Locally Rainbow Graphs

BEHNAZ OMOOMI and ALI POURMIRI*

Department of Mathematical Sciences
Isfahan University of Technology
84156-83111, Isfahan, Iran

Abstract

A local coloring of a graph G is a function $c : V(G) \rightarrow \mathbb{N}$ having the property that for each set $S \subseteq V(G)$ with $2 \leq |S| \leq 3$, there exist vertices $u, v \in S$ such that $|c(u) - c(v)| \geq m_S$, where m_S is the size of the induced subgraph (S). The maximum color assigned by a local coloring c to a vertex of G is called the value of c and is denoted by $\chi_{\ell}(c)$. The local chromatic number of G is $\chi_{\ell}(G) = \min\{\chi_{\ell}(c)\}$, where the minimum is taken over all local coloring c of G. If $\chi_{\ell}(c) = \chi_{\ell}(G)$, then c is called a minimum local coloring of G. A graph G is called locally rainbow if every minimum local coloring of G uses all of the colors $1, 2, \ldots, \chi_{\ell}(G)$. The concept of local coloring of graphs introduced by Chartrand et. al. in 2003. They suggested a conjecture on locally rainbow graphs. In this paper it is shown that their conjecture is true and for a given positive integer k, there exists a locally rainbow graph R_k with $\chi_{\ell}(R_k) = k$.

*This work was partially supported by IUT (CEAMA)

Utilitas Mathematica 79(2009), pp. 267-275
number, locally

Graphs

?) → N having

≤ |S| ≤ 3, there

vS, where mS is

m color assigned

a value of c and

of G is \(\chi_\ell(G) = \chi \) of c of

local coloring c of

rtrand et. al. in

for any subgraph

oloring of a graph

! coloring c of c

local coloring of

result is estab-

plete multipartite

the remaining s

for every positive integer n.

Remark. The proof of Theorem A not only shows \(\chi_\ell(G) = 2k - 1 \)

for \(G = K_{n_1, \ldots, n_k} \), where \(k \geq 2 \) and \(n_i \geq 2 \) for all \(i \in \{1, 2, \ldots, k\} \),

but that any minimum local coloring of G must color all the vertices

in each partite set the same, namely, each of the colors 1, 3, \ldots, 2k - 1

is assigned to all vertices in a partite set.

It is well-known that if G is a graph with \(\chi(G) = k \), then any

coloring of G whose value is k must use all of the colors 1, 2, \ldots, k.

However if G is a graph with \(\chi_\ell(G) = k \), then a minimum local

coloring of G need not use all of colors 1, 2, \ldots, k, although certainly

the colors 1 and k must be used, as a simple example \(\chi_\ell(K_3) = 4 \).

For a graph G with \(\chi_\ell(G) = k \), a minimum local coloring c of

G is called a local rainbow coloring if for each integer i, 1 ≤ i ≤ k,

there is a vertex v of G for which c(v) = i, that is, c uses all of colors

1, 2, \ldots, k. A graph G is called locally rainbow if every minimum

local coloring of G is a local rainbow coloring.

In [1], for 1 ≤ k ≤ 5, the locally rainbow graphs \(R_k \) are shown

and the following conjecture is suggested.

Conjecture 1. For every positive integer k, there exists a locally

rainbow graph \(R_k \) with \(\chi_\ell(R_k) = k \).

In the following two theorems we prove that the conjecture above

is true.

Theorem 1. For every positive integer \(k \geq 2 \), there exists a locally

rainbow graph \(R_{2k-1} \) with \(\chi_\ell(R_{2k-1}) = 2k - 1 \).

Proof. To construct graph \(R_{2k-1} \), first we consider the complete

k-partite graph \(G = K_{2, 2, \ldots, 2} \) and denote the parts of G by \(V_1, \ldots, V_k \).

By Theorem A, G has local chromatic number 2k - 1 and in each
Key Words: local coloring, local chromatic number, locally rainbow graph.

1 Construction of Locally Rainbow Graphs

A local coloring of a graph G is a function $c : V(G) \rightarrow N$ having the property that for each set $S \subseteq V(G)$ with $2 \leq |S| \leq 3$, there exist vertices $u, v \in S$ such that $|c(u) - c(v)| \geq m_S$, where m_S is the size of the induced subgraph (S). The maximum color assigned by a local coloring c to a vertex of G is called the value of c and is denoted by $\chi_\ell(c)$. The local chromatic number of G is $\chi_\ell(G) = \min\{\chi_\ell(c)\}$, where the minimum is taken over all local coloring c of G. If $\chi_\ell(c) = \chi_\ell(G)$, then c is called a minimum local coloring of G. The local coloring of graphs introduced by Chartrand et. al. in [1] and [2].

Just as standard coloring, where $\chi(H) \leq \chi(G)$ for any subgraph H of a graph G, it follows that $\chi_\ell(H) \leq \chi_\ell(G)$ as well.

It is often useful to observe that if c is a local coloring of a graph G whose value is s, then the complementary local coloring \bar{c} of c defined by $\bar{c}(v) = s + 1 - c(v)$ for all $v \in V(G)$ is a local coloring of G as well.

In [1] and [2] among other results the following result is established which we use to prove our main results.

Theorem A. Let $G = K_{n_1, n_2, \ldots, n_{r+s}}$ be a complete multipartite graph, where r of the integers n_i are at least 2, the remaining s integers n_i are 1, and $r + s \geq 2$. Then

$$\chi_\ell(G) = 2r + \left\lfloor \frac{3s - 1}{2} \right\rfloor.$$

In particular,

$$\chi_\ell(K_n) = \left\lfloor \frac{3n - 1}{2} \right\rfloor$$
minimum local coloring of G all the vertices in V_i have color $2i - 1$ for $i = 1, 2, \ldots, k$. In the first step, we add $k^2 - k$ new vertices \(\{u_{ij} \mid 1 \leq i \leq k, 1 \leq j \leq k - 1\} \) to $V(G)$ and then join each vertex u_{ij} to all vertices in $V_1, \ldots, V_{i-1}, V_{i+1}, \ldots, V_k$.

In the second step, we add the complete graph K_{k-1} with vertex set $\{v_1, \ldots, v_{k-1}\}$ to the graph above, and then join the vertex v_j to the vertices u_{ij}, where $1 \leq i \leq k$ and $1 \leq j \leq k - 1$. We denote this graph by R_{2k-1}.

Since each vertex u_{ij} has neighbors in the vertex set V_l, $1 \leq l \neq i \leq k$, the color of u_{ij} can not be $2l - 1$. Moreover, if the color of u_{ij} is $2l$, $1 \leq l \leq k$, then we find an induced subgraph P_3 with colors $2l - 1$ and $2l$. Therefore, it is seen that, in each minimum local coloring of the graph R_{2k-1} each vertex u_{ij}, $1 \leq j \leq k - 1$, has color $2i - 1$, for $i = 1, \ldots, k$. Hence the vertex v_i has color $2i$, for $i = 1, \ldots, k - 1$. Therefore each minimum local coloring of graph R_{2k-1} uses all colors $1, 2, \ldots, 2k - 1$, which means for every positive integer k, graph R_{2k-1} is a locally rainbow graph.

In the following through some lemmas we prove that, for every positive integer k, there exists a locally rainbow graph R_{2k+2} with $\chi_\ell(R_{2k+2}) = 2k + 2$.

Lemma 1. Let $G = K_{n,1,1}$, where $n \geq 3$ and $V = \{v_1, \ldots, v_n\}, W = \{w\}$ and $Z = \{z\}$ be partite sets of G. In any minimum local coloring c of G the vertices in V have the same color. Moreover one of the following two possibilities exists; for each $v \in V$, $c(v) = 1$, $c(w) = 3$ and $c(z) = 4$ or for each $v \in V$, $c(v) = 4$, $c(w) = 1$ and $c(z) = 2$.

Proof. By Theorem A, $\chi_\ell(G) = 4$. Since G has more than 4 vertices in any minimum local coloring c of G there are at least two vertices in V with the same color, say c_1. Without less of generality let $c(w) < c(z)$. We consider the following cases.
Case 1. $c_1 = 2$ or $c_1 = 3$.

Let $c_1 = 2$. Since vertices w, z and one vertex in V induced a subgraph K_3 and $\chi_\ell(K_3) = 4$, we must have $c(w) = 1$ and $c(z) = 4$. Now two vertices with color 2 in V with w induced a subgraph P_3 with the colors 1 and 2, which contradicts that c is a local coloring. The case $c_1 = 3$ is also failed by considering the complementary local coloring \bar{c}.

Case 2. $c_1 = 1$ or $c_1 = 4$.

Let $c_1 = 1$. Since vertices w, z and one vertex in V induced a subgraph K_3 and $\chi_\ell(K_3) = 4$, we must have $c(z) = 4$. Now two vertices with color 1 in V with w induced a subgraph P_3, therefore we must have $c(w) = 3$. For the case $c_1 = 4$, the other possibility follows by considering the complementary local coloring \bar{c}.

Now we show that the color of all vertices in partite set V are the same. To see this by contrary let $c_1 = 1$ and there exits a vertex, say u in V with color 2. So vertices u, w and z induced a subgraph K_3 with colors 2, 3 and 4, which contradicts that c is a local coloring. If $c_1 = 4$ then we have the same result by considering the complementary local coloring \bar{c}. \hfill \Box

Proposition 1. Let $G_k = K_{n_1, \ldots, n_k, 1, 1}$, where $n_i \geq 3$, $1 \leq i \leq k$, be a complete $(k + 2)$-partite graph with partite sets $V_i = \{v_1^i, \ldots, v_{n_i}^i\}$, $1 \leq i \leq k$, $W = \{w\}$ and $Z = \{z\}$. In any minimum local coloring c of G_k the vertices in partite set V_i have the same color, say c_i and in the ordered set $c(V(G_k)) = \{c(v) \mid v \in V(G_k)\}$, the distance of every two consecutive colors is two, except $c(w)$ and $c(z)$, which $c(z) - c(w) = 1$. Moreover there are one of the three following possibilities. (Denote the $c(w)$ and $c(z)$ by c_w and c_z, respectively, and let $c_w < c_z$.)

1. $c_1 < c_2 < \cdots < c_i < \cdots < c_k < c_w < c_z = 2k + 2$.

2. $c_w < c_z < c_1 < c_2 < \cdots < c_i < \cdots < c_k = 2k + 2$.

3. $c_1 < c_2 < \cdots < c_i < c_w < c_z < c_{i+1} < \cdots < c_k = 2k + 2$.

271
Proof. We prove the statement by induction on \(k \). For \(k = 1 \), the statement is true by Lemma 1. Now let the statement be true for all \(p < k \) and consider graph \(G_k \) which has at least \(3k + 2 \) vertices. By Theorem A, \(\chi^c(G_k) = 2k + 2 \), hence in each minimum local coloring \(c \) of \(G_k \) there are at least two vertices namely \(u \) and \(u' \) in partite set \(V_j \) with the same color, say \(a \). Since \(u \) and \(u' \) with each vertex in the other partite sets in \(G_k \) induced a subgraph \(P_3 \), the color of each vertex \(v \in V(G_k) - V_j \) is less than or equal to \(a - 2 \) or greater than or equal to \(a + 2 \). Now we consider the following cases.

Case 1. \(a = 2k + 2 \) or \(a = 1 \).

Let \(a = 2k + 2 \). Graph \(G_k - V_j \) is a complete \((k+1)\)-partite graph with \(k - 1 \) partite sets of size at least three. In fact \(G_k - V_j = G_{k-1} \) and the minimum local coloring \(c \) on \(V(G_k) - V_j \) induced a minimum local coloring of \(G_{k-1} \) with value \(\chi^c(G_{k-1}) = 2k \). Therefore by the induction hypothesis the color of all vertices in each partite sets are the same and one of the following possibilities appears.

\[
1 = c_1 < c_2 < \cdots < c_i < \cdots < c_{k-1} < c_w < c_z = 2k.
\]

\[
1 = c_w < c_z < c_1 < c_2 < \cdots < c_i < \cdots < c_{k-1} = 2k.
\]

\[
1 = c_1 < c_2 < \cdots < c_i < c_w < c_z < c_{i+1} < \cdots < c_{k-1} = 2k.
\]

Therefore by the induction hypothesis the distance of every two consecutive colors in above is two, except \(c_w \) and \(c_z \). Moreover for each vertex \(v \in V_j \), \(c(v) = 2k + 2 \), because otherwise if there exits a vertex \(v \in V_j \), such that \(c(v) = a \neq 2k + 2 \), then we find an induced subgraph \(P_3 \) with colors \(a - 1 \) and \(a \) or with colors \(a \) and \(a + 1 \); or we have an induced complete graph \(K_3 \) with colors \(a - 2, a - 1 \) and \(a \) or with colors \(a, a + 1 \) and \(a + 2 \). Each of these cases contradicts that \(c \) is a local coloring. Therefore the statement is also true for graph \(G_k \).

By considering the complementary local coloring \(\tilde{c} \), for the case \(a = 1 \) the result is obtained.
Case 2. $1 < a < 2k + 2$.

In this case we define a local coloring c' of graph $G_{k-1} = G_k - V_j$. For each vertex $v \in V(G_{k-1})$, define
\[
c'(v) = \begin{cases}
c(v) & c(v) \leq a - 2, \\
c(v) - 2 & c(v) \geq a + 2.
\end{cases}
\]

This coloring is a minimum local coloring of G_{k-1}, therefore by the induction hypothesis the statement is true for G_{k-1}. If b is the greatest color less than a to be used in local coloring c', then by adding 2 to the color of vertices with color greater than b in c' and use the same color as c for the vertices in V_j we get the local coloring c of G_k. Therefore the local coloring c has the desired properties because, for vertices v that $c'(v) \leq b$, we have $c(v) = c'(v)$ and for vertices v that $c'(v) > b$, we have $c(v) = c'(v) + 2$. Moreover the vertices in V_j all must have the same color, otherwise we find an induced subgraph in G_k with colors that contradicts the property of c. \square

Consider the graph $G_k = K_{k+3, \ldots, k+3, 1, 1}$ with partite sets $V_i = \{v^i_1, \ldots, v^i_{k+3}\}$, $1 \leq i \leq k$, $W = \{w\}$ and $Z = \{z\}$. Delete the edge set $\{v^i_s v^j_t \mid 4 \leq i, j \leq k + 3, 1 \leq s \neq t \leq k\}$ in G_k. We called this new graph H_k and have the following lemma.

Lemma 2. The graph H_k satisfies in Proposition 1 and $\chi(H_k) = 2k + 2$.

Proof. It is obvious that $G'_k = K_{3, \ldots, 3, 1, 1}$, a complete $(k+2)$-partite graph with partite sets $V'_i = \{v^i_1, v^i_2, v^i_3\}$, $1 \leq i \leq k$, $W = \{w\}$ and $Z = \{z\}$, is a subgraph of H_k. Also H_k is a subgraph of G_k. Therefore $\chi(H_k) = 2k + 2$ and each minimum local coloring c of G_k is a minimum local coloring of G'_k. So G'_k satisfies in Proposition 1 and $c(v^i_1) = c(v^i_2) = c(v^i_3) = c_i$, $1 \leq i \leq k$. If there exists a vertex v^j_i
in H_k such that $c(v_j^i) = a \neq c_i$, then we find an induced subgraph P_3 with colors $a - 1$ and a or with colors a and $a + 1$; or we have an induced complete graph K_3 with colors $a - 2$, $a - 1$ and a or with colors a, $a + 1$ and $a + 2$. Each of these cases contradicts that c is a local coloring. Therefore for each vertex $v_j^i \in V_i$, $c(v_j^i) = c_i$ and one of the three possibilities in Proposition 1 appears. □

Theorem 2. For each positive integer $k \geq 2$, there exists a locally rainbow graph R_{2k+2} with $\chi_f(R_{2k+2}) = 2k + 2$.

Proof. To construct graph R_{2k+2}, first we consider graph H_k constructed above and the complete graph K_k which $V(K_k) = \{u_1, \ldots, u_k\}$. We add the edges $E = \{u_jv_{j+i}^i| 1 \leq i \leq k, 1 \leq j \leq k\} \cup \{u_iw| 1 \leq i \leq k - 1\} \cup \{u_iz\}$. We denote this new graph by R_{2k+2} and claim that $\chi_f(R_{2k+2}) = 2k + 2$ and R_{2k+2} is a locally rainbow graph. We define a local coloring c of graph R_{2k+2} as follows. For each vertex $v \in V(R_{2k+2})$, define

$$c(v) = \begin{cases}
2i - 1 & v \in V_i, 1 \leq i \leq k, \\
2i & v = u_i \in V(K_k), 1 \leq i \leq k, \\
2k + 1 & v = w, \\
2k + 2 & v = z.
\end{cases}$$

It is easy to see that c is a local coloring of R_{2k+2} with value $2k + 2$.

Moreover each minimum local coloring of graph R_{2k+2} induced a minimum local coloring of graph H_k. Hence by Lemma 2 the colors of vertices in H_k have the properties of Proposition 1. By the construction above, it is obvious that the colors of vertices in $V(K_k)$ are different from the colors of partite sets V_1, \ldots, V_k. Also the colors of vertices in $V(K_k)$ in a local coloring c can not be the same as the colors $c(w)$ and $c(z)$, otherwise since $c(z) - c(w) = 1$, we find an induced subgraph P_3 with colors that contradicts the property of c. Therefore the colors of vertices in $V(K_k)$ are the rest of colors among.
ed subgraph are a or with es that c is a = c_i and one

_ists a locally

aph H_k con-) = \{u_1, \ldots, \leq j \leq k\} \cup
ph by R_{2k+2} ally rainbow follows. For

k,

2 with value

2k+2 induced emma 2 the on 1. By the es in V(K_k) so the colors same as the , we find an perty of c. colors among

the color set \{1, 2, \ldots, 2k + 2\}. So \(R_{2k+2}\) is a locally rainbow graph as claimed.

From Theorems 1 and 2 we conclude that, for every positive integer \(k\), there exists a locally rainbow graph \(R_k\) with \(\chi_e(R_k) = k\), which proves the Conjecture 1 is true.

References
