {x},
where the induced subgraph of H on {x1, x2, . . . , xt} is a 2-path with the edge
set {xrxs : |r − s| ≤ 2}. We consider two different possibilities.
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(a) x1 = bi, x2 = bi+1. Hence, if H is a cane, then we have NH(x) = {bi, x3}.
Similar to the previous cases, we have

r(x1 |W ) = (i − 1, k − i + 1),

r(xj |W ) =




(
i − 1 +

⌊
j

2

⌋
, k − i +

⌊
j

2

⌋)
j ≥ 3 is odd

(
i − 1 +

⌊
j

2

⌋
, k − i +

⌊
j

2

⌋
− 1

)
j is even.

Also, if H is a cane, then r(x |W ) = (i − 1 + 1, k − i + 2).
(b) x1 = bi+1, x2 = bi. Hence, if H is a cane, then we have NH(x) = {bi+1, x3}.

Similarly, we have

r(x1 |W ) = (i − 1 + 1, k − i),

r(xj |W ) =




(
i − 1 +

⌊
j

2

⌋
, k − i +

⌊
j

2

⌋)
j is odd

(
i − 1 +

⌊
j

2

⌋
− 1, k − i +

⌊
j

2

⌋)
j is even.

Also, if H is a cane, then r(x |W ) = (i − 1 + 2, k − i + 1).

Note that in both states (and regardless of being a 2-path or a cane), we have

{d1 − d2 : (d1, d2) = r(v |W ), v ∈ V (H)} = {2i − k − 2, 2i − k − 1, 2i − k}.

Therefore, in all the above cases, distinct vertices of H have different metric rep-
resentations. Also, the metric representations of the vertices in V (H) are different
from the metric representations of the vertices in V (G0)\{x, y}, where H is a (x, y)-
branch. Moreover, using the subtraction value of two coordinates in the metric rep-
resentation of each vertex, it is easy to check that vertices of different (possible)
branches on G0 (satisfying the conditions mentioned in the definition of F) have
different metric representations. Thus, in this case W is a resolving set for G.

Case 2. G0 is a 2-tree of the form Fig. 4(b).
The metric representations of the vertices {a1, a2, . . . , am, . . . , ak} ∪ {b1, b2, . . . ,

bm, . . . , bk} are as follows:

r(ai |W ) = (i − 1, k − i), 1 ≤ i ≤ k,

r(bj |W ) =




(j, k − j) 1 ≤ j ≤ m − 1

(m, k − m + 1) j = m

(j − 1, k − j + 1) m + 1 ≤ j ≤ k.
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Therefore, different vertices of G0 have different metric representations. Moreover,
note that

{d1 − d2 : (d1, d2) = r(ai |W ), 1 ≤ i ≤ k}
= {1 − k, 3 − k, 5 − k, . . . , 2m − k − 3, 2m− k − 1, 2m− k

+ 1, . . . , k − 3, k − 1},
and

{d1 − d2 : (d1, d2) = r(bj |W ), 1 ≤ j ≤ k}
= {2 − k, 4 − k, 6 − k, . . . , 2m − k − 2, 2m − k − 1, 2m− k, . . . , k − 4, k − 2}.

If G = G0, then we are done. Hence, suppose that G �= G0 and let H be a branch
of G on an edge e of G0. Again, using the possible structures of H according to the
definition of F , we consider the following different cases.

• H is a branch on the vertical edge e = aibi, 2 ≤ i ≤ m − 1.
Note that by the definition of F , H is a 2-path and degH(ai) = 2. Let V (H) =
{x1, x2, . . . , xt}, where x1 = ai, x2 = bi, and E(H) = {xrxs : |r − s| ≤ 2}. It is
straightforward to check that

r(xj |W ) =




(
i − 1 +

⌊
j

2

⌋
, k − i +

⌊
j

2

⌋)
j is odd

(
i +

⌊
j

2

⌋
− 1, k − i +

⌊
j

2

⌋
− 1

)
j is even.

Moreover, note that

{d1 − d2 : (d1, d2) = r(xj |W ), 1 ≤ j ≤ t} = {2i − k − 1, 2i − k}.
• H is a branch on the vertical edge e = aibi, m + 1 ≤ i ≤ k − 1.

By the definition of F , H is a 2-path and degH(ai) = 2. Let V (H) =
{x1, x2, . . . , xt}, where x1 = ai, x2 = bi, and E(H) = {xrxs : |r − s| ≤ 2}.
We have

r(xj |W ) =




(
i − 1 +

⌊
j

2

⌋
, k − i +

⌊
j

2

⌋)
j is odd

(
i +

⌊
j

2

⌋
− 2, k − i +

⌊
j

2

⌋)
j is even.

Moreover, note that

{d1 − d2 : (d1, d2) = r(xj |W ), 1 ≤ j ≤ t} = {2i − k − 1, 2i − k − 2}.
• H is a branch on the oblique edge e = aibi−1, 2 ≤ i ≤ m − 1.

Since G ∈ F , H is a 2-path and degH(ai) = 2. Let V (H) = {x1, x2, . . . , xt},
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where x1 = ai, x2 = bi−1, and E(H) = {xrxs : |r − s| ≤ 2}. We have

r(xj |W ) =




(
i − 1 +

⌊
j

2

⌋
, k − i +

⌊
j

2

⌋)
j is odd

(
i +

⌊
j

2

⌋
− 2, k − i +

⌊
j

2

⌋)
j is even.

Moreover,

{d1 − d2 : (d1, d2) = r(xj |W ), 1 ≤ j ≤ t} = {2i − k − 1, 2i − k − 2}.

• H is a branch on the oblique edge e = aibi+1, m + 1 ≤ i ≤ k − 1.
We know that H is a 2-path and degH(ai) = 2. Let V (H) = {x1, x2, . . . , xt},
where x1 = ai, x2 = bi+1, and E(H) = {xrxs : |r − s| ≤ 2}. Similarly, it can be
easily checked that

r(xj |W ) =




(
i − 1 +

⌊
j

2

⌋
, k − i +

⌊
j

2

⌋)
j is odd

(
i +

⌊
j

2

⌋
− 1, k − i +

⌊
j

2

⌋
− 1

)
j is even.

Moreover, note that

{d1 − d2 : (d1, d2) = r(xj |W ), 1 ≤ j ≤ t} = {2i − k − 1, 2i − k}.

• H is a branch on the horizontal edge e = bibi+1, 1 ≤ i ≤ m − 2.
Using the definition of F , H is either a 2-path or a cane. Generally, assume that

{x1, x2, . . . , xt} ⊆ V (H) ⊆ {x1, x2, . . . , xt} ∪ {x},

where the induced subgraph of H on {x1, x2, . . . , xt} is a 2-path with the edge
set {xrxs : |r − s| ≤ 2}. We consider two different possibilities.

(a) x1 = bi, x2 = bi+1. Hence, if H is a cane, then we have NH(x) = {bi, x3}.
Similar to the previous cases, we have

r(x1 |W ) = (i, k − i),

r(xj |W ) =




(
i +

⌊
j

2

⌋
, k − i +

⌊
j

2

⌋
− 1

)
j ≥ 3 is odd

(
i +

⌊
j

2

⌋
, k − i +

⌊
j

2

⌋
− 2

)
j is even.

Also, if H is a cane, then r(x |W ) = (i + 1, k − i + 1).
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(b) x1 = bi+1, x2 = bi. Hence, if H is a cane, then we have NH(x) = {bi+1, x3}.
Similarly, we have

r(x1 |W ) = (i + 1, k − i − 1),

r(xj |W ) =




(
i +

⌊
j

2

⌋
, k − i +

⌊
j

2

⌋
− 1

)
j ≥ 3 is odd

(
i +

⌊
j

2

⌋
− 1, k − i +

⌊
j

2

⌋
− 1

)
is even.

Also, if H is a cane, then r(x |W ) = (i + 2, k − i).

Note that in the both states (and regardless of being a 2-path or a cane) we have

{d1 − d2 : (d1, d2) = r(v |W ), v ∈ V (H)} = {2i − k, 2i − k + 1, 2i− k + 2}.
• H is a branch on the horizontal edge e = bm−1bm.

By the definition of F , H is a 2-path and degH(bm−1) = 2. Let V (H) =
{x1, x2, . . . , xt}, where x1 = bm−1, x2 = bm, and E(H) = {xrxs : |r − s| ≤ 2}.
We have

r(xj |W ) =




(
m +

⌊
j

2

⌋
− 1, k − m +

⌊
j

2

⌋
+ 1

)
j is odd

(
m +

⌊
j

2

⌋
− 1, k − m +

⌊
j

2

⌋)
j is even.

Moreover, note that

{d1 − d2 : (d1, d2) = r(xj |W ), 1 ≤ j ≤ t} = {2m − k − 2, 2m− k − 1}.
• H is a branch on the horizontal edge e = bmbm+1.

By the definition of F , H is a 2-path and degH(bm+1) = 2. Let V (H) =
{x1, x2, . . . , xt}, where x1 = bm+1, x2 = bm, and E(H) = {xrxs : |r − s| ≤ 2}.
We have

r(xj |W ) =




(
m +

⌊
j

2

⌋
, k − m +

⌊
j

2

⌋)
j is odd

(
m +

⌊
j

2

⌋
− 1, k − m +

⌊
j

2

⌋)
j even.

Moreover, note that

{d1 − d2 : (d1, d2) = r(xj |W ), 1 ≤ j ≤ t} = {2m− k − 1, 2m − k}.
• H is a branch on the horizontal edge e = bibi+1, m + 1 ≤ i ≤ k − 1.

Using the definition of F , H is either a 2-path or a cane. Generally, assume that

{x1, x2, . . . , xt} ⊆ V (H) ⊆ {x1, x2, . . . , xt} ∪ {x},
where the induced subgraph of H on {x1, x2, . . . , xt} is a 2-path with the edge
set {xrxs : |r − s| ≤ 2}. Again, we consider two different possibilities.
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(a) x1 = bi, x2 = bi+1. Hence, if H is a cane and NH(x) = {bi, x3}, then we have

r(x1 |W ) = (i − 1, k − i + 1),

r(xj |W ) =




(
i +

⌊
j

2

⌋
− 1, k − i +

⌊
j

2

⌋)
j ≥ 3 is odd

(
i +

⌊
j

2

⌋
− 1, k − i +

⌊
j

2

⌋
− 1

)
j is even.

Also, if H is a cane, then r(x |W ) = (i, k − i + 2).
(b) x1 = bi+1, x2 = bi. Hence, if H is a cane, then we have NH(x) = {bi+1, x3}.

Similarly, we have

r(x1 |W ) = (i, k − i),

r(xj |W ) =




(
i +

⌊
j

2

⌋
− 1, k − i +

⌊
j

2

⌋)
j ≥ 3 is odd

(
i +

⌊
j

2

⌋
− 2, k − i +

⌊
j

2

⌋)
j is even.

Also, if H is a cane, then r(x |W ) = (i + 1, k − i + 1).

Note that in the both states (and regardless of being a 2-path or a cane) we have

{d1 − d2 : (d1, d2) = r(v |W ), v ∈ V (H)} = {2i − k − 2, 2i − k − 1, 2i − k}.
Therefore, in all of above cases, distinct vertices of H have different metric represen-
tations. Also, the metric representations of the vertices in V (H) are different from
the metric representations of the vertices in V (G0)\{x, y}, where H is a (x, y)-
branch. Moreover, using the subtraction value of two coordinates in the metric
representation of each vertex, it is easy to check that vertices of different (possible)
branches on G0 (satisfying the conditions mentioned in the definition of F) have
different metric representations. Thus, in this case W is a resolving set for G.

To prove the converse of Theorem 2.4, we need the following lemma.

Lemma 2.5. Let H be a {u, v}-branch of G and let {a, b} be a basis for G ∪H. If
{a, b} ∩ V (H) ⊆ {u, v}, then {u, v} is a metric basis for H.

Proof. Suppose on the contrary, there are two different vertices x and y in H such
that

d(x, u) = d(y, u) = r, d(x, v) = d(y, v) = s.

Since H is a branch on {u, v}, each path connecting a vertex in H with a vertex in
V (G)\V (H) passes through u or v. Assume that

d(u, a) = r1, d(v, a) = s1, d(u, b) = r2, d(v, b) = s2.

1750027-12

D
is

cr
et

e 
M

at
h.

 A
lg

or
ith

m
. A

pp
l. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 F
U

D
A

N
 U

N
IV

E
R

SI
T

Y
 o

n 
03

/1
5/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

March 10, 2017 15:11 WSPC/S1793-8309 257-DMAA 1750027

A characterization of some graphs with metric dimension two

Hence,

d(x, a) = min{r + r1, s + s1} = d(y, a), d(x, b) = min{r + r2, s + s2} = d(y, b).

This contradicts that {a, b} is a resolving set for G ∪ H .

Now, we prove that every two-dimensional 2-tree belongs to the family F .

Theorem 2.6. If G is a 2-tree of metric dimension two, then G ∈ F .

Proof. Let G be a 2-tree and {a, b} be a basis of G. If d(a, b) = 1, then by
Proposition 2.3, G is a 2-path or a cane which belongs to F . Thus, assume that
d(a, b) > 1 and let H be a minimal induced 2-connected subgraph of G as shown
in Fig. 5, containing a and b. Since the clique number of G is three, in each square
exactly one of the dashed edges are allowed. Moreover, by the minimality of H ,
we have degH(a) = degH(b) = 2, where a ∈ {a1, b1} and b ∈ {ak, bk}. Hence,
one of two vertices a1, b1 or one of two vertices ak, bk may not exist. One can
check that {a, b} �= {a1, bk} and {a, b} �= {b1, ak}, otherwise, two neighbors of a

or b get the same metric representation. Thus, by the symmetry, we may assume
{a, b} = {a1, ak}.

If ∆(H) ≤ 4, then H is a 2-path as shown in Fig. 4(a). Otherwise ∆(H) = 5.
If there exists a vertex bj of degree 5, then it can be easily checked that bj and
aj have the same representation with respect to {a1, ak}. Also, existence of two
vertices ai and ai′ both of degree 5, i ≤ i′, implies that there exists some vertex bj ,
i ≤ j ≤ i′, of degree 5, which is impossible. Thus, there exists a unique ai of degree
5. Therefore, H is the graph shown in Fig. 4(b). Thus, H is a 2-path or a 2-tree
obtained by identifying the specific edge, say ambm, of two 2-paths (see Fig. 4(b)),
where B = {a1, ak}. Thus, G satisfies property (1).

Clearly, on every edge there is at most one branch; thus, property (2) follows.
Also, G avoids any (ai, ai+1)-branch, because each vertex adjacent to both ai and
ai+1 has the same metric representation as bi or bi+1. Thus, G contains only (ai, bi)-
branches, (ai, bi+1)-branches, (ai+1, bi)-branches or (bi, bi+1)-branches; which
implies property (3). Moreover, by Proposition 2.3 and Lemma 2.5, each of these
branches is a 2-path or a cane. Therefore, property (4) holds. Also, by Theorem 1.1,
for every i, 1 ≤ i ≤ k, there is at most one (ai, x)-branch in G. Moreover, in each
(ai, bi)-branch the degree of ai is two, which shows trueness of property (5).

To see property (6), first note that by property (3) there is no (am−1, am)-branch
or (am, am+1)-branch. Moreover, in each (am, x)-branch, for x ∈ {bm−1, bm, bm+1},
the unique neighbor of am on the branch has the same metric representation as bm.

Fig. 5. A minimal induced 2-connected subgraph of G.
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To show that G has property (7), suppose that a triangle aibibi+1 has more than
one branch. By Theorem 1.1, at most one of (ai, bi)-branch and (ai, bi+1)-branch
exists. Therefore, bibi+1 has a branch H1 and one of the edges aibi or aibi+1 has
another branch H2. Let x and y be the vertices of distance one from G0 on branches
H1 and H2, respectively. Hence, d(a1, x) = d(a1, y) = i and d(ak, x) = d(ak, y) =
k − i + 1. That is, {a1, ak} is not a basis of G, which is a contradiction. A similar
reason works for triangle aibi−1bi. Hence, G has property (7).

Let (d1, d2) be metric representation of bi. Then metric representations of each
neighbor of bi which is out of G0 could be one of (d1 + 1, d2 + 1), (d1 + 1, d2) or
(d1, d2 + 1). Thus, bi has at most three neighbors out of G0. Hence, the degree of
bi in G is at most 7 that is property (8).

If there are two branches of length at least 2 on a triangle containing aiai+1, then
the metric representation of the second vertices on these branches are the same, a
contradiction. Thus, G satisfies property (9).

If H is a (bm−1, bm)-branch of cane type, then one can find two vertices in
NG(bm)∪NG(bm−1) with the same metric representation. A similar argument holds
whenever H is a (bm, bm+1)-branch of cane type. If there is a (bm−1, bm)-branch,
say H1, and a (bm, bm+1)-branch, say H2, both of length at least two, then bm has
a neighbor in H1 with the same metric representation as a neighbor of bm in H2.
Hence, property (10) holds.

Suppose that two branches on (bi−1, bi) and (bi, bi+1) are canes. In this case, it
can be checked that in the set of neighbors of bi in these branches there are two
vertices with the same metric representation. Thus, G satisfies property (11).

Using Theorem 1.1, the degree of each ai in G, 1 < i < n, is at most five.
Note that deg(ai) ∈ {4, 5}. Now suppose that H is a branch on the edge {ai, bi},
{ai, bi+1} or {ai, bi−1}. If H is a cane, then degG(ai) ≥ 6 or two neighbors of bi−1,
bi or bi+1 in H get the same metric representation, which both are contradictions.
Thus, each branch on the edge {ai, bi−1}, {ai, bi} or {ai, bi+1} is a 2-path and G

satisfies property (12).
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