
Some lower bounds for the L-intersection number of graphs

Zeinab Maleki and Behnaz Omoomi

Department of Mathematical Sciences

Isfahan University of Technology

84156-83111, Isfahan, Iran

Abstract

For a set of non-negative integers L, the L-intersection number of a graph is the
smallest number l for which there is an assignment of subsets Av ⊆ {1, . . . , l} to vertices
v, such that every two vertices u, v are adjacent if and only if |Au ∩ Av| ∈ L. The
bipartite L-intersection number is defined similarly when the conditions are considered
only for the vertices in different parts. In this paper, some lower bounds for the (bipartite)
L-intersection number of a graph for various types L in terms of the minimum rank of
graph are obtained. To achieve the main results we employ the inclusion matrices of set
systems and show that how the linear algebra techniques give elegant proof and stronger
results in some cases.

Keywords: Set intersection representation; L-Intersection number; Bipartite set
intersection representation; Bipartite L-intersection number.

1 Introduction

A graph representation is an assignment on the vertices of graph to a family of objects
satisfying certain conditions and a rule that determines from the objects whether or not two
vertices are adjacent. In the literature, different types of graph representations such as the
set intersection representation [5, 8] and the vector representation [10, 11, 12] are studied.

A basic graph representation is the set intersection representation in which an assignment
of sets to vertices determines an edge between two vertices if the intersection of the corre-
sponding sets satisfies a certain given rule. Precisely, let G be a finite simple graph with
vertex set V and L be a subset of non-negative integers. An L-intersection representation of
G, assign to every vertex v ∈ V a finite set Av, such that two vertices u and v are adjacent
if and only if |Au ∩ Av| ∈ L. We are interested in the minimum size of the universe of the
sets, | ∪v∈V Av|. This parameter is denoted by ΘL(G) and called the L-intersection number
of G [5].

For bipartite graph G with a fixed vertex partition V = V1 ∪ V2, the definition can be
modified by relaxing the condition inside the partition sets (since for vertices inside a partite
set, we know they are not adjacent). Indeed, a bipartite L-intersection representation of
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graph G, for a given set L ⊆ {0, 1, 2, . . . }, assign to every vertex v ∈ V a finite set Av, such
that two vertices u, v from different partite sets are adjacent if and only if |Au ∩ Av| ∈ L.
The relaxed measure of the L-intersection number is denoted by θL(G) [8]. It is clear that
ΘL(G) ≥ θL(G) for every bipartite graph G and set L.

One of the important measures regarding set intersection representations is finding the
optimal representation for a graph by considering different sets L. Indeed, the absolute
dimension of G is defined as Θ(G) = minLΘL(G) over all sets L of non-negative integers
(similarly, the bipartite absolute dimension is θ(G) = minL θL(G)). This concept has close
connection to the log-rank conjecture in communication complexity [8]. Also, finding explicit
lower bounds for absolute dimension has important consequence in the complexity theory [8,
14, 15]. However, an easy counting argument, shows that there exist graphs of order n with
absolute dimension Ω(n) [8].

A twin-free graph is a graph without any pair of vertices with N(u)−{v} = N(v)−{u},
where N(x) is the set of vertices adjacent to x. As a matter of fact, for every twin-free graph
G of order n, Θ(G) ≥ log2 n. This lower bound is obtained from the fact that in such a graph
no pair of vertices could be assigned the same set in an optimal representation. Although,
this lower bound is obtained simply, the question of finding an explicit construction for graph
G such that θ(G) = Ω(log n) or even Θ(G) = Ω(log n), is going to be a very challenging
problem [1, 8]. It is easy to see that if H is a maximal twin-free induced subgraph of G,
then ΘL(H) ≤ ΘL(G) and θL(H) = θL(G), for every set L. Thus, every lower bound for the
L-intersection number of H is a lower bound for the L-intersection number of G. Throughout
this paper we consider twin-free graphs with no isolated vertex.

A good summary on the known results on the L-intersection number is given by Jukna [8]
(for more results in this subject see [2, 3, 4, 7]). The most studied problems in this concept
are related to the threshold type L = {1, 2, . . . } which in the general case is known as the
edge clique covering number, denoted by Θ1(G).

The complement of a graph G is denoted by G. Also, by a bipartite complement of a
bipartite graph G = (V1 ∪ V2, E) we mean the bipartite graph Gc = (V1 ∪ V2, E

c), where
Ec = (V1 × V2)\E.

Theorem 1.1. [3] Let L = {0, 1, . . . , k − 1} for some integer k. Then, for every graph G,
ΘL(G) ≥ (Θ1(G))1/k.

The bipartite L-intersection number for L = {1, 2, . . . } corresponds to the well-known
parameter, the edge biclique covering number [9]. The bipartite L-intersection number for
various sets L are studied in [8]. Specially the following lower bounds are obtained when
L = {l : l (mod p) ∈ R} for a given subset R of residues module p, such set L is called
modular type.

Theorem 1.2. [8] Let p be a prime number and R be a subset of residues module p with
|R| = r. If L = {l : l (mod p) ∈ R}, then for every graph G of order n and maximum degree
∆,

(i) θL(G
c) ≥ (n/∆)

1
r .

(ii) θL(G) ≥ (1rn/∆)
1

p−1 .
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In this paper we are concerned with finding lower bounds for (bipartite) L-intersection
number of graphs for various types L. To do this, our main tools are linear algebra techniques
via inclusion matrices. We show how these techniques give elegant proofs and stronger results
in some cases.

The structure of the paper is as follows. First, in Section 2, we present basic technique
which we have used through the paper. Then, in Section 3, we obtain some lower bounds
for the L-intersection number for modular types and finite sets L. By the similar method, in
Section 4, we find some lower bounds for the bipartite L-intersection number which improve
the bounds in Theorem 1.2. Finally, in Section 5, we consider the uniform intersection set
representation of graphs, where all sets assigned to the vertices have the same size, and obtain
some lower bounds for such L-intersection number.

2 The Key Technique

This section deals with the basic tools which are used to get the main results of the paper.

We start with the definition of the rank of a graph.

Let Mn(F) be the set of all n× n matrices over a field F and Sn(F) be the subset of all
symmetric matrices in Mn(F). We consider Sn(F) and Mn(F) as vector spaces over the field
R. For A ∈ Sn(F), the graph of A, denoted by G(A), is a graph with vertex set {1, . . . , n}
and edge set {ij : Aij ̸= 0 and i ̸= j}. Note that the entries of the diagonal of A are ignored
in determining G(A).

The minimum rank [13] of a graph G over a field F is defined to be

mrF(G) = min{rank(A) : A ∈ Sn(F), G(A) ∼= G},

where ∼= means the graph isomorphism relation.

In the case of bipartite graph, for convenience we consider the bipartite adjacency matrix.
The bipartite adjacency matrix of an n × n bipartite graph G with a vertex partition V =
V1 ∪V2, denoted by Ab(G), is a (0, 1)-matrix whose rows correspond to the vertices of V1 and
its columns correspond to the vertices of V2, and the (i, j) entry of Ab(G) is 1 if and only if
vertex i is adjacent to vertex j. For A ∈ Mn(F), the bipartite graph Gb(A) is a graph with
bipartite set V1 and V2 corresponding to the rows and the columns of A, respectively, and
edges {ij : Aij ̸= 0}.

The bipartite minimum rank of a bipartite graph G over a field F is defined to be

bmrF(G) = min{rank(A) : A ∈ Mn(F), Gb(A) ∼= G}.

It can be easily seen that, for every bipartite graph G, mrF(G) = 2bmrF(G). For conve-
nience, when F = R, we denote mrF(G) and bmrF(G) by mr(G) and bmr(G), also for F = Zp

we denote them by mrp(G) and bmrp(G), respectively.

Let F and T be two families of subsets of set [l] = {1, . . . , l}. The (F , T )-inclusion matrix,
denoted by Il(F , T ) is a (0, 1)-matrix whose rows and columns are labelled by the members
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of F and T , respectively. The (F, T ) entry of Il(F , T ) will be 1 or 0 according to whether or
not T ⊆ F . In the case that T is the family of all t-subsets of [l], we denote the matrix by
Il(F , t) and call it the t-inclusion matrix of F . When F is the family of all i-subsets of [l],
the corresponding t-inclusion matrix is denoted by Il(i, t). Let At(F , T ) = Il(F , t)Il(T , t)T ,
we call At(F , T ) the t-intersection matrix of F and T [6]. Indeed, At(F , T ) is an |F| × |T |
matrix where its (F, T ) entry is

(|F∩T |
t

)
. Moreover,

rank(At(F , T )) ≤ rank(Il(F , t)) ≤
(
l

t

)
. (1)

Proposition 2.1. Let F and T be two families of subsets of [l]. If M =
∑k

t=0 ctAt(F , T ),

where for any 0 ≤ t ≤ k, ct is a real number, then rank(M) ≤
∑k

t=0

(
l
t

)
.

Proof. By the definition of M , the row space of M is a subspace of the vector space spanned
by the rows of At(F , T ), 0 ≤ t ≤ k, and thus by the subadditivity of the rank function and
relation (1),

rank(M) ≤
k∑

t=0

rank(At(F , T )) ≤
k∑

t=0

(
l

t

)
.

Recall that for every non-negative integer t the binomial coefficient
(
x
t

)
over a field F is

defined as (
x

t

)
=

1

t!
x(x− 1) . . . (x− t+ 1).

Note that the polynomials
(
x
0

)
,
(
x
1

)
, . . . ,

(
x
d

)
form a basis for space of polynomials of degree

at most d. Thus, we have the following well-known proposition.

Proposition 2.2. Every polynomial f(x) of degree d ≥ 0 can uniquely be expressed as the
linear combination of the binomial coefficients,

(
x
i

)
, 0 ≤ i ≤ d.

3 Lower bounds for the L-intersection number

In this section, we present some lower bounds for the L-intersection number of a graph G for
modular types and finite sets L in terms of the minimum rank of G.

Theorem 3.1. If p is a prime number, R ⊂ Zp with |R| = r, L = {l : l (mod p) ∈ R} and
F is an L-intersection representation of a graph G, then we have the following statements,
where the matrices are considered over Zp.

(i) There are real numbers ct, 0 ≤ t ≤ r, such that if M =
∑r

t=0 ctAt(F ,F), then G(M) ∼= G.

(ii) There are real numbers ct, 0 ≤ t ≤ p − 1, such that if M =
∑p−1

t=0 ctAt(F ,F), then
G(M) ∼= G.
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Proof. Let F = {F1, . . . , Fn}, where for any 1 ≤ i ≤ r, Fi is the set assigned to the vertex i,
and R = {ρ1, ρ2, . . . , ρr}. Recall that, At(F ,F) is an n× n matrix, where the (Fu, Fv) entry
is

(|Fu∩Fv |
t

)
.

(i) By Proposition 2.2, there are real numbers ct, 0 ≤ t ≤ r, such that for every non-negative
integer x,

r∏
i=1

(x− ρi) ≡
r∑

t=0

ct

(
x

t

)
(mod p).

Thus, for M =
∑r

t=0 ctAt(F ,F), the (u, v) entry of M is equal to
∏r

i=1(|Fu ∩Fv| − ρi) in
Zp. Therefore, M is a symmetric matrix. In view of the definition of L, one can see that for
every u ̸= v, the (u, v) entry is zero in Zp if and only if vertex u is adjacent to vertex v in G.
Hence, over the Zp,

G(M) ∼= G.

(ii) By Proposition 2.2, there are real numbers ct, 0 ≤ t ≤ p − 1, such that for every non-
negative integer x,

r∑
i=1

(1− (x− ρi)
p−1) ≡

p−1∑
t=0

ct

(
x

t

)
(mod p).

Thus, for M =
∑p−1

t=0 ctAt(F ,F), the (Fu, Fv) entry in M is equal to
∑r

i=1[1−(|Fu∩Fv|−
ρi)

p−1]. Hence, by the Fermat’s little theorem, for every two vertices u and v, the (Fu, Fv)
entry in M is zero in Zp if and only if vertex u is not adjacent to vertex v. Therefore,
G(M) ∼= G.

Now by Proposition 2.1 and Theorem 3.1, we are ready to get the main result of this
section.

Theorem 3.2. Let p be a prime number and R be a subset of residues module p with |R| = r.
If L = {l : l (mod p) ∈ R}, then for every graph G,

(i) mrp(G) ≤
r∑

t=0

(
ΘL(G)

t

)
.

(ii) mrp(G) ≤
p−1∑
t=0

(
ΘL(G)

t

)
.

Proof. Let F be an optimal L-intersection representation of G.

(i) By Theorem 3.1 there are real numbers ct, 0 ≤ t ≤ r, such that in Zp for M =∑r
t=0 ctAt(F ,F), we have G(M) ∼= G. Thus by Proposition 2.1, mrp(G) ≤ rank(M) ≤∑r
t=0

(
ΘL(G)

t

)
.
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(ii) By Theorem 3.1 there are real numbers ct, 0 ≤ t ≤ p − 1, such that in Zp for M =∑p−1
t=0 ctAt(F ,F), we have G(M) ∼= G. Thus by Proposition 2.1, mrp(G) ≤ rank(M) ≤∑p−1
t=0

(
ΘL(G)

t

)
.

Using the following approximation for the binomial coefficients, we obtain lower bounds
for ΘL(G) and ΘL(G) in terms of the minimum rank of G.

It can be seen that, for positive integers x and s > 1, we have

s∑
i=0

(
x

i

)
≤ xs. (2)

Corollary 3.3. Let p be a prime number and R be a subset of residues module p with |R| = r,
where r > 1. If L = {l : l (mod p) ∈ R}, then for every graph G,

(i) ΘL(G) ≥ (mrp(G))
1
r .

(ii) ΘL(G) ≥ (mrp(G))
1

p−1 .

Note that the proof of Theorem 3.1(i), works for field R and any finite set L. Thus, by
the similar argument the lower bounds in terms of mr(G) for ΘL(G) are obtained. Hence,
we have the following theorem.

Theorem 3.4. If L is a finite set of size s, where s > 1, then for every graph G, ΘL(G) ≥
(mr(G))

1
s .

4 Lower bounds for the bipartite L-intersection number

This section deals with the bipartite L-intersection number of graphs for modular types and
finite sets L. Here, by defining some appropriate inclusion matrices, we obtain lower bounds
for θL(G) in terms of the bipartite minimum rank of G.

By the similar argument to Theorem 3.1 next theorem can be proved for the case of
bipartite graphs.

Theorem 4.1. If p is a prime number, R ⊂ Zp with |R| = r, L = {l : l (mod p) ∈ R} and
F ∪ T is a bipartite L-intersection representation of a bipartite graph G such that F and
T corresponds to the different parts of G, then we have the following statements, where the
matrices are considered over Zp.

(i) There are real numbers ct, 0 ≤ t ≤ r, such that if M =
∑r

t=0 ctAt(F , T ), then Gb(M) ∼= Gc.

(ii) There are real numbers ct, 0 ≤ t ≤ r, such that if M =
∑p−1

t=0 ctAt(F , T ), then Gb(M) ∼= G.

Now by Proposition 2.1 and Theorem 4.1, we are ready to get the main result of this
section.
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Theorem 4.2. Let p be a prime number and R be a subset of residues module p with |R| = r.
If L = {l : l (mod p) ∈ R}, then for every bipartite graph G,

(i) bmrp(G
c) ≤

r∑
t=0

(
θL(G)

t

)
.

(ii) bmrp(G) ≤
p−1∑
t=0

(
θL(G)

t

)
.

Proof. Let F ∪T be an optimal bipartite L-intersection representation of G such that F and
T corresponds to the different parts of G.

(i) By Theorem 4.1 there are real numbers ct, 0 ≤ t ≤ r, such that in Zp for M =∑r
t=0 ctAt(F , T ), we have Gb(M) ∼= Gc. Thus by Proposition 2.1, bmrp(G

c) ≤
∑r

t=0

(
θL(G)

t

)
.

(ii) By Theorem 4.1 there are real numbers ct, 0 ≤ t ≤ p − 1, such that in Zp for M =∑p−1
t=0 ctAt(F , T ), we have Gb(M) ∼= G. Thus by Proposition 2.1, bmrp(G) ≤

∑p−1
t=0

(
θL(G)

t

)
.

It is known that if in the above theorem, L is the set of odd numbers, i.e. p = 2 and
R = {1}, then for every bipartite graph G, θL(G) = mrZ2(G) [8]. This shows that the above
lower bounds are tight.

From Theorem 4.2, by the approximation (2) for the binomial coefficients, we get the
following corollary.

Corollary 4.3. Let p be a prime number and R be a subset of residues module p with |R| = r,
where r > 1. If L = {l : l (mod p) ∈ R}, then for every bipartite graph G,

(i) θL(G
c) ≥ (bmrp(G))

1
r .

(ii) θL(G) ≥ (bmrp(G))
1

p−1 .

By the above lower bounds we obtain an alternative proof of Theorem 1.2 as follows.

A bipartite n × n graph G = (V1 ∪ V2, E) is increasing if it is possible to enumerate its
vertices V1 = {x1, . . . , xn} and V2 = {y1, . . . , yn} so that xiyi ∈ E and xiyj ̸∈ E for all i > j.
Jukna [8] proves that every bipartite n× n graph G of maximum degree ∆, with no isolated
vertices, contains an induced bipartite (n/∆)× (n/∆) increasing subgraph.

Clearly, if H is the induced bipartite (n/∆) × (n/∆) increasing subgraph of G, then
bmrF(G) ≥ bmrF(H). Moreover, the adjacency matrix of H is upper triangular with non-
zero diagonal entry. Thus, bmrF(G) ≥ n/∆ over any field F. Hence, Corollary 4.3 implies
Theorem 1.2.
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5 Uniform set intersection representation

In this section, we consider the set intersection representation of graphs that have constraints
on the size of sets assigned to the vertices. In fact, if all sets assigned to the vertices are of the
same size, say k, then the representation is called the k-uniform intersection representation.
The (L, k)-intersection number of G, denoted by ΘL,k(G), is the minimum size of the universe
of the sets in all k-uniform intersection representations of graph G. As a natural extension,
we can assume that the size of sets assign to the vertices are restricted to r different sizes
in the set K = {k1, k2, . . . , kr}. In this case, we denote the minimum size of the universe of
the sets in all such representations with ΘL,K(G). Now we investigate the uniform case and
obtain the similar lower bounds for ΘL,k and ΘL,K for various types L.

Proposition 5.1. [6, Proposition 7.9 on Page 142] If F is a subfamily of k-subsets of [l],
then

Il(F , i)Il(i, t) =

(
k − t

i− t

)
Il(F , t).

Theorem 5.2. Let p be a prime number and R be a subset of residues module p with |R| = r.
If L = {l : l (mod p) ∈ R}, then for every graph G,

mrp(G) ≤
(
ΘL,k(G)

r

)
.

Proof. Let F = {F1, . . . , Fn} be the k-uniform family of subsets assigned to the vertices of
G by ΘL,k labels. Let Mt = At(F ,F) = Il(F , t)Il(F , t)T be the t-intersection matrix of F ,

where 0 ≤ t ≤ r. Recall that, Mt is an n× n matrix, with
(|Fu∩Fv |

t

)
in position (u, v).

By Proposition 5.1,

Il(F , r)Il(r, t) =

(
k − t

r − t

)
Il(F , t).

Note that, the column vector space of Mt is a subspace of column vector space of Il(F , t).
Moreover, if 0 ≤ t ≤ r ≤ k, then

(
k−t
r−t

)
̸= 0. Thus, by the above relation, the column vector

space of Il(F , t) is a subspace of column vector space of Il(F , r).

Now, by Theorem 3.1(i), there are real numbers ct, 0 ≤ t ≤ r, such that in Zp for
M =

∑r
t=0 ctAt(F ,F), we have G(M) ∼= G. By the definition of M , the column vector space

of M is a subspace of the vector space spanned by the columns of Mt, 0 ≤ t ≤ r. Hence, it
is the subspace of the column vector space of Il(F , r). Therefore,

rank(M) ≤ rank(Il(F , r)) ≤
(
ΘL,k(G)

r

)
.

Therefore, by G(M) ∼= G,

mrp(G) ≤ rank(M) ≤
(
ΘL,k(G)

r

)
.
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A natural extension of the uniform representation is a set representation with the restric-
tion on the size of sets to r different sizes. For such a representation, a generalization of
Theorem 5.2 is proved in the next theorem.

Theorem 5.3. If L = {l1, . . . , ls} and K = {k1, . . . , kr} are two subsets of non-negative
integers, where ki > s− r, 1 ≤ i ≤ r, then for every graph G,

mr(G) ≤ r

s∑
t=s−r+1

(
ΘL,K(G)

t

)
.

Proof. Let F = {F1, . . . , Fn} be a family of sets corresponding to an optimal (L,K)-intersection
representation of G, and Fi, 1 ≤ i ≤ r, be the ki-uniform subfamily of subsets of F . Sup-
pose that Mt = At(F ,F) is the t-intersection matrix of F . In this case, similar to the
Theorem 3.1(i), one can prove that there are real numbers ct, 0 ≤ t ≤ s, such that for
M =

∑s
t=0 ctMt, G(M) ∼= G.

For convenience, we denote the column vector spaces of a matrix Q by C(Q), respectively.
By the definition of Mt = Il(F , t)Il(F , t)T ,

C(Mt) ⊆ C(Il(F , t)).

Moreover, by Proposition 5.1, we have,

Il(Fi, s− r + 1)Il(s− r + 1, t) =

(
ki − t

s− r + 1− t

)
Il(Fi, t).

If 0 ≤ t ≤ s − r + 1, then t ≤ s − r + 1 ≤ ki and
(

ki−t
s−r+1−t

)
̸= 0. Hence, by the above

equality, for 0 ≤ t ≤ s− r + 1,

C(Il(Fi, t)) ⊆ C(Il(Fi, s− r + 1)). (3)

Now, by the definitions, we have,

C(M) ⊆
s∑

t=0

C(Mt) ⊆
s∑

t=0

C(Il(F , t)).

Since F =
∑r

i=1Fi,

s∑
t=0

C(Il(F , t)) ⊆
s∑

t=0

r∑
i=1

C(Il(Fi, t)).

Also, by relation 3,

s∑
t=0

r∑
i=1

C(Il(Fi, t)) ⊆
r∑

i=1

s∑
t=s−r+1

C(Il(Fi, t)).

9



Hence,

C(M) ⊆
r∑

i=1

s∑
t=s−r+1

C(Il(Fi, t)).

Thus,
rank(M) ≤

∑r
j=1

∑s
t=s−r+1 |C(Il(Fi, t))|

≤
∑r

i=1

∑s
t=s−r+1

(ΘL,K(G)
t

)
= r

∑s
t=s−r+1

(ΘL,K(G)
t

)
.

On the other hand, since G(M) ∼= G,

mr(G) ≤ rank(M) ≤ r

s∑
t=s−r+1

(
ΘL,K(G)

t

)
.

By the same argument as in Theorems 5.2 and 5.3, the same lower bounds for the bipartite
version can be obtained.
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[7] M. S. Jacobson, A. E. Kézdy, and D. B. West. The 2-intersection number of paths and
bounded-degree trees. J. Graph Theory, 19(4):461–469, 1995.

[8] S. Jukna. On set intersection representations of graphs. J. Graph Theory, 61(1):55–75,
2009.

[9] S. Jukna and A. S. Kulikov. On covering graphs by complete bipartite subgraphs.
Discrete Math., 309(10):3399–3403, 2009.

10



[10] L. Lovász. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(1):1–7,
1979.

[11] L. Lovász and K. Vesztergombi. Geometric representations of graphs. In Paul Erdős
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