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Abstract
A star edge coloring of a graph G is a proper edge coloring of G such that no path or cycle of length 4 is bicolored. The star

chromatic index of G, denoted by v0sðGÞ, is the minimum k such that G admits a star edge coloring with k colors. Bezegová

et al. (J Graph Theory 81(1):73–82, 2016) conjectured that the star chromatic index of outerplanar graphs with maximum

degree D is at most 3D
2

� �
þ 1. In this paper, we prove this conjecture for a class of outerplanar graphs, namely Cactus

graphs, wherein every edge belongs to at most one cycle.

Keywords Star edge coloring � Star chromatic index � Outerplanar graphs � Cactus graphs

Mathematics Subject Classification 05C15

1 Introduction

All graphs in this paper are simple and undirected. Let G be

a graph with vertex set V(G) and edge set E(G). We show

every edge e 2 EðGÞ with two endpoints u; v 2 VðGÞ, by

e ¼ uv, and say that u and v are adjacent. Moreover, we say

that two edges e and e0 are adjacent if they have a common

endpoint.

A proper edge coloring of G is an assignment of colors

to its edges such that no two adjacent edges have the same

color. There are variants coloring of graphs under the

additional constraints. For example, star edge coloring is a

kind of proper edge coloring with no bicolored path or

cycle of length 4 (path or cycle with four edges). The star

chromatic index of G, denoted by v0sðGÞ, is the minimum

k such that G has a star edge coloring with k colors (Dvořák

et al. 2013; Liu and Deng 2008). Star edge coloring was

defined in 2008 by Liu and Deng (2008).

Bezegová et al. (2016) obtained upper bound 3D
2

� �
for

the star chromatic index of trees. Omoomi et al. (2018)

gave a polynomial time algorithm to find the star chromatic

index of every tree. Using the star chromatic index of trees,

Bezegová et al. (2016) found upper bound 3D
2

� �
þ 12 for

the star chromatic index of outerplanar graphs. An outer-

planar graph is a graph that has a planar drawing for which

all vertices belong to the outer face. Bezegová et al. also

presented the following conjecture.

Conjecture 1 Bezegová et al. (2016) If G is an outer-

planar graph with maximum degree D, then

v0sðGÞ�
3D
2

� �
þ 1:

Wang et al. (2018) proved that v0sðGÞ� 3D
2

� �
þ 5 for

outerplanar graph G with maximum degree D.

A Cactus is a graph in which every edge belongs to at

most one cycle. Since these graphs are outerplanar, in order

to prove Conjecture 1, it is worth to study the star edge

coloring of Cactus graphs. In this paper, we prove Con-

jecture 1 for Cactus graphs with maximum degree D.

A unicyclic Cactus (or UCC for short) is a Cactus

G ¼ C [ F, where C is a cycle (or an edge) and F is a

forest consisting of some rooted trees with height at most

two and the roots in C (Fig. 1). The height of a rooted tree

is the length of the longest path between the root and a leaf.

We denote a rooted tree with root v as Tv.
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Through the paper, we assume that the degree of all

vertices except leaves is D, because adding some leaves to

the vertices with degree at least two does not reduce the

star chromatic index. We call such a graph a D-

semiregular.

The structure of the paper is as follows. In Sect. 2, we

present an algorithm to give a star edge coloring for every

D-semiregular UCC with at most 3D
2

� �
þ 1 colors. Using

this coloring, in Sect. 3, we find a star edge coloring for

every D-semiregular Cactus with at most 3D
2

� �
þ 1 colors.

Finally, in Sect. 4, we show the tightness of the obtained

bound for an infinite family of Cactus graphs.

2 Star Edge Coloring of Unicyclic Cactus
Graphs

We first introduce the terminology and notations that we

need through the paper. For further information on graph

theory concepts and terminology, we refer the reader to

Bondy and Murty (2008).

Let G be a graph. We say G is 2-connected if between

every two vertices there are at least two internally disjoint

paths. A block in G is a maximal 2-connected subgraph in

G. Thus, every block in a Cactus is either an edge or a

cycle. A block graph H of G is a graph that its vertices are

the blocks of G and two vertices of H are adjacent if and

only if their corresponding blocks in G intersect in a vertex.

Clearly, every block graph is a tree.

For every block C in Cactus G, we consider three types

of edge, as follows:

E1ðCÞ ¼ fe : e 2 EðCÞg:
E2ðC; xÞ ¼ fe ¼ xy : x 2 VðCÞ; y 62 VðCÞg;
E2ðCÞ ¼

[

x2VðCÞ
E2ðC; xÞ:

E3ðC; eÞ ¼ fe0 : e0 62 E1ðCÞ [ E2ðCÞ; e0 is adjacent to

e; e 2 E2ðCÞg;
E3ðCÞ ¼

[

e2E2ðCÞ
E3ðC; eÞ:

In Fig. 1, a UCC graph with its three types of edges is

shown.

In every edge coloring c of G with k colors, we show the

color set by C :¼ f1; 2; . . .; kg, the color set of all edges

incident to vertex x by C(x), and the color of edge e by c(e).

We now present an algorithm to give a star edge coloring

of every D-semiregular UCC, with 3D
2

� �
þ 1 colors.

Theorem 1 If G is a UCC graph with maximum degree D,

then

v0sðGÞ�
3D
2

� �
þ 1:

Proof Without loss of generality, assume that G ¼ C [ F

is D-semiregular. In Algorithm 1, we present a star edge

coloring of G with 3D
2

� �
þ 1 colors.

The performance of Algorithm 1 is as follows. We first

give an optimum star edge coloring for block C in

G ¼ C [ F, where v0sðCÞ� 4 [see the proof of Theorem 5.1

in Dvořák et al. (2013)]. Let C0 be the set of colors that are

x

x

E1(C)

E2(C, x)

e
E3(C, e)

e

E2(C, x )

Fig. 1 A UCC graph with three types of edges
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not used for coloring C. We choose D� 2 colors from C0
for coloring the edges of E2ðCÞ. Assume that x 2 VðCÞ and

ei 2 Tx is the ith edge incident to x, where 1� i�D� 2.

We color D
2

� �
þ 1 edges of E3ðC; eiÞ with colors that are

not used in C(x). To complete coloring of the edges in

E3ðC; eiÞ, we have two possibilities: index i is even or odd.

If i is even (or odd), we use colors of incident edges to x

with even indices more (or less) than i and odd indices less

(or more) than i. Note that in both cases, there exist at least

bD
2
c � 1 colors for the uncolored edges in E3ðC; eiÞ. Thus,

we can color all edges in G with at most 3D
2

� �
þ 1 colors.

We now prove that this coloring is a star edge coloring.

For this purpose, we first check the coloring of paths of

length 4 in Tx. Consider two arbitrary edges ej ¼ xyj and

ek ¼ xyk in E2ðC; xÞ. Without loss of generality, assume

that j\k. If the parity of j and k is different, then

cðekÞ 62 CðyjÞ. Similarly, if the parity of j and k is the same,

then cðejÞ 62 CðykÞ. Thus, we have no bicolored path of

length 4 in Tx. Moreover, since the color set of the edges in

E3ðCÞ is disjoint from the color set of C, the obtained

coloring is a star edge coloring of G. h

3 Star Edge Coloring of Cactus Graphs

In this section, we prove Conjecture 1 for Cactus graphs.

Theorem 2 If G is a Cactus with maximum degree D, then

v0sðGÞ�
3D
2

� �
þ 1:

Proof In Bezegová et al. (2016), it is proved that the star

chromatic index of outerplanar graphs with maximum

degree 3 is at most 5. Thus, we prove the statement for

D� 4.

Let r ¼ ðC1; . . .;CtÞ be an enumeration of blocks in G,

in the order in which they are visited by breadth first

search (BFS) in block graph G. The BFS is a traversing

algorithm where we start traversing from a selected vertex

and explore all of the neighbor vertices at the present level

prior to moving on to the vertices at the next level.

For every block Ci, 1� i� t, we construct a UCC graph

GCi
, corresponding to the three types of edges of Ci in G, as

follows. Let D be a cycle of length 3 or 4 in E2ðCiÞ [
E3ðCiÞ with two incident edges e1 ¼ xy1 and e2 ¼ xy2 to

vertex x 2 Ci. We remove edges of EðDÞ \ E3ðCiÞ and add

two new vertices y01 and y02 connecting to y1 and y2,

respectively. We apply this process for every cycle in

E2ðCiÞ [ E3ðCiÞ. The final graph is UCC graph GCi

(Fig. 2).

We now present the following algorithm, to provide a

star edge coloring for every D-semiregular Cactus with
3D
2

� �
þ 1 colors.

Ci

(a) E1(Ci) ∪ E2(Ci) ∪ E3(Ci)

adding and removing

some edges
Ci

(b) GCi

Fig. 2 Construction of UCC graph GCi
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Algorithm 2 runs as follows. In the ith round, we

consider the ith block of G in enumeration r and construct

graph GCi
. Note that for i[ 1, GCi

has a partial star edge

coloring that edges of Ci and some edges of E2ðCiÞ [
E3ðCiÞ are colored. The edges in a common level of Tx are

either already colored or not. In lines 3 to 14 of Algorithm

2, we complete the coloring of GCi
.

We now color edges of E1ðCiÞ [ E2ðCiÞ in G in the same

fashion as the corresponding edges in GCi
. Let HCi

be the

induced subgraph of G on E1ðCiÞ [ E2ðCiÞ [ E3ðCiÞ and all

cycles share a vertex with Ci. We obtain a coloring of HCi
, as

follows.

We first complete coloring of every uncolored cycle that

shares a vertex withCi inG, according to its length (see lines 17

to 41 in the algorithm). For example, let Dx ¼ e1; e2; . . .; en be

an uncolored cycle with two edges e1 and e2 incident to x 2 Ci.

For Dx with different lengths, we demonstrate its coloring in

Figs. 3 and 4, by the following assumptions. Let

CðxÞ ¼ f1; . . .;Dg, cðe1Þ ¼ 1, cðe2Þ ¼ 2, fA;Bg � C0ðxÞ,
A 6¼ B, k 2 ðCðx1Þ \ CðxÞÞnf1; 2g, and the dashed edges are

in GCi
nG.

Finally, we color the remaining edges of E3ðCiÞ in HCi

in the same fashion as the corresponding edges in GCi
. Note

that, in lines 3 to 14, edges of E3ðCi; e1Þ are colored before

E3ðCi; e2Þ. Thus, ciðe2Þ is not used for the edges in

E3ðCi; e1Þ and all colors of C0ðxÞ are used in E3ðCi; e1Þ and

E3ðCi; e2Þ. Hence, it is easy to check that the coloring of

Ci [ Tx [ D is a star edge coloring.

We now, by induction on t, prove that the obtained

coloring is a star edge coloring of G. For i ¼ 1, by applying

Algorithm 1 in line 4 of Algorithm 2, the statement is

obvious. Now, assume that after the ði� 1Þth round in
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Algorithm 2 there is no bicolored path of length 4, but

bicolored path P :¼ e1; e2; e3; e4 appears after the ith round.

We have two possibilities: All edges of P belong to HCi
or

not. In the first case, since for each vertex x of Ci there is no

bicolored path in Ci [ Tx [ Dx, two adjacent edges of P

belong to Ci or are in the same Tx. Therefore, e2 or e3 is in

Ci and is colored before the ith round. Without loss of

generality, assume that e3 2 Ci. If e1 or e2 is uncolored

before the ith round, then for some x in Ci, e1 2 Tx and by

coloring Tx in the ith round, colors of e1 and e3 are

different, that is a contradiction. Thus, edges e1 and e2 are

also colored before the ith round.

Now, letPhas some edges out ofHCi
. In this case, because of

enumeration r, P has three colored edges before the ith round.

According to this argument, it follows that e1e2e3 is a bicolored

path obtained before the ith round. If e2 62 Ci, then all paths of

length 4 that contain P are colored before the ith round and by

the induction hypothesis, P is not bicolored. Thus, e2 2 Ci and

is colored before the ith round. Since e4 2 E2ðCiÞ [ E3ðCiÞ and

is colored in the ith round by Algorithm 1, color of e4 is not the

same as color of e2. Therefore,P is not bicolored, that again is a

contradiction. Hence, the obtained coloring in Algorithm 2 is a

star edge coloring of G. h

Remark Note that the running time of Algorithms 1 and 2

are polynomial. Thus, for every Cactus graph with maxi-

mum degree D, the star edge coloring with 3D
2

� �
þ 1 colors,

given in Theorem 2, is obtained in polynomial time.

4 Tightness of the Bound

In this section, we prove that the given bound in Theo-

rem 2 is tight and there is an infinite family of Cactus

graphs that achieve the bound 3D
2

� �
þ 1. First, we need to

see some facts about the star edge coloring of trees.

x

x1 x2

Ci

21

AA

12

1
AA

(a)

x

x1 x2

Ci

21

1A

A1

A

2

1A

(b)

x
x1 x2

Ci

21

1A

A2

A

2

1

1

2

A

1A

(c)

Fig. 4 Star edge coloring of cycle Dx of length at least 6

x

x1 x2

Ci

21

A
AA 1

(a)

x

x1 x2

Ci

21
λ

λ A Aλ
1A

(b)

x

x1 x2

Ci

21

1A
B B

B

A A

(c)

Fig. 3 Star edge coloring of cycle Dx of length 3, 4, and 5

Iran J Sci Technol Trans Sci

123



Lemma 1 Let D be an odd positive integer and Tv be a D-
semiregular rooted tree of height two. In every star edge

coloring c of Tv with color set C ¼ f1; . . .; 3D
2

� �
g and for

every two neighbors x and y of the root v, we have

(a) jCðxÞ \ CðyÞj� Dþ1
2

, C0ðvÞ ¼ CnCðvÞ � CðxÞ.
(b) Every color of C(v) is used for D�1

2
non-incident

edges to v.

(c) cðvxÞ 2 CðyÞ or cðvyÞ 2 CðxÞ.

Proof It is clear that

jCðxÞ \ CðyÞj � 2D� 3D
2

� �
¼ Dþ 1

2
:

Let ni be the numbers of edges colored with i in Tvnfvg.

Obviously, CðxÞ \ C0ðvÞ� D�1
2

. Moreover, for every two

neighbors x and y of v, if color c(vx) is used for some

incident edges to y, then color c(vy) is not used for the

incident edges to x, and vice versa. Thus, for each color

i 2 CðvÞ, we have ni � D�1
2

. Also, each color of C0ðvÞ can

be used for the incident edges of each neighbor of v. Since

Tv has DðD� 1Þ leaves, we must have

DðD� 1Þ ¼
X

i2CðvÞ
ni þ

X

i2C0ðvÞ
ni

�
X

i2CðvÞ

D� 1

2
þ

X

i2C0ðvÞ
D ¼ DðD� 1Þ;

which implies that if i 2 C0ðvÞ, then ni ¼ D which proves

(a). Moreover, if i 2 CðvÞ, then ni ¼ D�1
2

, that proves (b).

To prove (c), by contrary, suppose that cðvxÞ 62 CðyÞ and

cðvyÞ 62 CðxÞ. Then, colors c(vx) and c(vy) can be used for

at most ðD� 2Þ � D�1
2

\ D�1
2

non-incident edges to v, that

contradicts (b). h

Theorem 3 For every odd positive integer D� 3, there

exists a Cactus G with maximum degree D, in which

v0sðGÞ ¼ 3D
2

� �
þ 1.

Proof For every positive odd integer D, we construct a

Cactus that achieves the bound. For this purpose, let Tv be a

D-semiregular tree of height three with root v, and x and y

are two neighbors of v. For every vertex u 6¼ v in Tv, we

denote the neighbors of u by fu0; u1; . . .; uD�1g, where u0 is

the parent of u.

We construct Cactus GT from Tv by adding edge xy and

removing vertices x0 ¼ xD�1 and y0 ¼ yD�1. Obviously, if

GT admits a star edge coloring / with 3D
2

� �
colors, then Tv

has star edge coloring c with 3D
2

� �
colors, where

cðeÞ ¼

/ðeÞ ife 2 GT ;

/ðxyÞ ife ¼ xx0 or e ¼ yy0;

/ðxxi�1Þ ife ¼ y0y0i; 1� i�D� 1;

/ðyyi�1Þ ife ¼ x0x0i; 1� i�D� 1:

8
>>><

>>>:

By Lemma 1(c), /ðvxÞ 62 CðyÞ or /ðvyÞ 62 CðxÞ, and hence

/ðxyÞ 62 CðvÞ. Moreover, without loss of generality,

assume that /ðvyÞ 2 CðxÞ. Lemma 1(a) implies that

CðxÞ \ CðyÞ ¼ Dþ1
2

. Therefore, color /ðxyÞ can be used for

at most ðD� 1Þ � Dþ1
2

\ D�1
2

incident edges to the neigh-

bors of x, except v. That contradicts Lemma 1(b) for D-

semiregular subtree Tx in Tv. Therefore, v0sðGTÞ� 3D
2

� �
þ 1.

Hence, by Theorem 2 we have v0sðGTÞ ¼ 3D
2

� �
þ 1. h

Theorem 4 There exists Cactus G with maximum degree

6, where v0sðGÞ ¼ 10

Proof Let G be the Cactus shown in Fig. 5. We show that

G has no star edge coloring with color set C ¼ f1; . . .; 9g.

Assume that C :¼ x1x2x3 is the cycle of length 3 in G

colored by 1, 2, and 3. In every star edge coloring E1ðCÞ [
E2ðCÞ with colors C, there is a vertex xi that the color set of

edges in E2ðC; xiÞ is a subset of f4; 5; 6; 7; 8g and the colors

of at least two edges in E2ðC; xiÞ are used at least two times

in the color set of edges in E2ðCÞ. Without loss of gener-

ality, assume that i ¼ 3 and Cðx3Þ ¼ f1; 3; 4; 5; 6; 7g. Let

D :¼ x3y1y2y3 and cðx3y1Þ ¼ 4, cðx3y3Þ ¼ 5. The common

possible colors that we can use for edges incident to y1 and

y3 are f2; 8; 9g ¼ CnCðx3Þ, we color three edges in

E2ðD; y1Þ and E2ðD; y3Þ with these colors. On the other

hand, colors 3 and 1 are usable for coloring an edge in

E2ðD; y1Þ and E2ðD; y3Þ, respectively. If we set cðy1y2Þ ¼
A 2 f2; 8; 9g and cðy2y3Þ ¼ B 2 f2; 8; 9g or we set

cðy1y2Þ ¼ A 2 f2; 8; 9g and cðy2y3Þ ¼ 4, then we have a

bicolored path of length 4 in G. Otherwise, we must have

x1 x2

x3

y1 y3

y2

z9

z10

z11

z12

z5 z6 z7
z8

z1

z2

z3

z4

5

2

3 1

4

76

5

6 4 9
8

78
9

2
3

8

6

9

2
7 9 ?

1 9
8

4
2

15764

15
7
2
9

1
5
7
3
8

1
5 7 2 6 5 4 7 6

3
2
9
7

3
6

1
8

7
63

43 6 7 9

Fig. 5 A Cactus G with D ¼ 6 and vsðGÞ ¼ 10
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cðy1y2Þ ¼ A 2 f2; 8; 9g and cðy2y3Þ ¼ 1 (or cðy1y2Þ ¼ 3

and cðy2y3Þ ¼ A).

Now, we show that this is impossible as well. For this

purpose, let A ¼ 8 and color the edges in E3ðD; y1ziÞ,
1� i� 4, with colors f1; . . .; 9gnf8g such that there is no

bicolored path of length 4. First, color one edge in

E2ðD; y2Þ with color 7. According to colors of E3ðD; y1z1Þ,
we can color two edges of E2ðD; y2Þ with 2 and 9. On the

other hand, the only possible edge that can be colored with

color 1 is an edge in E3ðD; y3z12Þ. This implies that there is

no possible color to color edge y2z8 with a color in the

color set of edges in E2ðD; y3Þ [ E3ðD; y3z9Þ [ E3

ðD; y3z10Þ. By a similar discussion, it can be shown that

if we set cðy1y2Þ ¼ 3 and cðy2y3Þ ¼ 1 or cðy1y2Þ ¼ 6 and

cðy2y3Þ ¼ 1 or cðy1y2Þ ¼ 6 and cðy2y3Þ ¼ A, then coloring

of G with 9 colors is impossible. h

Conjecture 2 For every even integer D� 6, there exists a

D-semiregular Cactus G with star chromatic index
3D
2

� �
þ 1.
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Dvořák Z, Mohar B, Šámal R (2013) Star chromatic index. J. Graph

Theory 72(3):313–326

Liu XS, Deng K (2008) An upper bound on the star chromatic index

of graphs with D� 7. J Lanzhou Univ 44(2):98

Omoomi B, Roshanbin E, Vahid Dastjerdi M (2018) A polynomial

time algorithm to find the star chromatic index of trees. ArXiv

preprint arXiv:1805.09586

Wang Y, Wang W, Wang Y (2018) Edge-partition and star chromatic

index. Appl Math Comput 333:480–489

Iran J Sci Technol Trans Sci

123

http://arxiv.org/abs/1805.09586

	Star Edge Coloring of Cactus Graphs
	Abstract
	Introduction
	Star Edge Coloring of Unicyclic Cactus Graphs
	Star Edge Coloring of Cactus Graphs
	Tightness of the Bound
	References


