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Injective Chromatic Number of Outerplanar Graphs

Mahsa Mozafari-Nia and Behnaz Omoomi*

Abstract. An injective coloring of a graph is a vertex coloring where two vertices with

common neighbor receive distinct colors. The minimum integer k such that G has a

k-injective coloring is called injective chromatic number of G and denoted by χi(G).

In this paper, the injective chromatic number of outerplanar graphs with maximum

degree ∆ and girth g is studied. It is shown that every outerplanar graph G has

χi(G) ≤ ∆ + 2, and this bound is tight. Then, it is proved that for an outerplanar

graph G with ∆ = 3, χi(G) ≤ ∆ + 1 and the bound is tight for outerplanar graphs of

girth 3 and 4. Finally, it is proved that, the injective chromatic number of 2-connected

outerplanar graphs with ∆ = 3, g ≥ 6 and ∆ ≥ 4, g ≥ 4 is equal to ∆.

1. Introduction

All graphs we have considered here are finite, connected and simple. A plane graph is a

planar drawing of a planar graph in the Euclidean plane. The vertex set, edge set, face

set, minimum degree and maximum degree of a plane graph G, are denoted by V (G),

E(G), F (G), δ(G) and ∆(G), respectively. A vertex of degree k is called a k-vertex. For

vertex v ∈ V (G), NG(v) is the set of neighbors of v in G. The girth of a graph G, g(G), is

the length of a shortest cycle in G. If there is no confusion, we delete G in the notations.

A face f ∈ F (G) is denoted by its boundary walk f = [v1v2 . . . vk], where v1, v2, . . . , vk

are its vertices in the clockwise order. Also, the vertices v1 and vk as end vertices of f

are denoted by vLf
and vRf

, respectively. An outerplanar graph is a graph with a planar

drawing for which all vertices belong to the outer face of the drawing. It is known that a

graph G is an outerplanar graph if and only if G has no subdivision of complete graph K4

and complete bipartite graph K2,3. A path P : v1, v2, . . . , vk is called a simple path in G

if v2, . . . , vk−1 are all 2-vertices in G. The length of a path is the number of its edges. We

say that a face f = [v1v2 . . . vk] is an end face of an outerplane graph G, if P : v1, v2, . . . , vk

is a simple path in G. An end block in graph G is a maximal 2-connected subgraph of G

that contains a unique cut vertex of G.
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A proper k-coloring of a graph G is a mapping from V (G) to the set of colors

{1, 2, . . . , k} such that any two adjacent vertices have different colors. The chromatic

number, χ(G), is the minimum integer k that G has a proper k-coloring. A coloring c

of G is called an injective coloring if for every two vertices u and v which have common

neighbor, c(u) 6= c(v). That means, the restriction of c to the neighborhood of any vertex

is an injective function. The injective chromatic number, χi(G), is the least integer k

such that G has an injective k-coloring. Note that an injective coloring is not necessarily

a proper coloring. In fact, χi(G) = χ(G(2)), where V (G(2)) = V (G) and uv ∈ E(G(2))

if and only if u and v have a common neighbor in G. The square of graph G, denoted

by G2, is a graph with vertex set V (G), where two vertices are adjacent in G2 if and

only if they are at distance at most two in G. Since G(2) is a subgraph of G2, obviously,

χi(G) ≤ χ(G2). The concept of injective coloring is introduced by Hahn et al. in 2002 [7].

It is clear that for every graph G, χi(G) ≥ ∆. In general, in [7] Hahn et al. proved that

∆ ≤ χi(G) ≤ ∆2−∆+1. In [13], Wegner raised the following conjecture for the chromatic

number of the square of planar graphs.

Conjecture 1.1. [13] If G is a planar graph with maximum degree ∆, then

• For ∆ = 3, χ(G2) ≤ ∆ + 2.

• For 4 ≤ ∆ ≤ 7, χ(G2) ≤ ∆ + 5.

• For ∆ ≥ 8, χ(G2) ≤ b3∆/2c+ 1.

Since χi(G) ≤ χ(G2), Lužar and Škrekovski in [10] proposed the following conjecture

for the injective chromatic number of planar graphs.

Conjecture 1.2. [10] If G is a planar graph with maximum degree ∆, then

• For ∆ = 3, χi(G) ≤ ∆ + 2.

• For 4 ≤ ∆ ≤ 7, χi(G) ≤ ∆ + 5.

• For ∆ ≥ 8, χi(G) ≤ b3∆/2c+ 1.

The injective coloring of planar graphs with respect to its girth and maximum degree

is studied in [1–6,9,11]. In [8], Lih and Wang proved upper bound ∆+2 for the chromatic

number of square of outerplanar graphs.

Theorem 1.3. [8] If G is an outerplanar graph, then χ(G2) ≤ ∆ + 2.

Since χi(G) ≤ χ(G2), Conjecture 1.2 is true for outerplanar graphs.

Corollary 1.4. If G is an outerplanar graph, then χi(G) ≤ ∆ + 2.
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In Figure 1.1, an outerplanar graph with ∆ = 4, g = 3 and χi(G) = ∆ + 2 = 6 is

shown. Therefore, the given bound in Corollary 1.4 is tight.

Figure 1.1: An outerplanar graph with ∆ = 4, g = 3 and χi = 6.

In this paper, we study the injective chromatic number of outerplanar graphs. The

main results of Section 2 are as follows. If G is an outerplanar graph with maximum

degree ∆ and girth g, then

• (Theorem 2.1) For ∆ = 3, χi(G) ≤ ∆ + 1 = 4.

• (Theorem 2.2) For ∆ = 3 and g ≥ 5, with no face of degree k, k ≡ 2 (mod 4),

χi(G) = ∆.

• (Theorem 2.4) For ∆ = 3 and g ≥ 6, χi(G) = ∆.

• (Theorems 2.5 and 2.8) For ∆ ≥ 4 and g ≥ 4, χi(G) = ∆.

2. Main results

First, we prove a tight bound for the injective chromatic number of outerplanar graphs

with ∆ = 3. Note that if ∆ = 2, then G is an union of paths and cycles, which obviously

χi(G) ≤ 3 = ∆ + 1. Moreover, if G is an arbitrary path or is a cycle of length k, where

k ≡ 0 (mod 4), then χi(G) = 2. Otherwise, χi(G) = 3 [7].

Theorem 2.1. If G is an outerplanar graph with ∆ = 3, then G has a 4-injective coloring

such that in every simple path of lenght three, at most three colors appear. Moreover, the

bound is tight.

Proof. We prove the theorem by the induction on |V (G)|. In Figure 2.1, all outerplanar

graphs with ∆ = 3 of order 4 and 5 with an injective coloring with desired property are

shown. Obviously, in the left side graph, χi(G) = 4. Hence, bound ∆ + 1 is tight.

Now suppose that G is an outerplane graph with ∆ = 3 and the statement is true for

all outerplanar graphs with ∆ = 3 of order less than |V (G)|. The following two cases can

be caused.
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Figure 2.1: Outerplanar graphs with ∆ = 3 of order 4, 5.

If an end block of G is an edge, say uv, where deg(u) = 1, then we consider the

maximal simple path P : (v1 = u), (v2 = v), v3, . . . , vk in G. Since P is a maximal simple

path and ∆(G) = 3, we have deg(vk) = 3. Suppose that N(vk) = {w1, w2, vk−1} and c

is a 4-injective coloring of G \ {v1, v2, . . . , vk−1} with colors {α, β, γ, λ} such that every

simple path of length three has at most three colors. Note that w1 and w2 have a common

neighbor vk therefore, c(w1) 6= c(w2). In this case, we assign to the ordered vertices

vk−1, vk−2, . . . , v2, v1 of path P the ordered string (ssttsstt . . .), where s ∈ {α, β, γ, λ} \
{c(vk), c(w1), c(w2)} and t = c(vk).

If the minimum degree of every end block of G is at least two in G, then we consider

an end face f = [vivi+1 . . . vj ] in an end block B of G in clockwise order, where v1 is the

vertex cut of G belongs to B. Note that, since ∆(G) = 3, if G is a block, then G has an

end face f = [vivi+1 . . . vj ]. Let H be the induced subgraph of G on 2-vertices of f . If

∆(G \H) = 2, then we color the ordered vertices vj , vj+1, . . . , vi−1, vi of G \H by ordered

string (αβγλαβγλ . . .). If |V (G \ H)| ≡ 2 (mod 4), then change the color of vi−1 and

vi to β and α, respectively. If ∆(G \ H) = 3, then by the induction hypothesis G \ H
has a 4-injective coloring c with colors {α, β, γ, λ}, such that every simple path of length

three has at most three colors. Hence, in G \H at most three colors are used for vertices

vi−1, vi, vj , vj+1. Now we extend c to an injective coloring of G with the desired property.

If c(vi) = c(vj), then we assign to the ordered vertices vi+1, vi+2, . . . , vj−1 the or-

dered string (ssttsstt . . .), where s ∈ {α, β, γ, λ} \ {c(vi−1), c(vi) = c(vj), c(vj+1)} and

t ∈ {α, β, γ, λ} \ {c(vi) = c(vj), c(vj+1), s}.
If c(vi) 6= c(vj), then we assign to the ordered vertices vi+1, vi+2, . . . , vj−1 the ordered

string (ssttsstt . . .), where s ∈ {α, β, γ, λ}\{c(vi−1), c(vi), c(vj), c(vj+1)}. If j−i−1 ≡ 1, 2

(mod 4), then t ∈ {α, β, γ, λ}\{c(vj), s}. If j− i−1 ≡ 0, 3 (mod 4), then t ∈ {α, β, γ, λ}\
{c(vi), c(vj+1), s}. In the case j − i − 1 ≡ 0 (mod 4), if t = c(vj), then change the color

of vj−2 to t′ ∈ {α, β, γ, λ} \ {c(vj) = t, s}. Note that, since by the induction hypothesis

|{c(vi−1), c(vi), c(vj), c(vj+1)}| ≤ 3, in each cases the colors s and t exist. It can be easily

seen that the given coloring is a 4-injective coloring for G such that every simple path of

length three in G has at most three colors as well.

Graph G in Figure 2.2 is an outerplanar graph of girth 4 with maximum degree three
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and injective chromatic number 4. Since each pair of set {u, v, w} have a common neighbor,

in every injective coloring of G, they must have three different colors. In the similar way,

we need three different colors for the vetrices {x, y, z}. Without loss of generality, color

the vertices u, v, w with color α, β and γ, respectively. Now by devoting any permutation

of these colors to vertices x, y and z, it can be checked that in each case we need a new

color for the other vertices. Therefore, bound ∆+1 in Theorem 2.1 is tight for outerplanar

graphs with ∆ = 3, g = 4 and g = 3 (see also Figure 2.1).

u

v

z

y

xw

Figure 2.2: An outerplanar graph with ∆ = 3, g = 4 and χi = 4.

In the next theorems, we improve bound ∆+1 to ∆ for outerplanar graphs with ∆ = 3

of girth greater than 4.

Theorem 2.2. If G is a 2-connected outerplanar graph with ∆ = 3, g ≥ 5 and no face

of degree k, where k ≡ 2 (mod 4), then G has a 3-injective coloring such that in every

simple path of length three, exactly three colors appear.

Proof. We prove it by the induction on |V (G)|. In Figure 2.3, the 2-connected outerplanar

graphs with ∆ = 3 and g ≥ 5 of order at most 10 with an injective coloring with desired

property are shown.
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Figure 2.3: Outerplanar graphs with ∆ = 3 and g ≥ 5 of order 8 and 10.

Now suppose that G is a 2-connected outerplane graph with ∆ = 3, g ≥ 5 and no

face of degree k, where k ≡ 2 (mod 4) and the statement is true for all such 2-connected

outerplanar graphs of order less than |V (G)|.
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Let f = [vivi+1 . . . vj ] be an end face of G in clockwise order and H be the induced

subgraph of G on 2-vertices of f . If ∆(G\H) = 3, then by the induction hypothesis G\H
has a 3-injective coloring c with colors {α, β, γ}, such that every simple path of length

three has exactly three colors.

If ∆(G \H) = 2, then we color the vertices of G \H as follows. If G \H = Ct, where

t > 5 and t ≡ 0, 1 (mod 3), then color the ordered vertices vi−1, vi, vj , vj+1, . . . , vi−2 with

the ordered string (αβγαβγ . . .). If t > 5 and t ≡ 2 (mod 3), then color the ordered

vertices vi−1, vi, vj , vj+1, . . . , vi−5 with the ordered string (αβγαβγ . . .). Then color the

vertices vi−4, vi−3 and vi−2 with colors β, γ and α, respectively. One can check that every

simple path of length three in G \H has exactly three colors. If G \H = C5, then since

|V (G)| > 10, f = [vivi+1 . . . vj ] is a cycle of length at least 8. In this case, we consider the

end face f ′ = [vjvj+1 . . . vi] and follow the above proof when H is induced subgraph of G

on 2-vertices of f ′. In the following, we extend injective coloring c of G\H to an injective

coloring of G with the desired property.

If c(vi) = c(vj), then we assign to the ordered vertices vi+1, vi+2, . . . , vj−1 the ordered

string (s1s2s3s4s1s2s3s4 . . .), where s1 = c(vj+1). Since G has no face of degree k where

k ≡ 2 (mod 4), we have following cases. If j − i − 1 ≡ 1 (mod 4), then let s2 = c(vi−1),

s3 = s4 = c(vi) = c(vj) and change the color of vertices vj−2 and vj−1 to c(vj+1) and

c(vi−1), respectively. If j − i − 1 ≡ 2 (mod 4), then let s2 = s1 = c(vj+1), s3 = c(vi−1)

and s4 = c(vi) = c(vj) and change the color of vj−1 to c(vi−1). If j − i − 1 ≡ 3 (mod 4),

then let s2 = s1 = c(vj+1), s3 = c(vi−1) and s4 = c(vi) = c(vj).

If c(vi) 6= c(vj) and c(vi−1) = c(vj+1), then we assign to the ordered vertices vi+1, vi+2,

. . . , vj−1 the ordered string (s1s2s3s4s1s2s3s4 . . .), where s1 = c(vi). If j − i − 1 ≡ 1, 2

(mod 4), then s2 = c(vj) and s3 = s4 = c(vi−1) = c(vj+1). In the case j − i − 1 ≡ 1

(mod 4), we change the color of vertices vj−2 and vj−1 to c(vi) and c(vj), respectively. If

j − i− 1 ≡ 3 (mod 4), then let s2 = c(vi−1) = c(vj+1) and s3 = s4 = c(vj).

If c(vi) 6= c(vj) and c(vi−1) = c(vi), then we assign to the ordered vertices vi+1, vi+2,

. . . , vj−1 the ordered string (s1s2s3s4s1s2s3s4 . . .), where s1 = c(vj+1). If j − i − 1 ≡ 1

(mod 4), then let s2 = c(vj), s3 = c(vi) = c(vi−1), s4 = s1 and change the color of vertex

vj−1 to c(vj). If j−i−1 ≡ 2 (mod 4), then let s2 = c(vj) and s3 = s4 = c(vi−1) = c(vi). If

j−i−1 ≡ 3 (mod 4), then we assign to the ordered vertices vj−1, vj−2, . . . , vi+1 the ordered

string (s1s2s3s4s1s2s3s4 . . .), where s1 = c(vj), s2 = c(vj+1), s3 = s4 = c(vi) = c(vi−1)

and change the colors of vi+1 to c(vj+1).

If c(vi) 6= c(vj) and c(vj) = c(vj+1), then we assign to the ordered vertices vj−1, vj−2,

. . . , vi+1 the ordered string (s1s2s3s4s1s2s3s4 . . .), where s1 = c(vi−1). If j − i − 1 ≡ 1

(mod 4), then s2 = c(vi), s3 = c(vj+1) = c(vj), s4 = s1 and change the color of vi+1 to

c(vi). If j − i − 1 ≡ 2 (mod 4), then s2 = c(vi) and s3 = s4 = c(vj+1). If j − i − 1 ≡ 3



Injective Chromatic Number of Outerplanar Graphs 1315

(mod 4), then we assign to the ordered vertices vi+1, vi+2, . . . , vj−1 the ordered string

(s1s2s3s4s1s2s3s4 . . .), where s1 = c(vi), s2 = c(vi−1) and s3 = s4 = c(vj) = c(vj+1) and

change the color of vj−1 to c(vi−1). It can be seen that the given coloring is a 3-injective

coloring for G such that every simple path of length three in G has exactly three colors.

In Theorem 2.4, we improve bound ∆ + 1 in Theorem 2.1 to ∆ for outerplanar graph

with ∆ = 3 and g ≥ 6. First, we need the following theorem.

Theorem 2.3. [12] Let G be a connected graph and L be a list-assignment to the vertices,

where |L(v)| ≥ deg(v) for each v ∈ V (G). If

(1) |L(v)| > deg(v) for some vertex v, or

(2) G contains a block which is neither a complete graph nor an induced odd cycle,

then G admits a proper coloring such that the color assign to each vertex v is in L(v).

Theorem 2.4. If G is an outerplanar graph with ∆ = 3 and g ≥ 6, then χi(G) = ∆.

Proof. Since χi(G) ≥ ∆, it is enough to show that χi(G) ≤ ∆. Let G be a minimal

counterexample for this statement. That means G is an outerplane graph with ∆ = 3,

g ≥ 6 and χi(G) ≥ ∆+1, such that every proper subgraph of G has a ∆-injective coloring.

Obviously δ(G) ≥ 2. Now consider an end face f = [vivi+1 . . . vj ] in an end block B of

G in clockwise order, where v1 is the vertex cut of G belonging to B. Since ∆ = 3 and

g ≥ 6, the degree of face f is at least 6 and the degree of vi and vj are three. Let H be the

induced subgraph of G on 2-vertices of f . If ∆(G \H) = 3, then by the minimality of G,

we have χi(G\H) ≤ ∆(G\H) ≤ ∆(G). Also, if G\H is a cycle, then χi(G\H) ≤ 3 = ∆.

Now, we extend the ∆-injective coloring of G\H to a ∆-injective coloring of G, which

contradicts our assumption. Each of the vertices vi and vj has at most ∆−1 = 2 neighbors

except vi+1 and vj−1, respectively. Hence, for each of vertices vi+1 and vj−1 there is at

least one available color. Also, among the colored vertices in G \ H, the only forbbiden

colors for vertices vi+2 and vj−2 are colors of the vertices vi and vj , respectively. The

other vertices have three available colors. Now consider induced subgraph of G(2) on the

vertices of H, denoted by G(2)[H], and list of available colors for each vertex of H. The

components of G(2)[H] are some paths satisfying the assumption of Theorem 2.3. Thus,

we have a proper ∆-coloring for G(2)[H] using the available colors which is a ∆-injective

coloing of H as desired.

Now, we are ready to determine the injective chromatic number of 2-connected outer-

planar graphs with maximum degree and girth greater than three. We prove this fact by

two different methods for the cases ∆ = 4 and ∆ ≥ 5.
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Theorem 2.5. If G is a 2-connected outerplanar graph with ∆ = 4 and g ≥ 4, then G

has a 4-injective coloring c such that for every adjacent vertices v and u of degree three

with N(v) = {u, v1, v2} and N(u) = {v, u1, u2}, {c(u), c(v1), c(v2)} 6= {c(v), c(u1), c(u2)}.

Proof. We prove it by the induction on |V (G)|. In Figure 2.4, the 2-connected outerplanar

graphs with ∆ = 4 and g ≥ 4 of order 8 and 9 with an injective coloring of desired property

are shown.
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Figure 2.4: 2-connected outerplanar graphs with ∆ = 4 and g ≥ 4 of order 8 and 9.

Now suppose that G is a 2-connected outerplane graph with ∆ = 4, g ≥ 4 and the

statement is true for all 2-connected outerplanar graphs with ∆ = 4 and g ≥ 4 of order

less than |V (G)|.
Let f = [vivi+1 . . . vj ] be an end face of G in clockwise order. If deg(vi) = deg(vj) = 3,

then consider induced subgraph H on 2-vertices of face f . Thus, G \H is a 2-connected

outerplane graph with ∆(G \ H) = 4 and g(G \ H) ≥ 4. Hence, by the induction hy-

pothesis, G \ H has a 4-injective coloring such that for every adjacent vertices v and

u of degree three with N(v) = {u, v1, v2} and N(u) = {v, u1, u2}, {c(u), c(v1), c(v2)} 6=
{c(v), c(u1), c(u2)}. If there are exactly four colors in {c(vi−1), c(vi), c(vj), c(vj+1)}, then

consider graph G(2)[H] and list of available colors for each vertex of H. Graph G(2)[H]

satisfy the assumption of Theorem 2.3. Thus, we have a ∆-coloring for G(2)[H] which is a

∆-injective coloring of H. If there are at most three colors in {c(vi−1), c(vi), c(vj), c(vj+1)},
then color vi+1 with one of its colors not in {c(vi−1), c(vi), c(vj), c(vj+1)} and color vj−1
with one of its available colors such that c(vi+1) 6= c(vj−1). Then color the other vertices

of H with one of their available colors similar to above. It can be easily seen that for every

adjacent vertices v and u of degree three with N(v) = {u, v1, v2} and N(u) = {v, u1, u2},
{c(u), c(v1), c(v2)} 6= {c(v), c(u1), c(u2)}.

Now suppose that each face of G has an end vertex of degree 4. We have two following

cases.

Case 1. There is an end face f with one end vertex of degree 4 and the other one of

degree less than 4.

In this case, suppose that G has an end face f = [vivi+1 . . . vj ], where deg(vi) = 4 and

deg(vj) = 3. Consider induced subgraph H on 2-vertices of face f . If ∆(G \ H) = 4,
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then by the induction hypothesis, G \ H has a 4-injective coloring such that for every

adjacent vertices v and u of degree three with N(v) = {u, v1, v2} and N(u) = {v, u1, u2},
{c(u), c(v1), c(v2)} 6= {c(v), c(u1), c(u2)}. Now we extend the 4-injective coloring of G \H
to G. If deg(vj+1) = 3, then suppose that vs is the other neighbor of vj+1 except vj

and vj+2. If there are exactly three colors in {c(vi), c(vj), c(vj+1), c(vj+2), c(vs)}, then

color vertex vj−1 with one of its colors not in {c(vi), c(vj), c(vj+1), c(vj+2), c(vs)} and

color the other vertices of H with one of their available colors as explained in above. If

|{c(vi), c(vj), c(vj+1), c(vj+2), c(vs)}| = 4 or deg(vj+1) 6= 3, then by Theorem 2.3 color the

vertices of H with one of their available colors such that obtained coloring is a 4-injective

coloring of G.

If ∆(G \H) = 3, then G \H) also contains an end face. Moreover, by the assumption,

each face of G has an end vertex of degree 4. Therefore, there is another end face, say f ′,

with a common neighbor with f . Consider induced subgraph H ′ on 2-vertices of face f

and f ′. Thus, G \H ′ is a cycle and χi(G \H ′) ≤ 3. Now each vertices of H ′ has at least

two available colors. Hence, by applying Theorem 2.3, we obtain a 4-injective coloring of

G. Note that, since g(G) ≥ 4, in this case there is no two adjacent vertices of degree three.

Case 2. For each end face f , its two end vertices are of degree 4.

In this case, consider the induced subgraph H on 2-vertices of f = [vivi+1 . . . vj ], where

deg(vi) = deg(vj) = 4. Since deg(vi) = 4, G\H has an end face f ′ with two ends of degree

4. Hence, ∆(G \H) = 4 and by the induction hypothesis, G \H has a 4-injective coloring

such that for every adjacent vertices v and u of degree three with N(v) = {u, v1, v2}
and N(u) = {v, u1, u2}, {c(u), c(v1), c(v2)} 6= {c(v), c(u1), c(u2)}. Now by Theorem 2.3,

color the vertices of H with their available colors such that obtained coloring is a 4-

injective coloring of G. Obviously, for every adjacent vertices v and u of degree three with

N(v) = {u, v1, v2} and N(u) = {v, u1, u2}, {c(u), c(v1), c(v2)} 6= {c(v), c(u1), c(u2)}.

Now we consider 2-connected outerplanar graphs with ∆ = 5 and g ≥ 4. First, we

need to prove the following theorem on the structure of 2-connected outerplanar graphs.

Theorem 2.6. If G is a 2-connected outerplanar graph, then G has an end face f =

[vivi+1 . . . vj ], where either deg(vi) < 5 or deg(vj) < 5.

Proof. First replace every simple path in boundary of each end face of G with a path of

length two and name this graph G′. Graph G′ is also a 2-connected outerplane graph that

each end face of G′ is of degree three (for example see Figure 2.5). If G′ is a cycle, then we

are done. Now, let ∆(G′) ≥ 3 and C : v1v2 . . . vn be a Hamilton cycle of G′ in clockwise

order. Also, let f = [vivi+1vi+2] be an end face of G′. If deg(vi+2) is at least 5, then we

present an algorithm that find an end face of G′ such that the degree of at least one of its

end vertices is less than 5. Since by assumption deg(vi+2) ≥ 5, vi+2 has at least two other
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neighbors except vi, vi+1 and vi+3, named vi′ and vj′ such that the number of vertices

between vi+3 and vi′ in clockwise order is less than the number of vertices between vi+3

and vj′ in clockwise order.

v1

v2

v3u1

u2

v1 = v2 = v3

u1 = u2

G G′

Figure 2.5: Two graphs G and G′.

Algorithm 2.7. 1. k = 0.

2. f0 = [vivi+1vi+2].

3. If fk = [vtvt+1vt+2] is an end face of G′, then do steps 4 to 7, respectively.

4. Suppose that vLfk
= vt and vRfk

= vt+2. Let vi′k and vj′k be another neighbors of vt+2

except vt, vt+1 and vt+3 such that the number of vertices between vRfk
and vi′k in

clockwise order is less than the number of vertices between vRfk
and vj′k in clockwise

order.

5. If deg(vLfk
) ≤ 4 or there is no vi′k or vj′k , then stop the algorithm and give the face

fk as output of the algorithm.

6. k = k + 1.

7. fk = [vRfk−1
vRfk−1

+ 1 . . . vi′k−1
] and go to step three.

8. If fk is not an end face of G′, then there exists an end face f in fk. Do steps 9 and

10, respectively.

9. k = k + 1.

10. fk = f and go to step three.

Note that, the neighbors of all vertices vRfk
are between vi+2 and vj′0 in clockwise order;

otherwise there is a subdivision of K4 on G′ and it is a contradiction with the assumption

that G′ is an outerplanar graph. Therefore, the algorithm terminates. Moreover, if fk =

[vkvk+1vk+2] is the output of the algorithm, then by line 5 of the algorithm, the degree of
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vk+2 is less than 5. Finally, by returning the contracted paths to G′; we have an end face

of G that one of its ends is of degree less than 5.

Theorem 2.8. If G is a 2-connected outerplanar graph with ∆ ≥ 5 and g ≥ 4, then

χi(G) = ∆.

Proof. Since χi(G) ≥ ∆(G), it is enough to show that χi(G) ≤ ∆(G). We prove it by the

induction on |V (G)|. In Figure 2.6, the 2-connected outerplanar graphs with ∆ ≥ 5 and

g ≥ 4 of order 10 and 11 with a ∆-injective coloring are shown.

1

1

3

3

4

4

5

5

2

2
1

1

3

3

4

4

5

5

2

2
1

1

3

3

4

5

5

2

2

2

2

3

Figure 2.6: 2-connected outerplanar graphs with ∆ ≥ 5 and g ≥ 4 of order 10 and 11.

Now suppose that G is a 2-connected outerplane graph with ∆ ≥ 5, g ≥ 4 and

the statement is true for all 2-connected outerplanar graphs with ∆ ≥ 5 and g ≥ 4 of

order less that |V (G)|. By Theorem 2.6, G has an end face f of degree at least 4 such

that at least one of its end vertices is of degree at most 4. Now consider the induced

subgraph H on 2-vertices of end face f . If ∆(G \H) ≥ 5, then by induction hypothesis,

χi(G \ H) = ∆(G \ H) ≤ ∆(G). If ∆(G \ H) = 4, then by Theorem 2.5, G \ H has

a 4-injective coloring. Now consider the end face f = [vivi+1 . . . vj ] and suppose that

deg(vi) ≤ ∆ and deg(vj) ≤ 4. Since ∆ ≥ 5, the vertices vi+1 and vj−1 have at least one

and two available colors, respectively. The other vertices of H has at least three available

colors. Now consider the graph G(2)[H] and list of available colors for each vertex of H.

It can be easily seen that G(2)[H] is union of paths and isolated vertices, which satisfy the

assumption of Theorem 2.3. Hence, G(2)[H] can be colored by at most ∆ colors and the

obtained coloring is a ∆-injective coloring of H.

Remark 2.9. Applying the same idea and by laboriously proof, the results of Theorems 2.2,

2.5 and 2.8 can be generalized for the outerplanar graphs containing some cut vertices.
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